Bergman and Bloch spaces of vector-valued functions

José Luis Arregui^{*1} and Oscar Blasco^{**2}

¹ Departamento de Matemáticas, Universidad de Zaragoza, 50005 Zaragoza, Spain

² Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjassot, Spain

Received 18 February 2002, revised 13 August 2002, accepted 16 August 2002 Published online 18 November 2003

Key words Spaces of vector-valued analytic functions, Bergman kernels, projections in Banach spaces **MSC (2000)** 46B20, 46E40

We investigate Bergman and Bloch spaces of analytic vector-valued functions in the unit disc. We show how the Bergman projection from the Bochner-Lebesgue space $L_p(\mathbb{D}, X)$ onto the Bergman space $B_p(X)$ extends boundedly to the space of vector-valued measures of bounded *p*-variation $V_p(X)$, using this fact to prove that the dual of $B_p(X)$ is $B_p(X^*)$ for any complex Banach space X and 1 . As for <math>p = 1 the dual is the Bloch space $\mathcal{B}(X^*)$. Furthermore we relate these spaces (via the Bergman kernel) with the classes of *p*-summing and positive *p*-summing operators, and we show in the same framework that $B_p(X)$ is always complemented in $\ell_p(X)$.

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Throughout the paper X will be a complex Banach space, $1 \le p < \infty$, $\mathcal{H}(\mathbb{D}, X)$ (resp. $\mathcal{P}(X)$) denotes the space of analytic functions (resp. polynomials) on the unit disc \mathbb{D} taking values in X and $L_p(m, X)$ stands for the Bochner-Lebesgue *p*-integrable functions on \mathbb{D} where *m* is the normalized Borel-Lebesgue measure on \mathbb{D} . We write $H_p(X)$ and $B_p(X)$ for the Hardy and Bergman spaces of vector-valued analytic functions respectively, which, using the notation $M_p(f,r) = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \|f(re^{it})\|^p dt\right)^{1/p}$, consist of those functions in $\mathcal{H}(\mathbb{D}, X)$ where $\sup_{0 \le r \le 1} M_p(f,r) = \|f\|_{H_p(X)} \le \infty$ and $\left(\int_0^1 M_p^p(f,r)r \, dr\right)^{1/p} = \|f\|_{B_p(X)} \le \infty$.

A limiting case in the scale of Bergman spaces, which is useful for many purposes, is the Bloch space $\mathcal{B}(X)$, its elements being all functions in $\mathcal{H}(\mathbb{D}, X)$ such that $\sup_{|z|<1} (1-|z|^2) ||f'(z)|| < \infty$.

For $X = \mathbb{C}$ the reader is referred to [3], [15] and [22] for the scalar-valued theory on these spaces, to [8], [9] or [10] for several properties of Bloch functions and their connection with multipliers between H_1 and BMOA in the vector-valued setting, and finally to the paper [4] for properties on Taylor coefficient of functions in $B_p(X)$ and different results on multipliers between vector-valued Bergman spaces.

In this paper we shall study questions such as the boundedness of Bergman projection, the duality or the atomic decomposition in the vector-valued setting. The relationship between vector-valued analytic functions, vector measures and operators is also considered.

The paper is divided into four sections. In the first one we prove some elementary facts on the spaces $B_p(X)$ and $\mathcal{B}(X)$, showing that the norm of a function in $B_p(X)$ can be described in terms of its derivatives, in particular that $f \in B_p(X)$ if and only if $(1 - |z|) ||f'(z)|| \in L_p(m)$, which makes natural to introduce $\mathcal{B}(X)$ in the scale as a limiting case.

The second section is devoted to analyze the Bergman projection in the vector-valued setting. We see that the Bergman projection is bounded not only on $L_p(m, X)$ but even on the space of vector measures of bounded *p*-variation $V_p(m, X)$. This allows us, as in the scalar-valued case, to get the duality $(B_p(X))^* = B_{p'}(X^*)$ without conditions on the space X. It is also shown that the Bergman projection is bounded from $V_{\infty}(m, X)$ onto $\mathcal{B}(X)$, and a projection from the space of vector-valued measures of bounded variation M(X) onto $B_1(X)$

^{*} Corresponding author: e-mail: arregui@posta.unizar.es, Phone: +34 976761328, Fax: +34 976761338

^{**} e-mail: oblasco@uv.es, Phone: +34 963544729, Fax: +34 963544360

is also presented. Then we prove that $B_1(X)$ coincides with the projective tensor product $B_1 \otimes X$ and that $\mathcal{B}(X)$ can be identified with $\mathcal{L}(B_1, X)$. As a consequence the duality $(B_1(X))^* = \mathcal{B}(X^*)$ is obtained.

Next section is devoted to relate vector-valued analytic functions and operators. For any $\mathcal{L}(X, Y)$ -valued analytic function $F(z) = \sum_{n=0}^{\infty} T_n z^n$ we can associate two linear operators, $T_F(x) = F_x$ where $F_x(z) = \sum_{n=0}^{\infty} T_n(x)z^n$ which maps elements in X into Y-valued analytic functions and $S_F(g) = \sum_{n=0}^{\infty} \frac{T_n(x_n)}{n+1}$ for any $g \in \mathcal{P}(X)$ such that $g(z) = \sum_{n\geq 0} x_n z^n$, which maps X-valued polynomials into vectors in Y. Under these identifications it is shown that $\mathcal{B}(\mathcal{L}(X,Y))$ can be regarded either as $\mathcal{L}(X,\mathcal{B}(Y))$ or as $\mathcal{L}(B_1(X),Y)$. Of course if $F \in B_p(\mathcal{L}(X,Y))$ then $T_F \in \mathcal{L}(X, B_p(Y))$ and $S_F \in \mathcal{L}(B_{p'}(X),Y)$ but the converse does not hold true in general. Some connections with the theory of p-summing and positive p-summing operators are provided. It is observed that $B_p(\Pi_p(X,Y))$ is continuosly embedded into $\Pi_p(X, B_p(Y))$ but again the converse is false. As a final result of our considerations we see that if $T \in \mathcal{L}(B_{p'}, X)$ and $f_T(z) = T(K_z)$, where K_z stands for the Bergman kernel, then f_T belongs to $B_p(X)$ if and only if the composition with the Bergman projection TP gives a positive p-summing operator from $L_{p'}(m)$ into X.

Finally, in the last section we show that $B_p(X)$ is always isomorphic to a complemented subspace of $\ell_p(X)$. We write $\mathcal{L}(X,Y)$ (resp. $\mathcal{K}(X,Y)$) for the space of bounded (resp. compact) linear operators between the spaces X and Y, we denote x^*x the duality pairing in (X^*, X) , $u_n(z) = z^n$ for $n \ge 0$ and any $f \in \mathcal{P}(X)$ is written $f = \sum_{n=0}^{N} u_n \otimes x_n$ for some $N \in \mathbb{N}$ where $(\phi \otimes x)(z) = \phi(z)x$ for $\phi \in \mathcal{H}(\mathbb{D}, \mathbb{C})$ and $x \in X$. As usual we use p' for the conjugate exponent, i.e. 1/p + 1/p' = 1, and C denotes a constant that may vary from line to line.

2 Preliminaries

Definition 2.1 Let $1 \le p < \infty$ and let X be a complex Banach space. $B_p(X)$ is defined as the space of X-valued analytic functions on the unit disc \mathbb{D} such that

$$||f||_{B_p(X)} = \left(\int_{\mathbb{D}} ||f(z)||^p dm(z)\right)^{1/p} < \infty.$$

As in the scalar-valued case one gets the following facts, whose proofs are left to the reader.

Proposition 2.2 Let $1 \le p < \infty$ and let X be a complex Banach space.

- (i) $B_p(X)$ is a Banach space.
- (ii) If $f \in B_p(X)$ then $\lim_{r \to 1} ||f f_r||_{B_p(X)} = 0$, where $f_r(z) = f(rz)$.
- (iii) The space of X-valued analytic polynomials $\mathcal{P}(X)$ is dense in $B_p(X)$.

Remark 2.3 If H is a complex Hilbert space, then $B_2(H)$ is also a Hilbert space under the scalar product given by

$$\langle\langle f,g\rangle\rangle = \int_{\mathbb{D}} \langle f(z),g(\bar{z})\rangle \, dm(z) \quad (f,g\in B_2(H))$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product on *H*.

For any $f \in B_2(H)$ such that $f(z) = \sum_{n=0}^{\infty} x_n z^n$ we have

$$||f||_{B_2(H)} = \left(\sum_{n=0}^{\infty} \frac{||x_n||^2}{n+1}\right)^{1/2}.$$
(2.1)

This shows that $B_2(H)$ is isometrically isomorphic to $\ell_2(H)$. Actually, if H is separable with an orthonormal basis $(e_n)_{n\geq 0}$ then $(\sqrt{n+1}u_n\otimes e_k)_{n,k\geq 0}$ is an orthonormal basis of $B_2(H)$.

Let us mention that (2.1) is no longer true for Banach spaces, as follows from the next easy example.

Example 2.4 Let $2 and let <math>(e_n)$ be the canonical basis of ℓ_p . If $f(z) = \sum_{n=0}^{\infty} e_n z^n = (z^n)_{n=0}^{\infty}$ then $f \in B_2(\ell_p)$ but $\sum_{n=0}^{\infty} \frac{\|e_n\|^2}{n+1} = \infty$.

The reader is referred to [4] for further results on Taylor coefficients of functions in vector valued Bergman spaces and for connections with geometry of Banach spaces.

Let us point out that, as in the scalar-valued case, we have that for $f \in \mathcal{H}(\mathbb{D}, X)$, 0 < r < 1 and $1 \le q \le \infty$, the following inequalities hold true:

$$r^2 M_q(f', r^2) \leq \frac{M_q(f, r)}{1 - r}.$$
 (2.2)

$$M_q(f,r) \leq ||f(0)|| + \int_0^r M_q(f',s) \, ds \,.$$
 (2.3)

These facts can be used to get an equivalent norm in $B_p(X)$ by looking at the derivatives of the function rather than the function itself.

Theorem 2.5 (See [22].) Let $f \in \mathcal{H}(\mathbb{D}, X)$, $n \in \mathbb{N}$, $1 \le p < \infty$. Then $f \in B_p(X)$ if and only if the function $z \mapsto (1 - |z|^2)^n f^{(n)}(z) \in L_p(m, X).$

Proof. Let us show that for any $g \in \mathcal{H}(\mathbb{D}, X)$ and $k \ge 0$, the function $(1 - |z|^2)^k g(z)$ belongs to $L_p(m, X)$ if and only if $(1 - |z|^2)^{k+1}g'(z)$ also does. Then a recurrence argument gives the statement.

Note that $(1-|z|^2)^{k+1}g'(z) \in L_p(m,X)$ if and only if

$$\int_{\mathbb{D}} \left(1 - |z|^2 \right)^{pk+p} \|zg'(z)\|^p \, dm(z) < \infty$$

Let us denote $h(z) = zg'(z) = \sum_{n=0}^{\infty} nx_n z^n$, and observe that for each r < 1 one has that $h_{r^2} = g_r * \lambda_r$, where $\lambda_r (e^{i\theta}) = re^{i\theta} (1 - re^{i\theta})^{-2}$. Since $M_1(\lambda, r) = \frac{r}{1 - r^2}$ and $M_p(h, r^2) \le M_1(\lambda, r)M_p(g, r)$, one gets that

$$\int_{\mathbb{D}} (1 - |z|^2)^{pk+p} ||zg'(z)||^p dm(z) = \int_0^1 4r^3 (1 - r^4)^{pk+p} M_p^p(h, r^2) dr$$

$$\leq \int_0^1 8r (1 - r^2)^{pk} M_p^p(g, r) dr$$

$$= C \int_{\mathbb{D}} (1 - |z|^2)^{pk} ||g(z)||^p dm(z).$$

Conversely, let us take g such that $(1-r^2)^{k+1}M_p(g',r) \in L_p((0,1),dr)$. We may assume that

$$\int_0^1 (1-r)^{(k+1)p} M_p^p(g',r) \, dr = 1$$

and also that q(0) = 0.

Thanks to (2.3) we have

$$\begin{split} \int_{\mathbb{D}} \left(1 - |z|^2\right)^{kp} \|g(z)\|^p \, dm(z) &= \int_0^1 2r \left(1 - r^2\right)^{kp} M_p^p(g, r) \, dr \\ &\leq \int_0^1 2r \left(1 - r^2\right)^{kp} \left(\int_0^r M_p(g', s) \, ds\right)^p \, dr \\ &\leq C \int_0^1 (1 - r)^{kp} \left(\int_0^r M_p(g', s) \, ds\right)^p \, dr \, . \end{split}$$

For p = 1 we get

$$\begin{split} \int_{\mathbb{D}} \left(1 - |z|^2 \right)^k \|g(z)\| \, dm(z) &\leq C \int_0^1 (1 - r)^k \left(\int_0^r M_1(g', s) \, ds \right) dr \\ &= C \int_0^1 (1 - s)^{k+1} M_1(g', s) \, ds \,= \, C \,. \end{split}$$

For p > 1, we write for each $t \in (0, 1)$

$$I_t = \int_0^t (1-r)^{kp} \left(\int_0^r M_p(g',s) \, ds \right)^p \, dr \, .$$

Let

$$u(r) = -\frac{1}{pk+1}(1-r)^{pk+1}$$
 and $v(r) = \left(\int_0^r M_p(g',s) \, ds\right)^p$.

Since u(t)v(t) < 0 and v(0) = 0, we have

$$I_t = \int_0^t u'(r)v(r) \, dr \leq -\int_0^t u(r)v'(r) \, dr$$

That is

$$\begin{aligned} H_t &\leq \frac{p}{pk+1} \int_0^t (1-r)^{pk+1} M_p(g',r) \left(\int_0^r M_p(g',s) \, ds \right)^{p-1} dr \\ &= \frac{p}{pk+1} \int_0^t (1-r)^{k+1} M_p(g',r) (1-r)^{(p-1)k} \left(\int_0^r M_p(g',s) \, ds \right)^{p-1} dr \end{aligned}$$

Then the assumption and Hölder's inequality show that $I_t \leq CI_t^{1/p'}$. Hence $I_t \leq C$ for all t and the proof is finished.

Taking the formulation in terms of the first derivative, it makes sense to look at the extreme case $p = \infty$ of Bergman spaces as functions in $\mathcal{H}(\mathbb{D}, X)$ such that the function $(1 - |z|)^2 f'(z)$ belongs to $L_{\infty}(m, X)$.

Definition 2.6 The *Bloch space* $\mathcal{B}(X)$ is defined as the set of all functions in $\mathcal{H}(\mathbb{D}, X)$ for which $\sup_{z \in \mathbb{D}} (1 - |z|^2) ||f'(z)|| < \infty$. Under the norm

$$||f||_{\mathcal{B}(X)} = ||f(0)|| + \sup_{z \in \mathbb{D}} (1 - |z|^2) ||f'(z)||$$

it becomes a Banach space.

The *little Bloch space* $\mathcal{B}_0(X)$ is the subspace of $\mathcal{B}(X)$ given by those functions for which

$$\lim_{r \to 1} (1 - r^2) M_{\infty}(f', r) = 0$$

Remark 2.7 $f \in \mathcal{B}(X)$ if and only if $x^* f \in \mathcal{B}$ for all $x^* \in X^*$. And, interchanging the suprema, we have that

$$\|f\|_{\mathcal{B}(X)} \approx \sup_{\|x^*\|=1} \|x^*f\|_{\mathcal{B}}$$
(2.4)

where $x^*f(z) = \langle f(z), x^* \rangle$.

Proposition 2.8 If $f \in \mathcal{B}(X)$ then $||f||_{\mathcal{B}(X)} = \lim_{r \to 1} ||f_r||_{\mathcal{B}(X)}$.

Proof. Note that

$$(1-|z|^2) \|f'_r(z)\| = r(1-|z|^2) \|f'(rz)\| \le (1-|rz|^2) \|f'(rz)\|$$

what implies that $||f_r||_{\mathcal{B}(X)} \le ||f||_{\mathcal{B}(X)}$ for all 0 < r < 1.

Now, given $\varepsilon > 0$ take $z_0 \in \mathbb{D}$ such that $(1 - |z_0|^2) ||f'(z_0)|| > ||f||_{\mathcal{B}(X)} - \varepsilon/2$ and take r_0 verifying that $r(1 - |z_0|^2) ||f'(rz_0)|| > (1 - |z_0|^2) ||f'(z_0)|| - \varepsilon/2$ for any $r > r_0$. Hence

$$||f_r||_{\mathcal{B}(X)} > ||f||_{\mathcal{B}(X)} - \varepsilon$$

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Theorem 2.9 Let $f \in \mathcal{B}(X)$. The following are equivalent. (i) $f \in \mathcal{B}_0(X)$. (ii) $\lim_{r \to 1} ||f - f_r||_{\mathcal{B}(X)} = 0$.

(iii) f belongs to the closure of $\mathcal{P}(X)$.

Proof. (i) \Rightarrow (ii). Assume that $\lim_{s \to 1} (1 - s^2) M_{\infty}(f', s) = 0$. Note that for all 0 < s < 1 we have

$$\sup_{|z|<1} \left(1-|z|^2\right) \|f'(z)-rf'(rz)\| \leq 2 \sup_{|z|>s} \left(1-|z|^2\right) M_{\infty}(f',|z|) + \sup_{|z|\leq s} \|f'(z)-f'_r(z)\|.$$

Hence, given $\varepsilon > 0$ choose $s_0 < 1$ such that $\sup_{|z| > s_0} (1 - |z|^2) M_{\infty}(f', |z|) < \frac{\varepsilon}{4}$ and then use that f'_r converges uniformly on compact sets to get $r_0 < 1$ such that $\sup_{|z| \le s_0} ||f'(z) - f'_r(z)|| < \frac{\varepsilon}{2}$ for $r > r_0$. Then

 $||f - f_r||_{\mathcal{B}(X)} < \varepsilon \quad \text{for} \quad r > r_0.$

(ii) \Rightarrow (iii). Assume now that, for each $\varepsilon > 0$, there exists $r_0 < 1$ such that $||f - f_{r_0}||_{\mathcal{B}(X)} < \varepsilon/2$. Now we can take a Taylor polynomial of $f_{r_0} P_N = P_N(f_{r_0})$ such that $||f_{r_0} - P_N||_{H_{\infty}(X)} < \varepsilon/2$. Therefore

$$\|f - P_N(f_{r_0})\|_{\mathcal{B}(X)} \leq \|f - f_{r_0}\|_{\mathcal{B}(X)} + \|f_{r_0} - P_N\|_{H_{\infty}(X)} < \varepsilon.$$

(iii) \Rightarrow (i). Note that $\mathcal{P}(X) \subset \mathcal{B}_0(X)$, because if $P \in \mathcal{P}(X)$ then

$$(1-r^2)M_{\infty}(P',r) \le 2(1-r)\max_{|z|\le 1} \|P'(z)\|$$

Since $\mathcal{B}_0(X)$ is closed the result is proved.

3 Bergman kernels and projections

Let us write $K(z,w) = \frac{1}{(1-zw)^2}$ and $K_z(w) = K(z,w)$ for $z, w \in \mathbb{D}$. That is

$$K_z = \sum_{n=0}^{\infty} (n+1)u_n z^n \,.$$

Since $||u_n||_{H_p} = 1$, $||u_n||_{B_p} \sim n^{-1/p}$ and $||u_n||_{\mathcal{B}} \sim e^{-1}$ we have that, for each |z| < 1, the series $\sum_{n=0}^{\infty} (n+1)u_n z^n$ is absolutely convergent considered as a \mathcal{B} , H_p or B_p -valued function. This allows us to consider $K : \mathbb{D} \to X$ given by $K(z) = K_z$ as an X-valued analytic function where X is either \mathcal{B} , H_p or B_p for $1 \le p \le \infty$.

We will call K(z, w) the Bergman kernel, and the map $K : \mathbb{D} \to X$ the Bergman function. Of course $(n+1)u_n$ are its Taylor coefficients, and its derivative is given by $K'(z) = \sum_{n=1}^{\infty} (n+1)nu_n z^{n-1}$, with $K'(z)(w) = \frac{2w}{(1-zw)^3}$.

In order to estimate the norms of K in different spaces we simply need the following lemmas.

Lemma 3.1 (See [15], page 65.) Let $J_{\alpha}(r) = \int_{0}^{1} \frac{dt}{|1-re^{it}|^{\alpha}}$ for $\alpha > 0$. Then (i) $J_{\alpha}(r)$ is bounded in (0, 1) for $\alpha < 1$, (ii) $J_{\alpha}(r) \sim \log \frac{1}{1-r}$ as $r \to 1$ for $\alpha = 1$, and (iii) $J_{\alpha}(r) \sim \frac{1}{(1-r)^{\alpha-1}}$ as $r \to 1$ for $\alpha > 1$. **Lemma 3.2** (See [22], 4.2.2.) Let $I_{\alpha,\beta}(r) = \int_{\mathbb{D}} \frac{(1-|w|^2)^{\alpha}}{|1-rw|^{\beta}} dm(w)$ for $\beta > 0$ and $\alpha > -1$. Then (i) $I_{\alpha,\beta}(r)$ is bounded in (0, 1) for $\beta - \alpha < 2$, (ii) $I_{\alpha,\beta}(r) \sim \log \frac{1}{1-r}$ as $r \to 1$ for $\beta - \alpha = 2$, and

(iii) $I_{\alpha,\beta}(r) \sim \frac{1-r}{(1-r)^{\beta-\alpha-2}}$ as $r \to 1$ for $\beta - \alpha > 2$.

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

From these lemmas we get the next estimates as $|z| \rightarrow 1$:

$$\|K(z)\|_{B_1} \sim \log \frac{1}{1-|z|}$$
 and $\|K(z)\|_{B_p} \sim \frac{1}{(1-|z|)^{2/p'}}$ for $p > 1$, (3.1)

$$\|K(z)\|_{H_p} \sim \frac{1}{(1-|z|)^{2-1/p}} \quad \text{for} \quad p \ge 1,$$
(3.2)

$$\|K'(z)\|_{B_p} \sim \frac{1}{(1-|z|)^{3-2/p}} \text{ and } \|K'(z)\|_{H_p} \sim \frac{1}{(1-|z|)^{3-1/p}},$$
(3.3)

$$||K(z)||_{\mathcal{B}} \sim \frac{1}{(1-|z|)^2} \text{ and } ||K'(z)||_{\mathcal{B}} \sim \frac{1}{(1-|z|)^3}.$$
 (3.4)

Proposition 3.3 Let $1 \le p, q < \infty$. Let $X \in \{B_q, H_q, \mathcal{B}, 1 \le q \le \infty\}$.

- (i) The Bergman function $K \in B_p(X)$ if and only if $X = B_q$ and 2p < q'.
- (ii) The Bergman function $K \in \mathcal{B}(X)$ if and only if $X = B_1$.
- (iii) The Bergman function $K \notin H_p(X)$.

Definition 3.4 (See [14] or [12].) For any Banach space X, we denote by M(X) the Banach space of vector (X-valued) measures of bounded variation defined on the Borel subsets of \mathbb{D} , with norm given by $||G||_1 = |G|(\mathbb{D})$. For 1 : A measure G is said to have*bounded p-variation* $, <math>G \in V_p(m, X)$, if

$$||G||_p = \sup_{\pi} \left(\sum_{A \in \pi} \frac{||G(A)||^p}{m(A)^{p-1}} \right)^{\frac{1}{p}} < \infty,$$

where the supremum is taken over all finite partitions π of $\mathbb D$ into Borel sets of positive measure.

For $p = \infty$ we have that $G \in V_{\infty}(m, X)$ if there exists a constant C > 0 such that $||G(A)|| \leq Cm(A)$ for any Borel set A, and its norm is given by

$$||G||_{\infty} = \sup\left\{\frac{||G(A)||}{m(A)} : m(A) > 0\right\}$$

Remark 3.5 Given an X-valued simple measurable function $f = \sum_{k=1}^{n} x_k \chi_{A_k}$ and a X*-valued measure G we denote by

$$\langle f, G \rangle = \sum_{k=1}^n x_k^* x_k$$

where $x_k^* = G(\bar{A}_k)$ and $\bar{A}_k = \{z \in \mathbb{D} : \bar{z} \in A_k\}.$

It is not difficult to see that if $G \in V_p(m, X^*)$ this extends to a linear functional in $L_{p'}(m, X)$ and actually we have the duality $(L_{p'}(m, X))^* = V_p(m, X^*)$ under this pairing (see [14]).

If G is an X-valued measure of bounded variation, and $\phi = \sum_{k=1}^{n} \alpha_k \chi_{E_k}$ is a simple function then we define

$$\int_{\mathbb{D}} \phi \, dG = \sum_{k=1}^{n} \alpha_k G(E_k) \, .$$

Since $\left\|\int_{\mathbb{D}} \phi \, dG\right\| \leq \|G\|_1 \|\phi\|_{\infty}$, using the density of simple functions we extend the definition of $\int_{\mathbb{D}} \phi \, dG$ for any bounded function ϕ .

Definition 3.6 Let $G \in M(X)$. We define the *Bergman projection* of the measure G as the analytic function in the disc given by

$$PG(z) = \int_{\mathbb{D}} K_z(\overline{w}) \, dG(w) \in X \, .$$

Since $\sup_{w \in \mathbb{D}} ||K_z(w)|| \le \frac{1}{(1-|z|)^2}$ then PG(z) is well defined. Actually since the series

$$K_z = \sum_{n=0}^{\infty} (n+1)u_n z^n$$

is absolutely convergent in $L_{\infty}(m)$ for each |z| < 1 then for $z \in \mathbb{D}$ we have

$$PG(z) = \sum_{n=0}^{\infty} x_n z^n \,,$$

where $x_n = (n+1) \int_{\mathbb{D}} \overline{w}^n \, dG(w)$.

Remark 3.7 If $f \in L_1(m, X)$ then $Pf(z) = \int_{\mathbb{D}} f(w) K_z(\overline{w}) dm(w)$. In particular we have that Pf = f for $f \in B_1(X)$.

Indeed, if $f(z) = \sum_{n=0}^{\infty} x_n z^n$ then

$$(n+1)\int_{\mathbb{D}} f(w)\overline{w}^{n} dm(w) = (n+1)\int_{0}^{1} 2r^{n+1} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(re^{i\theta})e^{in\theta} d\theta\right) dr$$
$$= (n+1) \left(\int_{0}^{1} 2r^{2n+1} dr\right) x_{n} = x_{n}.$$

This shows that the Taylor coefficients of f and Pf coincide.

Theorem 3.8 Let X be a complex Banach space and $1 . Then the Bergman projection P is bounded from <math>V_p(m, X)$ onto $B_p(X)$.

Proof. Since $G \in V_p(m, X)$ there exists a nonnegative ϕ in $L_p(m)$ such that $d|G| = \phi dm$ and $\|\phi\|_p = \|G\|_p$ (see [14], page 243).

Now, for each $z \in \mathbb{D}$ we have

$$\|PG(z)\| = \left\| \int_{\mathbb{D}} K_z(\overline{w}) \, dG(w) \right\| \leq \int_{\mathbb{D}} \left| K_z(\overline{w}) \right| d|G|(w) = \int_{\mathbb{D}} \left| K_z(\overline{w}) \right| \phi(w) \, dm(w) + \int_{\mathbb{D}} \left| K_z(\overline{w}) \right| d|G|(w) = \int_{\mathbb{D}} \left| K_z(\overline{w}) \right| d|G|(w) =$$

Now to finish the proof, let us recall that if $P^*(f)(z) = \int_{\mathbb{D}} |K(z, \overline{w})| f(w) dm(w)$ then $P^* : L_p(m) \to L_p(m)$ defines a bounded operator for any 1 (see for instance [22] for a proof).

Therefore $||PG||_{B_p(X)} \le ||P^*(\phi)||_{L_p} \le C ||\phi||_{L_p} = C ||G||_p$.

This allows, as in the scalar valued case, to get the duality result for vector-valued Bergman spaces.

Theorem 3.9 Let X be a complex Banach space and $1 . Then <math>(B_p(X))^*$ is isometrically isomorphic to $B_{p'}(X^*)$.

Proof. Let us define the linear operator $J: B_{p'}(X^*) \to (B_p(X))^*$ given by

$$(Jg)(f) = \int_{\mathbb{D}} g(z)f(\bar{z}) \, dm(z)$$

It follows from Hölder's inequality that J is bounded. Let us see that it is injective. If g verifies that Jg = 0, then for each $n \in \mathbb{N}$ and $x \in X$ we have

$$(Jg)(f_n) = \left(\int_{\mathbb{D}} g(z)\bar{z}^n \, dm(z)\right) x = 0,$$

where $f_n = u_n \otimes x$. This shows that $\int_{\mathbb{D}} g(z)\bar{z}^n dm(z) = \frac{1}{(n+1)!} g^{(n)}(0) = 0$ for all $n \in \mathbb{N}$ and hence g = 0. Let us now show that J is surjective.

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Given $\xi \in (B_p(X))^*$, the Hahn-Banach theorem gives an extension $\tilde{\xi} \in (L_p(m, X))^*$ with the same norm. Using duality (see Remark 3.5) there exists a vector valued measure $G \in V_{p'}(m, X^*)$, with p'-variation equal to $\|\xi\|$, for which $\tilde{\xi}\varphi = \int_{\mathbb{D}} \varphi \, dG$ for every $\varphi \in L_p(m, X)$.

Let G_c be the measure defined by $G_c(E) = G(\overline{E})$ for each measurable set $E \subset \mathbb{D}$. Clearly G_c has the same p'-variation as G, and

$$\int_{\mathbb{D}} \psi(z) \, dG_c(z) = \int_{\mathbb{D}} \psi(\bar{z}) \, dG(z)$$

for any simple function ψ . Define $g = PG_c$. From Theorem 3.8 we get $g \in B_{p'}(X^*)$. Let us see that $Jg = \xi$: For any $f \in \mathcal{P}(X)$ we can write

$$(Jg)(f) = \int_{\mathbb{D}} PG_c(z)f(\bar{z}) dm(z) = \int_{\mathbb{D}} \left(\int_{\mathbb{D}} K_z(\overline{w}) dG_c(w) \right) f(\bar{z}) dm(z) = \int_{\mathbb{D}} \left(\int_{\mathbb{D}} K_z(w) dG(w) \right) f(\bar{z}) dm(z) = \int_{\mathbb{D}} \left(\int_{\mathbb{D}} K_z(w)f(\bar{z}) dm(z) \right) dG(w) = \int_{\mathbb{D}} \left(\int_{\mathbb{D}} K_w(\bar{z})f(z) dm(z) \right) dG(w) = \int_{\mathbb{D}} Pf(w) dG(w) = \int_{\mathbb{D}} f(w) dG(w) = \xi(f) .$$

Proposition 3.10 *P* is not bounded neither on M(X) nor on $V_{\infty}(m, X)$.

Proof. Assume that P is bounded on $V_{\infty}(m, X)$. Using measures $dG = (\phi \otimes x) dm$ for $\phi \in L_{\infty}(m)$ and $x \in X$ we also have that the corresponding Bergman projection is bounded on $L_{\infty}(m)$. In such case

$$\sup_{|z|<1} \left| \int_{\mathbb{D}} K_z(w) \phi(w) \, dm(w) \right| \leq C \, \|\phi\|_{\infty}$$

for all $\phi \in L_{\infty}(m)$. Hence $\sup_{|z|<1} ||K_z||_{L_1(m)} \leq C$, but we have previously noticed that $||K_z||_{L_1(m)} = ||K(z)||_{B_1} \sim \log \frac{1}{1-|z|}$ as $|z| \to 1$.

The case p = 1 follows now looking at the adjoint operator.

Theorem 3.11 The Bergman projection P defines a bounded operator from $V_{\infty}(m, X)$ onto $\mathcal{B}(X)$.

Proof. Let G belong to $V_{\infty}(m, X)$. Therefore there exists C > 0 such that

$$|G|(A) \leq Cm(A)$$

for all measurable sets A. Now from the Radon-Nikodym theorem there exists $\phi \in L_{\infty}(m)$ such that $d|G| = \phi \, dm$ and $\|\phi\|_{L_{\infty}} = \|G\|_{\infty}$.

On the other hand $PG(z) = \sum_{n=0}^{\infty} x_n z^n$, where $x_n = (n+1) \int_{\mathbb{D}} \bar{z}^n dG(z)$. Since $(PG)'(z) = \int_{\mathbb{D}} \frac{2\overline{w}}{(1-\overline{w}z)^3} dG(w)$ we have

$$\|(PG)'(z)\| \leq \int_{\mathbb{D}} \frac{2}{|1-z\overline{w}|^3} \phi(w) \, dm(w) \leq C \, \frac{\|\phi\|_{L_{\infty}}}{|1-|z|}$$

Let us prove the surjectivity. Let $f \in \mathcal{B}(X)$ with f(0) = f'(0) = 0. If $f(z) = \sum_{n=2}^{\infty} x_n z^n$, let g be given by

$$g(z) = \frac{(1-|z|^2)f'(z)}{\bar{z}}.$$

We have that $g \in L_{\infty}(m, X)$ since $f \in \mathcal{B}(X)$ and f'(0) = 0. Now write $Pg(z) = \sum_{n=0}^{\infty} y_n z^n$ and take $n \ge 1$

$$y_n = (n+1) \int_{\mathbb{D}} g(z)\bar{z}^n dm(z)$$

= $(n+1) \int_{\mathbb{D}} (1-|z|^2) f'(z)\bar{z}^{n-1} dm(z)$
= $(n+1) \int_{\mathbb{D}} f'(z)\bar{z}^{n-1} dm(z) - (n+1) \int_{\mathbb{D}} z f'(z)\bar{z}^n dm(z) = x_n$

Also $y_0 = 0$. That is PG = f for dG = g dm.

The general case follows by writing $f = f(0) + u_1 \otimes f'(0) + f_1$ where f_1 is as above. So if $Pg_1 = f_1$ then $P(f(0) + u_1 \otimes f'(0) + g_1) = f$.

Let us recall that the Riesz projection $R : L_p(\mathbb{T}) \to H_p(\mathbb{T})$ defined by $R(f) = \sum_{n\geq 0} \hat{f}(n)u_n$ gives, as happens for the Bergman projection on $L_p(m)$, a bounded operator only for $1 . Nevertheless <math>H_1(\mathbb{T})$ is not isomorphic to any complemented subspace of $L_1(\mathbb{T})$, so we cannot define any bounded projection from $L_1(\mathbb{T})$ to $H_1(\mathbb{T})$, while we can define several bounded projections from $L_1(m)$ to B_1 (see [22]). Let us extend this also to the vector valued setting.

Definition 3.12 For any $G \in M(X)$, we can also define

$$\widetilde{P}G(z) = \int_{\mathbb{D}} \widetilde{K}_z(\overline{w}) \, dG(w) \, ,$$

where the kernel $\widetilde{K}_z(w) = \frac{2(1-|w|^2)}{(1-wz)^3} = \sum_{n=0}^{\infty} (n+1)(n+2)v_n(w)z^n$ and $v_n(w) = (1-|w|^2)w^n$. Hence $\widetilde{P}(G)(z) = \sum_{n=0}^{\infty} x_n z^n$ where $x_n = (n+1)(n+2)\int_{\mathbb{D}} (1-|w|^2)\overline{w}^n \, dG(w)$.

Theorem 3.13 \widetilde{P} defines a bounded projection from M(X) onto $B_1(X)$.

Proof. Let us first see that $B_1(X)$ is left invariant under \widetilde{P} .

Let dG(w) = f(w) dm(w) for some $f(z) = \sum_{n=0}^{\infty} x_n z^n$ in $B_1(X)$. Let us show that the Taylor coefficients of f and $\tilde{P}(f)$ coincide.

$$\int_{\mathbb{D}} (1 - |w|^2) \overline{w}^n dG(w) = \int_{\mathbb{D}} (1 - |w|^2) \overline{w}^n f(w) dm(w)$$

= $\int_0^1 2r^{n+1} (1 - r^2) \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(re^{i\theta}) e^{-in\theta} d\theta\right) dr$
= $\left(\int_0^1 2r^{2n+1} (1 - r^2) dr\right) x_n$
= $\frac{x_n}{(n+1)(n+2)}.$

Given now $G \in M(X)$ we can write

$$\begin{split} \int_{\mathbb{D}} \left\| \widetilde{P}G(z) \right\| dm(z) &= \int_{\mathbb{D}} \left\| \int_{\mathbb{D}} \widetilde{K}_{z}(\overline{w}) \, dG(w) \right\| dm(z) \\ &\leq \int_{\mathbb{D}} \left(\int_{\mathbb{D}} \left| \widetilde{K}_{z}(\overline{w}) \right| \, d|G|(w) \right) dm(z) \\ &= \int_{\mathbb{D}} \left(\int_{\mathbb{D}} \left| \widetilde{K}_{z}(\overline{w}) \right| \, dm(z) \right) d|G|(w) \end{split}$$

Using Lemma 3.2 for $\alpha = 0$ and $\beta = 3$ we have

$$\int_{\mathbb{D}} \left| \widetilde{K}_{z}(\overline{w}) \right| dm(z) = \int_{\mathbb{D}} \frac{2\left(1 - |w|^{2}\right)}{|1 - wz|^{3}} dm(z) \leq C$$

and then $\|\widetilde{P}G\|_{B_1(X)} \leq C |G|(\mathbb{D}).$

Theorem 3.14 $B_1(X)$ is isometrically isomorphic to $B_1 \hat{\otimes} X$.

Proof. Let \widetilde{P} and \widetilde{P}_X be the respective projections from $L_1(m)$ and $L_1(m, X)$ onto B_1 and $B_1(X)$ given above. By the properties of the projective tensor product, $\widetilde{P} \otimes \operatorname{id}_X$ is a projection from $L_1(m) \hat{\otimes} X$ onto $B_1 \hat{\otimes} X$. Then the usual isometry J between $L_1(m) \hat{\otimes} X$ and $L_1(m, X)$ restricts to an operator \widetilde{J} from $B_1 \hat{\otimes} X$ such that $\widetilde{J}(\widetilde{P} \otimes \operatorname{id}_X) = \widetilde{P}_X J$, and \widetilde{J} is an isometry between $B_1 \hat{\otimes} X$ and $B_1(X)$.

Remark 3.15 The Bloch space was first shown to be a dual space in [1]. In fact one has that $(B_1)^* = \mathcal{B}$ and $(\mathcal{B}_0)^* = B_1$ (see [22]) under the pairing

$$\langle f,g \rangle \; = \; \int_{\mathbb{D}} f(z) \overline{g(z)} \, dm(z) \, ,$$

which is well defined for polynomials and then extends by density for functions in B_1 .

That it is well defined and bounded is seen as the first part in the following proposition:

Proposition 3.16 (i) If $T \in \mathcal{L}(B_1, X)$ then $f_T(z) = T(K_z) \in \mathcal{B}(X)$.

(ii) If $f \in \mathcal{B}(X)$, the linear operator defined by $T_f(\phi) = \int_{\mathbb{D}} f(z)\phi(\bar{z}) dm(z)$ for each polynomial ϕ extends to a bounded operator in $\mathcal{L}(B_1, X)$.

(iii) $\mathcal{B}(X)$ is isomorphic to $\mathcal{L}(B_1, X)$.

Proof. (i) Let $g(z) = \frac{2w}{(1-zw)^3}$. One easily sees that $f'_T(z) = T(g_z)$ and $||g_z||_1 \sim 1/(1-|z|)$. This shows that $f_T \in \mathcal{B}(X)$.

(ii) From Remark 2.7 $x^* f \in \mathcal{B}$ and then $x^* T_f \in (B_1)^*$ for all $x^* \in X^*$. We have that T_f is bounded since $||T_f(\phi)|| = \sup_{||x^*||=1} |x^* T_f(\phi)|$. Moreover

$$||T_f|| = \sup_{\|x^*\|=1} ||x^*T_f||_{(B_1)^*} \approx \sup_{\|x^*\|=1} ||x^*f||_{\mathcal{B}} \approx ||f||_{\mathcal{B}(X)}.$$

(iii) follows easily from (i) and (ii).

We will explore further this interplay between functions and operators in Section 4.

Corollary 3.17 (See [7].) $\mathcal{B}(X^*)$ is isomorphic to $(B_1(X))^*$.

Proof. Since $(X \otimes Y)^* = \mathcal{L}(X, Y^*)$, Proposition 3.16 and Theorem 3.14 give the result.

4 Vector-valued functions and operators

Given two complex Banach spaces X and Y there are two natural ways of looking at a map $F : \mathbb{D} \times X \to Y$: it can be regarded as a map from X into $Y^{\mathbb{D}}$ or, alternatively, from \mathbb{D} into Y^X (and vice-versa). More precisely, given $F : \mathbb{D} \times X \to Y$, we can define $F_x : \mathbb{D} \to Y$ and $F_z : X \to Y$ by

$$F_x(z) = F_z(x) = F(z, x)$$

for any $x \in X$ and $z \in \mathbb{D}$.

Proposition 4.1 Let $F : \mathbb{D} \times X \to Y$ be a continuous map such that F_z is linear for all $z \in \mathbb{D}$. Then $F_z \in \mathcal{L}(X,Y)$ for all z, and the norm $||F_z||$ is locally bounded.

Proof. First statement is immediate. To see the second one, let us assume there exists a compact set $K \subset \mathbb{D}$ where $\{||F_z||; z \in K\}$ is not bounded. By the Banach-Steinhaus theorem the set $A = \{x \in X; \sup_{z \in K} ||F(z, x)||_Y = \infty\}$ will be dense in X. Then we can take two sequences $(x_j) \subset X$ and $(z_j) \subset K$ such that $x_j \to 0$ and $||F(z_j, x_j)|| \ge j$. By the compactness of K, passing to a subsequence we see that we can assume that (z_j) converges to certain $z_0 \in K$. But (z_j, x_j) tends to $(z_0, 0)$ and $F(z_0, 0) = 0$, so F cannot be continuous.

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Theorem 4.2 Let $F : \mathbb{D} \times X \to Y$ be continuous, such that F_z is linear for all $z \in \mathbb{D}$ and F_x is analytic for all $x \in X$. Then

(i) The map $z \mapsto F_z$ is an $\mathcal{L}(X, Y)$ -valued analytic function.

(ii) The operator $x \mapsto F_x$ is linear, and continuous with respect to the topology of the uniform convergence on *compact sets on the space* $\mathcal{H}(\mathbb{D}, Y)$ *.*

Proof. For each $n \ge 0$ we define

$$T_n x = \frac{1}{2\pi i} \int_{|z|=r} \frac{F_z(x)}{z^{n+1}} dz.$$

Of course $F_x(z) = \sum_{n=0}^{\infty} (T_n x) z^n$. It is clear that T_n is linear for each $n \in \mathbb{N}$. By the previous proposition, there exists C_r such that $||F_z|| \leq C_r$

for all $z \in \overline{D(0,r)}$, and then $||T_n x|| \leq C_r ||x||/r^n$. Now for each $z \in \mathbb{D}$ the series $\sum_{n\geq 0} T_n z^n$ is absolutely convergent in $\mathcal{L}(X,Y)$. Hence $z \mapsto \sum_{n\geq 0} T_n z^n$ defines an analytic function from \mathbb{D} into $\mathcal{L}(X, Y)$.

To see (ii), note that the linearity is immediate, so it suffices to see that if $x_j \to 0$ then $F_{x_j} \to 0$ uniformly on compact sets. If $K \subset \overline{D(0,r)}$ is compact and we take $s \in (r,1)$ and C such that $||T_n|| \leq C/s^n$, then for any $z \in K$,

$$||F_{x_j}(z)||_Y \le \sum_{n\ge 0} ||T_n|| ||x_j|| |z|^n \le C ||x_j|| \sum_{n\ge 0} \left(\frac{r}{s}\right)^n = \frac{Cs}{s-r} ||x_j||.$$

Definition 4.3 Let X, Y be two complex Banach spaces and let $F(z) = \sum_{n=0}^{\infty} T_n z^n$ be a function in $\mathcal{H}(\mathbb{D}, \mathcal{L}(X, Y))$. We denote by $T_F : X \to \mathcal{H}(\mathbb{D}, Y)$ the linear operator given by

$$(T_F x)(z) = (F(z))(x) = \sum_{n=0}^{\infty} (T_n x) z^n.$$

Theorem 4.4 $\mathcal{B}(\mathcal{L}(X,Y))$ is isomorphic to $\mathcal{L}(X,\mathcal{B}(Y))$ (via the map $F \mapsto T_F$).

Proof. Let $F \in \mathcal{B}(\mathcal{L}(X, Y))$. We have that

$$\sup_{\|x\|=1} \|F_x(0)\|_Y = \|F(0)\|_{\mathcal{L}(X,Y)}$$

and also

$$\sup_{\|x\|=1} \sup_{z \in \mathbb{D}} \left(1 - |z|^2\right) \|F'(z)x\|_Y = \sup_{z \in \mathbb{D}} \sup_{\|x\|=1} \left(1 - |z|^2\right) \|F'(z)x\|_Y$$
$$= \sup_{z \in \mathbb{D}} \left(1 - |z|^2\right) \|F'(z)\|_{\mathcal{L}(X,Y)}.$$

This shows that $||T_F||_{\mathcal{L}(X,\mathcal{B}(Y))} \approx ||F||_{\mathcal{B}(\mathcal{L}(X,Y))}$.

Now given $T \in \mathcal{L}(X, \mathcal{B}(Y))$ we can define $F : \mathbb{D} \times X \to Y$ by F(z, x) = Tx(z). Now by Theorem 4.2 we have that $z \mapsto F_z$ belongs to $\mathcal{H}(\mathbb{D}, \mathcal{L}(X, Y))$. Since $T_F = T$ the previous identities complete the proof.

Proposition 4.5 Let $1 \le p < \infty$. $B_p(\mathcal{L}(X,Y)) \subset \mathcal{L}(X, B_p(Y))$ (via the mapping $F \mapsto T_F$). In general $B_p(\mathcal{L}(X,Y)) \neq \mathcal{L}(X,B_p(Y)).$

Proof. Given $F \in B_p(\mathcal{L}(X, Y))$ we clearly have

$$\|T_F x\|_{B_p(Y)} = \left(\int_{\mathbb{D}} \|F(z)x\|_Y^p dm(z)\right)^{1/p} \\ \leq \|x\| \left(\int_{\mathbb{D}} \|F(z)\|_{\mathcal{L}(X,Y)}^p dm(z)\right)^{1/p} = \|F\|_{B_p(X)} \|x\|$$

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

To see that this inclusion is not surjective, let us take $X = \ell_1$ and $Y = \mathbb{C}$. The inclusion becomes $B_p(\ell_{\infty}) = B_p(\mathcal{L}(\ell_1, \mathbb{C})) \hookrightarrow \mathcal{L}(\ell_1, B_p) = \ell_{\infty}(B_p)$.

Let us consider the function $f(z) = \frac{1}{(1-z)^{1/p}}$. Clearly,

$$\|f\|_{B_p}^p \sim \int_0^1 \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{|1 - re^{i\theta}|} \, d\theta\right) dr \sim \int_0^1 \log \frac{1}{1 - r} \, dr < \infty.$$

Now let (ζ_n) be a dense sequence in the unit circle, and define $f_n(z) = f(\zeta_n z)$ for each n and $F(z) = (f_n(z))_{n \in \mathbb{N}}$.

By the density of (ζ_n) one gets

$$||F(z)||_{\ell_{\infty}} = \sup_{n} |f_{n}(z)| = \sup_{n} |f(\zeta_{n}z)| = M_{\infty}(f,|z|) = \frac{1}{(1-|z|)^{1/p}}$$

for every $z \in \mathbb{D}$. Then, despite (f_n) obviously belongs to $\ell_{\infty}(B_p)$, we get that the vector valued function F does not belong to $B_p(\ell_{\infty})$ since

$$\int_0^1 M_p^p(F,r) \, dr = \int_0^1 \frac{1}{1-r} \, dr = \infty \, .$$

Let us now introduce an interesting ideal of operators that play an important role in understanding the interpretation of vector-valued Bergman functions as operators.

Definition 4.6 Let X and Y be Banach spaces and $1 \le p < \infty$. A linear operator $T \in \mathcal{L}(X, Y)$ is said to be *p*-summing (denoted $T \in \Pi_p(X, Y)$) if there is a constant C > 0 such that for every $k \in \mathbb{N}$ and $x_1, x_2, \ldots, x_k \in X$ we have

$$\left(\sum_{i=1}^{k} \|T(x_i)\|^p\right)^{1/p} \leq C \sup_{\|x^*\|_{X^*} \leq 1} \left(\sum_{i=1}^{k} |\langle x_i, x^* \rangle|^p\right)^{1/p}$$

Its norm is given by the infimum of the constants C satisfying the previous inequality and is denoted by $\pi_p(T)$.

The reader is referred to [13], [21], [19] or [18] for results and references on these classes of operators. We simply include the following remark to be used in the sequel.

Remark 4.7 (See for instance [21].) Let (Ω, Σ, μ) be a measure space, let $f : \Omega \to X$ be a measurable function such that $x^*f \in L_p(\mu)$ for all $x^* \in X^*$ and $T \in \Pi_p(X, Y)$. Then $Tf : \Omega \to Y$ given by $Tf(\omega) = T(f(\omega))$ belongs to $L_p(\mu, Y)$.

Proposition 4.8 Let $1 \le p < \infty$. Then $B_p(\Pi_p(X, Y)) \subset \Pi_p(X, B_p(Y))$ (via the mapping $F \mapsto T_F$). There exist infinite dimensional Banach spaces X and Y such that

$$B_p(\Pi_p(X,Y)) \neq \Pi_p(X,B_p(Y))$$

Proof. Let $x_1, x_2, ..., x_n$ be elements in X. Then

$$\sum_{k=1}^{n} \|T_F x_k\|_{B_p(Y)}^p = \sum_{k=1}^{n} \int_{\mathbb{D}} \|F(z)x\|_Y^p dm(z)$$

=
$$\int_{\mathbb{D}} \sum_{k=1}^{n} \|F(z)(x_k)\|^p dm(z)$$

$$\leq \int_{\mathbb{D}} \pi_p^p(F(z)) \sup_{\|x^*\|=1} \sum_{k=1}^{n} |\langle x^*, x_k \rangle|^p dm(z)$$

=
$$\|F\|_{B_p(\Pi_p(X,Y))}^p \sup_{\|x^*\|=1} \sum_{k=1}^{n} |\langle x^*, x_k \rangle|^p.$$

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

To see that the embedding is not surjective even for infinite dimensional Banach space we can take p = 2, $X = \ell_1$ and $Y = \ell_2$. It is well known (see [18]) that $\Pi_2(\ell_1, H) = \mathcal{L}(\ell_1, H)$ for any Hilbert space (actually $\Pi_1 \subseteq \Pi_2$, and Grothendieck theorem (see [13] or [18]) even says that $\Pi_1(\ell_1, H) = \mathcal{L}(\ell_1, H)$). Hence, in our situation $\Pi_2(X, Y) = \mathcal{L}(X, Y)$ and $\Pi_2(X, B_2(Y)) = \mathcal{L}(X, B_2(Y))$. Therefore we simply need to show that $B_2(\ell_{\infty}(\ell_2))$ is strictly contained in $\ell_{\infty}(B_2(\ell_2))$.

Let us define now $f_n(z) = \frac{1}{\log(n+1)} \sum_{k=1}^{\infty} (1-1/n)^k e_k z^k$ where e_k is the canonical basis of ℓ_2 . Using (2.1) one has that

$$||f_n||_{B_2(\ell_2)} = \frac{1}{\log(n+1)} \left(\sum_{k=1}^{\infty} \frac{(1-1/n)^{2k}}{k+1} \right)^{1/2}$$

Hence $\sup_n \|f_n\|_{B_2(\ell_2)} < \infty$.

On the other hand, for all $n \in \mathbb{N}$

$$\|f_n(z)\|_{\ell_2} = \frac{1}{\log(n+1)} \left(\sum_{k=1}^{\infty} (1-1/n)^{2k} |z|^{2k} \right)^{1/2}$$

$$\geq C \frac{1}{\log(n+1)} \left(\sum_{k=n}^{\infty} |z|^{2k} \right)^{1/2}$$

$$\geq C \frac{1}{\log(n+1)} \frac{|z|^n}{(1-|z|^2)^{1/2}}.$$

This shows that $F \notin B_2(\ell_{\infty}(\ell_2)) = B_2(\Pi_2(X, Y))$ while $(f_n) \in \ell_{\infty}(B_2(\ell_2))$ and therefore

$$T_F \in \Pi_2(X, B_2(Y)) \,.$$

Definition 4.9 Let X, Y be two complex Banach spaces and let $F(z) = \sum_{n=0}^{\infty} T_n z^n$ be a function in $\mathcal{H}(\mathbb{D}, \mathcal{L}(X, Y))$. We denote by $S_F : \mathcal{P}(X) \to Y$ the linear operator given by

$$S_F(g) = \int_{\mathbb{D}} F(z)(g(\bar{z})) \, dm(z) = \sum_{n \ge 0} \frac{T_n(x_n)}{n+1}$$

for $g = \sum_{n>0} u_n \otimes x_n$.

Theorem 4.10 (See [7].) $\mathcal{B}(\mathcal{L}(X,Y)) = \mathcal{L}(B_1(X),Y)$ (via the map $F \mapsto S_F$) with equivalent norms.

Proof. Theorem 3.14, Proposition 3.16 and $\mathcal{L}(X \otimes Y, Z) = \mathcal{L}(X, \mathcal{L}(Y, Z))$ imply that

$$\mathcal{L}(B_1 \hat{\otimes} X, Y) = \mathcal{L}(B_1, \mathcal{L}(X, Y)) = \mathcal{B}(\mathcal{L}(X, Y)).$$

It is rather clear that the mapping which gives the isomorphism is actually $F \mapsto S_F$.

Proposition 4.11 Let $1 and let X and Y be complex Banach spaces. Then <math>B_p(\mathcal{L}(X,Y))$ (resp. $\mathcal{B}_0(\mathcal{L}(X,Y))$) is isomorphically embedded in $\mathcal{K}(B_{p'}(X),Y)$ (resp. $\mathcal{K}(B_1(X),Y)$), via the map $F \mapsto S_F$.

Proof. For the case $F \in \mathcal{B}_0(\mathcal{L}(X, Y))$, Theorem 4.10 gives $||F||_{\mathcal{B}(L(X,Y))} \approx ||S_F||$. In the case $F \in B_p(\mathcal{L}(X, Y))$. Clearly,

$$||S_F(g)|| \leq \int_{\mathbb{D}} ||F(z)|| \, ||g(\bar{z})|| \, dm(z) \leq ||F||_{B_p(\mathcal{L}(X,Y))} ||g||_{B_{p'}(X)}.$$

So $||S_F|| \leq C ||F||_{B_p(\mathcal{L}(X,Y))}$. The compactness of S_F in both cases follows from the fact that $\mathcal{P}(X)$ is dense in the corresponding spaces and for polynomials F then S_F is a finite rank operator.

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Remark 4.12 Let X, Y be two complex Banach spaces. If $T : \mathcal{P}(X) \to Y$ is a linear operator such that the linear operators $T_n : X \to Y$ given by $T_n(x) = T(u_n \otimes x)$ are bounded and $\limsup_{n \to \infty} ||T_n||^{1/n} \le 1$ then we can define the $\mathcal{L}(X, Y)$ -valued analytic function

$$F_T(z) = \sum_{n \ge 0} (n+1)T_n z^n$$

It is worth mentioning that this is the inverse map of $F \mapsto S_F$, so that $F_{S_F} = F$ and $S_{F_T} = T$.

Definition 4.13 Let $1 , and let X be a complex Banach space and <math>T \in \mathcal{L}(B_{p'}, X)$. We define $f_T \in \mathcal{H}(\mathbb{D}, X)$ given by

$$f_T(z) = T(K_z).$$

Remark 4.14 $T \in \mathcal{L}(B_1, X)$ if and only if $f_T \in \mathcal{B}(X)$ (see Proposition 3.16). If p > 2 and $T \in \mathcal{L}(B_{p'}, X)$ then $f_T \in B_q(X)$ for $1 \le q < \frac{p}{2}$ (use Proposition 3.3). We would like to find some properties of T to get that $f_T \in B_p(X)$.

For that purpose we need to use the following class of operators.

Definition 4.15 (See [6] and [5].) Let E be a Banach lattice and Y a Banach space. A linear operator $T \in \mathcal{L}(E, Y)$ is said to be *positive p-summing* (denoted $T \in \Lambda_p(E, Y)$) if there is a constant C > 0 such that for every $k \in \mathbb{N}$ and positive elements $e_1, e_2, \ldots, e_k \in E$ we have

$$\left(\sum_{i=1}^{k} \|T(e_i)\|^p\right)^{1/p} \leq C \sup_{\|e^*\|_{E^*} \leq 1} \left(\sum_{i=1}^{k} |\langle e_i, e^* \rangle|^p\right)^{1/p}$$

Its norm is given by the infimum of the constants C satisfying the previous inequality and denoted by $\lambda_p(T)$.

Remark 4.16 In the case p = 1 these operators are also known as cone absolutely summing (c.a.s) operators (see [20]).

In this case, $T \in \Lambda_1(E, Y)$ if and only if there is a constant C > 0 such that for every $k \in \mathbb{N}$ and positive elements $e_1, e_2, \ldots, e_k \in E$ we have

$$\sum_{i=1}^{k} \|T(e_i)\| \le C \left\| \sum_{i=1}^{k} e_i \right\|.$$
(4.1)

It is easy to see that $\Lambda_{p_1}(E, Y) \subset \Lambda_{p_2}(E, Y)$ if $p_1 < p_2$, and it was shown in [5] that, for $E = L_p(\mu)$, we have $\Lambda_r(E, Y) = \Lambda_1(E, Y)$ for all $1 \le r \le p'$.

Theorem 4.17 Let 1 and X a Banach space.

(i) If $T \in \mathcal{L}(B_{p'}, X)$ and $f_T \in B_p(X)$ then T is compact. (ii) If $T \in \Pi_p(B_{p'}, X)$ then $f_T \in B_p(X)$. (iii) If $T \in \Lambda_p(L_{p'}(m), X)$ and T_1 denotes its restriction to $B_{p'}$ then $f_{T_1} \in B_p(X)$.

Proof. To see (i) we show that $T = S_{f_T}$ and then (ii) in Proposition 4.11 gives the compactness. Indeed, since $f_T(z) = T(K_z) = \sum_{n=0}^{\infty} (n+1)Tu_n z^n$, we have for any $m \in \mathbb{N}$

$$S_{f_T}(u_m) = \int_{\mathbb{D}} \sum_{n=0}^{\infty} (n+1) T u_n \bar{z}^n z^m \, dm(z) = T(u_m) \, dm(z)$$

To prove (ii) let us first observe that if $\phi \in B_p$

$$\langle K(z), \phi \rangle = \int_D K_z(w) \phi(\overline{w}) \, dm(w) = \phi(z) \, .$$

Hence it follows that the function $K : \mathbb{D} \to B_{p'}$ verifies, for all $\phi \in (B_{p'})^*$, that $z \mapsto \langle K(z), \phi \rangle$ belongs to $L_p(m)$. Now Remark 4.7 gives that $f_T(z) = T(K_z) \in L_p(m, X)$.

To see (iii) let us observe first that the measure $G(E) = T(\chi_E)$ belongs to $V_p(m, X)$. Indeed, for any partition π we have

$$\begin{split} \sum_{A \in \pi} \frac{\|G(A)\|^p}{m(A)^{p-1}} &= \sum_{A \in \pi} \left\| T\left(\frac{\chi_A}{m(A)^{1/p'}}\right) \right\|^p \\ &\leq \lambda_p^p(T) \sup\left\{ \sum_{A \in \pi} \left| \int_A g(z) \, dm(z) \, \frac{1}{m(A)^{1/p'}} \right|^p : \|g\|_p = 1 \right\} \\ &= \lambda_p^p(T) \sup\left\{ \left\| \sum_{A \in \pi} \frac{\int_A g(z) \, dm(z)}{m(A)} \, \chi_A \right\|_p^p : \|g\|_p = 1 \right\} \\ &\leq \lambda_p^p(T) \, . \end{split}$$

Given $z \in \mathbb{D}$ we get, taking $G_c(E) = G(\overline{E})$,

$$f_{T_1}(z) = T(K_z) = \int_{\mathbb{D}} K_z(w) \, dG(w) = \int_{\mathbb{D}} K_z(\overline{w}) \, dG_c(w) = PG_c(z) \,,$$

and then $F_T = PG_c \in B_p(X)$ according to Theorem 3.8.

Theorem 4.18 Let $1 , and let X be a complex Banach space and <math>F \in B_1(X)$. Then $F \in B_p(X)$ if and only if the linear operator $\Phi_F(\phi) = \int_{\mathbb{D}} F(z)\phi(\bar{z}) dm(z)$ defined on the subspace of simple functions extends to an operator in $\Lambda_p(L_{p'}(m), X)$.

Moreover $||F||_{B_p(X)} \sim \lambda_p(\Phi_F).$

Proof. Let us assume that $F \in B_p(X)$, which ensures that $\Phi_F \in \mathcal{L}(L_{p'}(m), X)$. Now take positive functions $\phi_1, \phi_2, \ldots, \phi_n \in L_{p'}(m)$. We have that

$$\sum_{k=1}^{n} \|\Phi_{F}\phi_{k}\|^{p} = \sum_{k=1}^{n} \left| \int_{\mathbb{D}} F(\bar{z})\phi_{k}(z) \, dm(z) \right|^{p}$$

$$\leq \|F\|_{B_{p}(X)}^{p} \sum_{k=1}^{n} \left(\int_{\mathbb{D}} \frac{\|F(z)\|}{\|F\|_{B_{p}(X)}} \phi_{k}(z) \, dm(z) \right)^{p}$$

$$\leq \|F\|_{B_{p}(X)}^{p} \sup_{\|\psi\|_{p}=1} \sum_{k=1}^{n} |\langle\psi,\phi_{k}\rangle|^{p}.$$

This shows that $\lambda_p(\Phi_F) \leq C \|F\|_{B_p(X)}$.

To see the converse let us observe that $f_S = F$, where S denotes the restriction of Φ_F to $B_{p'}$. Indeed, for all $z \in \mathbb{D}$

$$S(K_z) = \Phi_F(K_z) = \int_{\mathbb{D}} F(w) K_z(\overline{w}) \, dm(w) = F(z) \, .$$

Now (iii) in Theorem 4.17 gives that $F \in B_p(X)$ and $||F||_{B_p(X)} \leq C\lambda_p(\Phi_F)$.

From Theorem 3.16 we have that $\mathcal{B}(X) = \mathcal{L}(B_1, X)$. The next result covers the cases 1 .Corollary 4.19 Let <math>1 . Then

$$B_p(X) = \{T : B_{p'} \to X : TP \in \Lambda_p(L_{p'}(m), X))\}$$

Moreover $\lambda_p(TP) \approx ||f_T||_{B_p(X)}$.

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Proof. If TP is positive p-summing then (iii) in Theorem 4.17 gives that $F \in B_p(X)$ for $F(z) = T(K_z)$.

To see the converse, assume that $F \in B_p(X)$. Let Φ_F as in Theorem 4.18 and let T be its restriction to $B_{p'}$. Now take the vector measure defined by $G(E) = T(P(\chi_E))$ and denote $G_c(E) = G(\overline{E})$ for all measurable set E. We have that

$$G_c(E) = T\left(\int_{\overline{E}} K(.,\overline{w}) \, dm(w)\right) = T\left(\int_E K(.,w) \, dm(w)\right)$$

= $\int_E T(K(.,w)) \, dm(w) = \int_E \tilde{\Phi}_F(K_w) \, dm(w) = \int_E F(w) \, dm(w) \, .$

Therefore $dG_c = F dm$.

This obviously implies that $TP(\phi) = \int_{\mathbb{D}} F(z)\phi(\bar{z}) dm(z)$ for all $\phi \in L_{p'}(m)$, and, in particular

$$\|TP(\phi)\| \leq \int_{\mathbb{D}} \|F(z)\| \phi(\bar{z}) \, dm(z)$$

for all positive $\phi \in L_{p'}(m)$.

A simple computation using (4.1) now shows that TP is cone abolutely summing and hence also positive *p*-summing.

5 $B_p(X)$ is complemented in $\ell_p(X)$

A classical result in the theory of Bergman spaces is the isomorphism between B_p and ℓ_p for each $p \ge 1$ (see [21]). It is enough to see that B_p is isomorphic to a complemented subspace of ℓ_p , since then it is automatically isomorphic to ℓ_p . In the vector case, Theorem 3.14 gives the isomorphism for p = 1:

Theorem 5.1 For any complex Banach space X, $B_1(X)$ is isomorphic to $\ell_1(X)$.

Proof. $B_1(X)$ is isomorphic to $B_1 \hat{\otimes} X$, and then to $\ell_1 \hat{\otimes} X = \ell_1(X)$.

As for p > 1, we will show next that $B_p(X)$ is isomorphic to a complemented subspace of $\ell_p(X)$. The proof follows similar ideas to the ones used to get a so-called atomic decomposition of B_p (see [22], Theorem 4.4.6).

For each $z \in \mathbb{D}$, let φ_z the involutive Möbius transformation fixing the unit disc and verifying $\varphi_z(0) = z$ and $\varphi_z(z) = 0$, that is

$$\varphi_z(w) = \frac{z-w}{1-\bar{z}w}.$$

The Bergman metric between z and w is defined by

$$\beta(z, w) = \frac{1}{2} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|}.$$

Note that $|\varphi_z(w)|$ is the hyperbolic tangent of $\beta(z, w)$.

This distance β is not bounded on \mathbb{D} , and for any $z \in \mathbb{D}$ and r > 0 the β -ball

$$E(z,r) = \{ w \in \mathbb{D}; \ \beta(w,z) < r \}$$

is the euclidean disc with center $\frac{1-s^2}{1-s^2|z|^2}z$ and radius $\frac{1-|z|^2}{1-s^2|z|^2}s$, where $s = \tanh r$.

One relevant connection between Bergman metric and Bloch spaces is the following result:

Theorem 5.2 (See [22], 5.1.6.) $\beta(z, w) \sim \sup\{|f(z) - f(w)|; \|f\|_{\mathcal{B}} \leq 1\}$ (with constants independent from z and w in \mathbb{D}).

In particular this allows us to get the following remark.

Corollary 5.3 If $F \in \mathcal{B}(X)$ then $F : \mathbb{D} \to X$ is a Lipschitz map with respect to the Bergman metric.

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Proof. A look at Proposition 3.16 gives that $F(z) = T(K_z)$ for some $T \in \mathcal{L}(B_1, X)$. Hence

$$||F(z) - F(w)|| \leq C ||T|| ||K_z - K_w||_{B_1}$$

$$\leq C ||T|| \sup\{|\xi(K_z - K_w)|; \xi \in B_1^*\}$$

$$\sim \sup\{|f(z) - f(w)|; ||f||_{\mathcal{B}} = 1\}$$

$$\sim \beta(z, w).$$

The key point in order to relate $B_p(X)$ to $\ell_p(X)$ is the use of sequences in \mathbb{D} with good separation properties with respect to Bergman metric. The next lemma resumes some well known results (see for instance [22]):

Lemma 5.4 There exists a number $N \in \mathbb{N}$ such that, for any $r \leq 1$, we can take a sequence (λ_n) in \mathbb{D} and a decomposition of \mathbb{D} into a disjoint union of measurable sets E_n such that

(i) $E(\lambda_n, r/4) \subseteq E_n \subseteq E(\lambda_n, r)$ for every n,

(ii) every point in \mathbb{D} belongs to no more than N discs from $\{E(\lambda_n, 2r)\},\$

- (iii) $|E_n| \sim |E(\lambda_n, r)| \sim |E(\lambda_n, 2r)| \sim (1 |\lambda_n|^2)^2 \sim |E(w, r)|$ for any $w \in E(\lambda_n, 2r)$ and (iv) $1 |\lambda_n|^2 \leq C(1 |z|^2)$ for each $z \in E(\lambda_n, 2r)$.

The well known fact that, for all $0 , <math>|f|^p$ is a subharmonic function with respect to β -balls for any analytic function f, also holds true in the vector valued setting.

Lemma 5.5 Let X be any complex Banach space, let $f \in \mathcal{H}(\mathbb{D}, X)$ and p > 0. There exists a constant C > 0such that we have

$$||f(z)||^p \leq \frac{C}{|E(z,r)|} \int_{E(z,r)} ||f(w)||^p dm(w)$$

for any $r \leq 1$ and $z \in \mathbb{D}$.

Proof. From the scalar valued case we get C > 0 such that

$$|x^*f(z)|^p \leq \frac{C}{|E(z,r)|} \int_{E(z,r)} |x^*f(w)|^p \, dm(w) \leq \frac{C}{|E(z,r)|} \int_{E(z,r)} \|f(w)\|^p \, dm(w)$$

for all $r \leq 1$ and $z \in \mathbb{D}$.

Now take the supremum over the unit ball of X^* to finish the proof.

Corollary 5.6 Let r < 1 and p > 1, and let X be a Banach space. Let $Q_r = Q_{r,p,X} : B_p(X) \to L_p(m,X)$ be defined by

$$Q_r(f) = \sum_{n=1}^{\infty} f(\lambda_n) \chi_{E_n} \,.$$

Then Q_r is a bounded operator.

Proof. By Lemmas 5.5 and 5.4

$$\begin{split} \sum_{n=1}^{\infty} |E_n| \, \|f(\lambda_n)\|^p &\leq C \sum_{n=1}^{\infty} \int_{E(\lambda_n, r)} \|f(z)\|^p \, dm(z) \\ &= \int_{\mathbb{D}} \|f(z)\|^p \sum_{n=1}^{\infty} \chi_{E(\lambda_n, r)}(z) \, dm(z) \,\leq \, CN \int_{\mathbb{D}} \|f(z)\|^p \, dm(z) \,. \end{split}$$

This shows the boundedness of $Q_{r,p,X}$.

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Lemma 5.7 Let $r \leq 1$. The linear operator

$$f \longmapsto \sum_{n=1}^{\infty} (f - f(\lambda_n)) \chi_{E_r}$$

is bounded from $B_p(X)$ to $L_p(m, X)$, and its norm is less or equal than $C \tanh r$.

Proof. Let $z \in E_n$, and observe that

$$\|f(z) - f(\lambda_n)\| = \left\| \int_{[\lambda_n, z]} f'(w) \, dw \right\| \leq \left(\sup_{w \in [\lambda_n, z]} \|f'(w)\| \right) |z - \lambda_n|$$

Since $E(w,r) \subset E(\lambda_n,2r)$ for any $z \in E_n$ and $w \in [\lambda_n,z]$, by Lemma 5.5 and the properties of (λ_n) we have that

$$\|f'(w)\|^p \leq \frac{C}{|E(w,r)|} \int_{E(w,r)} \|f'\|^p \, dm \leq \frac{C}{|E_n|} \int_{E(\lambda_n,2r)} \|f'\|^p \, dm \, .$$

Hence if $w \in [\lambda_n, z]$

$$\|f(z)-f(\lambda_n)\|^p \leq \frac{C}{|E_n|} \left(\int_{E(\lambda_n,2r)} \|f'\|^p \, dm\right) |z-\lambda_n|^p \, .$$

Let $s = \tanh r$. As $E(\lambda_n, r)$ is a disc with center $z_0 = \frac{1-s^2}{1-s^2|\lambda_n|^2}\lambda_n$ and radius $R = \frac{1-|\lambda_n|^2}{1-s^2|\lambda_n|^2}s$, for any z in it

$$|z - \lambda_n| \leq R + |\lambda_n - z_0| = \frac{1 - |\lambda_n|^2}{1 - s^2 |\lambda_n|^2} s(1 + s |\lambda_n|) \leq Cs(1 - |\lambda_n|^2),$$

and then

$$\|f(z) - f(\lambda_n)\|^p \leq \frac{C}{|E_n|} s^p \left(\int_{E(\lambda_n, 2r)} \|f'\|^p \, dm \right) \left(1 - |\lambda_n|^2\right)^p.$$

Therefore

$$\int_{E_n} \|f(z) - f(\lambda_n)\|^p \, dm(z) \leq C s^p \left(1 - |\lambda_n|^2\right)^p \int_{E(\lambda_n, 2r)} \|f'\|^p \, dm \, .$$

We use now that $(1 - |\lambda_n|^2)^p \le C(1 - |z|^2)^p$ for each $z \in E(\lambda_n, 2r)$, and then

$$\int_{E_n} \|f(z) - f(\lambda_n)\|^p \, dm(z) \leq C s^p \int_{E(\lambda_n, 2r)} \left(1 - |z|^2\right)^p \|f'(z)\|^p \, dm(z) \, .$$

Hence

$$\sum_{n=1}^{\infty} \int_{E_n} \|f(z) - f(\lambda_n)\|^p \, dm(z) \leq CNs^p \int_{\mathbb{D}} \left(1 - |z|^2\right)^p \|f'(z)\|^p \, dm(z) \, ,$$

which is bounded by $Cs^p ||f||_{B_p(X)}^p$ in view of Theorem 2.5.

Corollary 5.8 There exist $r_0 > 0$ such that $PQ_{r,p,X} : B_p(X) \to B_p(X)$ is an isomorphism for all $r < r_0$, 1 and all Banach spaces X.

Proof. We shall show this by noting that, if I denotes the identity in $B_p(X)$, then $||I - PQ_r||$ tends to zero as $r \to 0$. Recall that then, if r is such that $||I - PQ_r|| < 1$, the inverse of PQ_r is just $\sum_{n=0}^{\infty} (I - PQ_r)^n$.

Now from Lemma 5.7 one has that $I - PQ_r \in \mathcal{L}(B_p(X), B_p(X))$ and $||I - PQ_r|| \le C ||P|| \tanh r$. \Box

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Theorem 5.9 For every p > 1 and every complex Banach space X, the Bergman space $B_p(X)$ is isomorphic to a complemented space of $\ell_p(X)$.

Proof. We take r small enough to have that PQ_r is an isomorphism on $B_p(X)$. Then the identity in $B_p(X)$ factorizes as $I = (PQ_r)^{-1}PQ_r$. Now write $\tilde{Q}_r : B_p(X) \to \ell_p(X)$ for the operator given by

$$\widetilde{Q}_r(f) = \left(|E_n|^{1/p} f(\lambda_n) \right)$$

and $J: \ell_p(X) \to L_p(m, X)$ for the one given by

$$J((x_n)) = \sum_{n=1}^{\infty} |E_n|^{-1/p} x_n \chi_{E_n}.$$

Since J is an embedding and \hat{Q}_r is bounded due to Corollary 5.6 we can factorize the identity as $I = (PQ_r)^{-1}PJ\tilde{Q}_r$ and therefore $B_p(X)$ is isomorphic to the image of \tilde{Q}_r in $\ell_p(X)$.

Theorem 5.10 Let r < 1, p > 1 and X be a Banach space. Let $P_r = P_{r,p,X}$ be the linear operator $P_r: V_p(m, X) \to B_p(X)$ defined by

$$P_r(G) = \sum_{n=1}^{\infty} K_{\lambda_n} \otimes G(\overline{E}_n).$$

Then the linear operator P_r is bounded.

Moreover $||P_{r,p,X}|| = ||Q_{r,p',X^*}||.$

Proof. For any polynomial $g \in \mathcal{P}(X^*)$ we have that

$$\left\langle \sum_{n=1}^{\infty} K_{\lambda_n} \otimes G(\overline{E}_n), g \right\rangle = \sum_{n=1}^{\infty} G(\overline{E}_n) g(\lambda_n) = \left\langle \sum_{n=1}^{\infty} g(\lambda_n) \chi_{E_n}, G \right\rangle = \left\langle Q_{r,p',X^*}(g), G \right\rangle.$$

Since $V_p(m, X)$ is isometrically embedded in $(L_{p'}(m, X^*))^*$ it follows that

$$\left| \left\langle \sum_{n=1}^{\infty} K_{\lambda_n} \otimes G(E_n), g \right\rangle \right| \leq \|G\|_{V_p(m,X)} \left\| \sum_{n=1}^{\infty} g(\lambda_n) \chi_{E_n} \right\|_{L_{p'}(m,X^*)}$$

Now Corollary 5.6 gives that $||P_{r,p,X}|| \le ||Q_{r,p',X^*}||$.

A similar argument shows that $Q_{r,p',X}^* = P_{r,p,X^*}$, giving the other inequality.

Let us now compare \overline{P}_r and the Bergman projection on $V_p(m, X)$.

- **Theorem 5.11** Let p > 1 and X be a Banach space. Then (i) $\lim_{r\to 0} P_r = P$.
- (ii) The restriction of P_r to $B_p(X)$ given by

$$P_r(g) = \sum_{n=1}^{\infty} K_{\lambda_n} \otimes \int_{\overline{E}_n} g(z) \, dm(z)$$

is an isomorphism for r close enough to zero.

Proof. An easy computation shows that $\langle P(G), g \rangle = \langle g, G \rangle$ for any $G \in V_p(m, X)$ and $g \in \mathcal{P}(X^*)$. Therefore for all $G \in V_p(m, X)$ and $g \in \mathcal{P}(X^*)$ we have

$$\langle (P-P_r)(G),g\rangle = \left\langle g-\sum_{n=1}^{\infty}g(\lambda_n)\chi_{E_n},G\right\rangle.$$

Now applying Lemma 5.7 we get $||P - P_r|| \le C \tanh r$ and (i) follows. (ii) is proved the same way as Corollary 5.8.

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Note that $\beta(z, w) = \beta(\overline{z}, \overline{w})$, and then $(\overline{\lambda}_n)$ and (\overline{E}_n) satisfy the same estimates and properties as (λ_n) and $(E_n).$

Theorem 5.12 Let X be a Banach space and p > 1. For each $f \in B_p(X)$ we denote

$$S_r(f) = \sum_{n=1}^{\infty} |E_n| K_{\lambda_n} \otimes f(\overline{\lambda}_n).$$

Then $f = \lim_{r \to 0} S_r(f)$ in B_p .

Proof. We shall see that $S_r = S_{r,p,X} : B_p(X) \to B_p(X)$ are bounded operators and $\lim_{r \to 0} S_r = I$. Let us denote by \overline{Q}_r the operator associated to $(\overline{\lambda}_n)$ and (\overline{E}_n) , that is $\overline{Q}_r(f) = \sum_{n=1}^{\infty} f(\overline{\lambda}_n) \chi_{\overline{E}_n}$. We actually have $S_r = P_r \overline{Q}_r$ and

$$\left\|I - P_r \overline{Q}_r\right\| \leq \left\|I - P \overline{Q}_r\right\| + \left\|P \overline{Q}_r - P_r \overline{Q}_r\right\| \leq \left\|I - P \overline{Q}_r\right\| + \left\|P - P_r\right\| \left\|Q_r\right\|.$$

The result follows from Corollary 5.8 and Theorem 5.11.

Acknowledgements Both authors have been partially supported by Proyecto D.G.E.S. PB98-0146.

References

- [1] J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270, 12-37 (1974).
- [2] J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224, 256-265 (1976).
- [3] S. Axler, Bergman spaces and their operators, in Survey on some recent Results on Operator Theory, edited by J. B. Conway and B. B. Morrel, Pitman Res. Notes Math. 171, 1-50 (1988).
- [4] J. L. Arregui and O. Blasco, Multipliers of vector valued Bergman spaces, Canad. J. Math. 54 (6), 1165–1186 (2002).
- [5] O. Blasco, Positive p-summing operators on L^p-spaces, Proc. Amer. Math. Soc. 100, 275–280 (1987).
- [6] O. Blasco, Positive p-summing operators, vector measures and tensor products, Proc. Edinburgh. Math. Soc. 31, 179– 184 (1988).
- [7] O. Blasco, Spaces of vector valued analytic functions and applications, London Math. Soc. Lecture Notes Series 158, 33-48 (1990).
- [8] O. Blasco, A characterization of Hilbert spaces in terms of multipliers between spaces of vector valued analytic functions, Michigan Math. J. 42, 537-543 (1995).
- [9] O. Blasco, Vector valued analytic functions of bounded mean oscillation and geometry of Banach spaces, Illinois J. 41, 532-558 (1997).
- [10] O. Blasco, Remarks on vector-valued BMOA and vector-valued multipliers. Positivity 4, 339–356 (2000).
- [11] A. Defant and K. Floret, Tensor Norms and Operator Ideals (North-Holland, Amsterdam, 1993).
- [12] J. Diestel and J. J. Uhl, Vector measures, Mathematical Surveys 15 (Amer. Math. Soc., R. I., 1977).
- [13] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators (Cambridge University Press, New York, 1995).
- [14] N. Dinculeanu, Vector measures, International Series of Monographs in Pure and Applied Mathematics Volume 95 (Pergamon Press, 1967).
- [15] P. Duren, Theory of H^p-spaces (Academic Press, New York, 1970).
- [16] J. B. Garnett, Bounded Analytic Functions (Academic Press, New York, 1981).
- [17] P. R. Halmos, Measure Theory (Van Nostrand, New York, 1950).
- [18] G. Pisier, Factorization of operators and geometry of Banach spaces, CBM 60 (Amer. Math. Soc., Providence, R. I., 1985).
- [19] A. Pietsch, Operator Ideals (North-Holland, Amsterdam, 1980).
- [20] H. H. Schaefer, Banach Lattices and Positive Operators (Springer-Verlag, New York, 1974).
- [21] P. Wojtaszczyk, Banach Spaces for Analysts (Cambridge Univ. Press, New York, 1991).
- [22] K. Zhu, Operators on Bergman Spaces (Marcel Dekker, Inc., New York, 1990).
- [23] A. Zygmund, Trigonometric Series (Cambridge Univ. Press, New York, 1959).