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Abstract

This paper presents modifications to our recently introduced pre-processing method, orthogonal WAVElIet correction (OWAVEC), based
on the combination of wavelet analysis and an orthogonal correction algorithm, described in detail in a former paper [l. Esigl3ak-D
Gonzalez-%iz, C. Pizarro, OWAVEC: a combination of wavelet analysis and an orthogonalization algorithm as a pre-processing step in
multivariate calibration, Anal. Chim. Acta 515 (2004) 31-41], aimed at extending its applicability and at improving its performance; thanks
to an additional use of OWAVEC as an effective data compression tool. The OWAVEC method uses the discrete wavelet transform (DWT)
to decompose each individual signal into the wavelet domain, and then an orthogonalization algorithm is applied to the obtained wavelet
coefficients matrix to remove the information not related to a considered response variable. Later, the corrected wavelet coefficients are ranked
by their variance or by their correlation coefficient with the response variable, and the subset providing the most stable and reliable calibration
model is finally selected (data compression). The new version of OWAVEC has been applied to two NIR data sets to test its performance.
For both regression problems studied, high quality calibration models with very high compression ratios were obtained, providing improved
predictive results and a considerably lower overfitting than other orthogonal signal correction methods. The generalized OWAVEC method
presented here may be used as a global tool for simultaneous noise suppression, data compression and orthogonal correction of signals.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction particular orthogonal signal correction algorithm to the data
prior to being used as the basis for developing a calibration
We recently introduced a new pre-processing method, model to model and predict a certain response, thus pursuing
orthogonal WAVElIet correction (OWAVEC]1], which at- an enhancement of the resulting model predictive ability.
tempted to lump together two important needs in multivariate  The first version of the OWAVEC method focused on sig-
calibration: signal correction and data compression. The dis-nal correction, i.e., on the removal of information not related
tinctive features of OWAVEC with respect to othercommonly to a studied response in the wavelet domain (orthogonaliza-
applied pre-processing methods (e.g., derivation to different tion procedure) and the de-noising processes of the wavelet
orders[2], standard normal variate (SNV) and multiplica- coefficients matrix. Nevertheless, today, effective data com-
tive scatter correction (MS{B-5] or different orthogonal pression methods are increasingly necessary in multivariate
signal correction method$-13]) are focused on unifying  calibration mainly due to the redundant nature of many types
in the same method, the huge potential that wavelet analy-of collected signals (collinearity problems). The main benefi-
sis has demonstrated for signal processing (smoothing/de-cial effects derived from successful data compression include
noising/data compressioff)4—21] and the application ofa  a reduction of memory storage, an improved generalization
ability and robustness of the resulting calibration model and
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Fig. 1. An overview of the steps involved in the OWAVEC procedure. (1) The previously centered spectra are padded to the neardst\Iiémgttet?
decomposition: each spectrum is transformed individually using a selected wavelet function. (2) Direct orthogonalization: the wavelet coetificien
corrected by removing a part unrelated to the considered response. (3) Data compression: two different approaches are available; wavéteteleeffmen
based on the variance spectrum or on the correlation coefficients vector. (4) Filtered spectra can be reconstructed using the IWT. PLS regfessih is pe
on the basis of the corrected and compressed wavelet coefficients matrix obtained.

cient signal compression, thus improving the predictive abil- as an effective compression tool for NIR spectra considering
ity of the calibration model later developed from the result- two different regression problems.
ing corrected and compressed wavelet coefficients matrix,
through an appropriate selection of wavelet coefficients, re-
moving those coefficients that do not hold significant infor- 2. Methods: new OWAVEC features
mation. Two different approaches are available in the updated
version of OWAVEC for achieving such wavelet coefficients Fig. 1shows a schematic view of all the steps involved in
compression, depending on the criterion chosen to select thehe OWAVEC method as applied in the present study. On the
significant coefficients (the variance spectrum of the coef- face of it, four main stages can be perfectly differentiated in
ficients matrix or the correlation coefficients computed be- the procedure carried out by OWAVEC: wavelet decompo-
tween response variable and wavelet coefficients). sition of signals, direct orthogonalization of the wavelet co-
The generalized method presented here was tested on @fficients matrix, corrected wavelet coefficients matrix com-
set of roasted coffee NIR spectra using both ash content andpression and final reconstruction of corrected signals.
chlorogenic acid content as response variables and the per- As a first step, OWAVEC uses the discrete wavelet trans-
formance of the finally selected OWAVEC-PLS regression form (DWT) as wavelet transform technique to decompose
models (considered as the most suitable for modelling and each spectrum, through the use of a selected wavelet function
predicting each studied response) was compared not onlyin this transformation. In DWT the choice of different wavelet
with that obtained from original data (using mean-centering basis functions produces different decompositions of a sig-
as the only pre-processing method applied) but also with thatnal in the resulting wavelet domain. Therefore, the selection
provided by other signal correction methods (i.e., S of a suitable wavelet function is a crucial parameter, which
and DOS(C[13]). Taking into account the huge amount of will depend on the particular shape of the considered signal.
overlapping information present in NIR spectra, it is easy to In the present study, we used three wavelet functions corre-
understand that much redundant information will be present sponding to different families of orthogonal wavelet bases
in NIR data, and that a great part of it can be irrelevant to and wavelet order — Daubechies-4, Coiflet-2 and Symlet-8 —
model and predict a certain response variable. Thus, the apsince they are probably among the most used wavelets and
plication of suitable methods to compress NIR data and prop- they all have several vanishing moments, which essentially
erly extract the most useful information is of greatimportance means that polynomials of low degree, i.e., smooth signals,
to produce more robust and reliable regression models. Forlike NIR data, are well compressed. The DWT requires the
this reason, we have decided to test OWAVEC performance length of the analysed signal to be dyadic, i.€,,\@heren
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is an integer. Nevertheless, if this condition is not fulfilled a sulting calibration model, but this is not necessarily true for
number of methods exist for extrapolating the signal, such predictions of a separate test set and prediction errors can
as zero padding, symmetric extension or linear padding. In decrease notably, due to the fact that non-stable directions
this report, all signal extrapolations were performed by lin- in the wavelet coefficients matrix are not used in calcula-
ear padding, which involves connecting the last and the first tion. For this reason, different values of the tolerance factor
values of the signal by means of a straight line. This applied have been tested in each case, in order to avoid overfitting,
extrapolation method takes advantage of the vanishing mo-thus selecting that, which enhances the predictive ability of
ments property inherent in most wavelets in such a way thatthe regression model finally constructed on the basis of the
minimal edge effects are caused. Another key parameter toresulting corrected and compressed wavelet coefficients ma-
be optimized when applying DWT for regression purposes is trix. Logically, the final choice of the most suitable tolerance
the optimal decomposition level. In order to identify the most factor value to be applied will depend on several parame-
suitable wavelet decomposition, depending on the waveletters, including the wavelet basis function used, the particular
function selected and the coefficients selection criterion later wavelet decompaosition level considered and the compression
applied, several decomposition levels were tested (always re-rate achieved.
specting the maximum allowed wavelet decomposition level  Considering the wavelet coefficients matrix obtained after
associated with a certain wavelet function and the particular wavelet decomposition, we can realize that as we move fur-
extended length of the analysed signals). The choice of thetherto the right, information about higher and higher frequen-
final optimal decomposition level was based on several crite- cies in the original signal is encountered. In the case of NIR
ria, including compression rate and the predictive ability of spectra, since they are usually smooth signals, it is expected
the resulting calibration model, once the OWAVEC procedure that most low frequency wavelet coefficients (approximation
had been completed. coefficients) will be large, whereas wavelet coefficients rep-
The DWT can be seen as a special case of a more generatesenting higher frequencies (detail coefficients) will be close
wavelet transform technique: the wavelet packet transform to zero. Therefore, there would be many wavelet coefficients
(WPT). In the updated version of OWAVEC introduced here, with very small values, which could be regarded as uninfor-
we preferred to apply the DWT because of its simplicity and mative and could be suppressed without any significant effect
computation speed. Nevertheless, the OWAVEC method will on the main information of the original signals.
continue to be improved and completed in the future, and a  Besides, if we take into account that once the orthogonal-
modification, which will apply the WPT with a best basis ization algorithm is applied, the wavelet coefficients matrix
selection criterion is expected to be developed. would be deflated of information unrelated to the dependent
Once the wavelet coefficients matrix corresponding to the variable, it is easy to understand that many wavelet coeffi-
calibration setis computed, an orthogonalization algorithmis cients considered originally as ‘informative’ could signifi-
applied to deflate it of information not related to the particular cantly modify their final size depending on their particular
response to be modelled later. Further details on all the stepscorrelation degree with the response variable. As a result, the
involved in the orthogonalization procedure implemented in amount of non-significant wavelet coefficients, which could
OWAVEC can be found if1]. Once the orthogonalization  be discarded, would be expected to increase.
procedure has been completed working on calibration set However, neither the wavelet transforms itself nor the
spectra and the spectrain the prediction set have been decomarthogonalization procedure, later applied, provides an
posed by wavelet analysis, the resulting matrix of weights of effective data compression. The wavelet transformed and
the original wavelet coefficients in the orthogonal subspace corrected signal would have the same length than the original
of these coefficientaV, can be applied to obtain directly a ‘extrapolated’ signal. Compression will be only achieved
corrected wavelet coefficients matrix for new data. A critical after removing the wavelet coefficients that do not contain
value to be optimized when performing wavelet coefficients relevant information. As previously noted, the main modifi-
matrix orthogonalization is the value of the tolerance factor cation included in the OWAVEC method with respect to its
used to compute the generalized inverse of the wavelet coef-original version is precisely the added alternative of perform-
ficients matrix. The use of a generalized inverse to computeing real data compression in the wavelet domain, regardless
the matrix of weights of the original wavelet coefficients in of whether a specific signal de-noising procedure has been
the orthogonal subspace of these coefficients implies the lossapplied. The feature selection (data compression) carried out
of the complete orthogonality constraint, which means that by OWAVEC is aimed at selecting a reduced subset of signif-
the information removed from the wavelet coefficients matrix icant wavelet coefficients to develop on its basis a calibration
is not ‘necessarily’ orthogonal to the response variable. The model with an enhanced prediction ability, since irrelevant
real deviation degree from orthogonality is precisely given by wavelet coefficients contained in the wavelet coefficients
the tolerance factor value in such a way that if the tolerance matrix will usually worsen the performance of the developed
is increased, then the information removed from the wavelet regression model and the precision of the prediction. This
coefficients matrix slowly moves away from orthogonality. potential use of OWAVEC as a compression tool would
Allowing some correlation between the removed informa- substantially improve its practical usefulness in multivariate
tion and response variable can produce a lower fit in the re- calibration.
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The selection of which specific wavelet coefficients will applied as a prior step to wavelet compression. The reason
be retained in the data compression step implemented infor this change in the application sequence was justified by
OWAVEC depends on the criterion adopted to estimate the the fact that it is more logical to select the final subset of sig-
relevance of each individual wavelet coefficient. Since we are nificant coefficients, i.e., to perform the data compression,
interested in keeping those coefficients, which represent theconsidering only information closely related to the studied
underlying features responsible for a successful prediction, response. Otherwise, if the compression procedure was ap-
the value of the correlation coefficient computed between plied prior to wavelet coefficients matrix orthogonalization,
the response variable and each wavelet coefficient is a logi-the information content not directly related to the considered
cal selection criterion to be used in compression. On the otherresponse variable could interfere with the compression re-
hand, since the systematic variation in the corrected coeffi- sults and lead to a final wavelet coefficients selection that
cients matrix should remain intact, the amount of variance might be unsuitable for reliably modelling the response. If
captured by each coefficient can also be used as a compresthe aim of applying OWAVEC is to signal de-noising instead
sion criterion. Taking into account that the information not of data compression, this aspect is not so crucial and similar
related to the response variable has been already removed imesults are obtained regardless the order applied.
the orthogonalization step, both selection criteria would be  The final step involved in the procedure carried out by
expected to be closely related. However, due to the loss of OWAVEC was related to the possibility of reconstructing
the complete orthogonality constraint, the same results are nothe corrected spectra into the original domain from the re-
obtained when performing wavelet coefficients selection by spective corrected and compressed wavelet coefficients ma-
applying each compression approach. Once the particular cri-trices by inverse wavelet transform, for both the calibration
terion to be used for selecting significant wavelet coefficients and evaluation sets. Wavelet transform is a linear transform,
has been determined, another crucial parameter to be setisthand a complete reconstruction of the signals can be always
final number of coefficients to be retained. A visual screen- performed from all the computed wavelet coefficients. How-
ing of the size distribution of the variance/correlation vector ever, when an orthogonal set of basis functions is used, as in
might suggest an approximate number of wavelet coefficientsthe present case, the signals can still be reconstructed even
that may be used at the outset. As a first estimation, the posi-if some coefficients have been discarded. In this way, the
tions of the 15 largest variance/correlation coefficients were corrected spectra can be reconstructed back into the origi-
extracted, and, from these, the effect of adding more coeffi- nal domain using the selected wavelet coefficients, to allow
cients to the PLS model was studied. Thus, after identifying for chemical interpretation of the results. In this study, re-
the positions representing the selected number of the largestonstructed NIR spectra, once pre-processed (corrected and
correlation/variance coefficients, the corresponding columns compressed) by OWAVEC, were used mainly to evaluate the
from the corrected wavelet coefficient matrix were extracted effect on the spectral profiles after applying the OWAVEC
and fed into a corrected compressed wavelet coefficients ma-pre-processing method to the original signals.
trix. The original positions of the extracted coefficients were
saved for use in future compression of new spectra (test set).

Later, these corrected and compressed wavelet coefficients3. Experimental

matrices (obtained for both calibration and test sets), free of

information not related to the studied response, would serve3.1. Data sets

as the basis for the subsequent development of a robust and

reliable calibration model. The two data sets used to test the efficiency of OWAVEC

The global result after consecutively applying the first consisted of 83 NIR spectra of roasted coffee samples from
three stepsinvolved in OWAVEC (wavelet decomposition, di- varied origins and varieties (3¢abicaand 47robustacof-
rect orthogonalization and data compression) is a compressedees), processed under different roasting conditions. The first
version of a wavelet coefficients matrix, deflated of informa- response studied was the ash content expressed as a percent-
tion not related to a response of interest, representing a set okge, within the range from 3.8 to 6.5% (w/w). This data set
input signals. Once this whole process has been iterated forwas randomly split into two separate subsets: a calibration
spectra contained in the calibration set, the same procedureset with 73 samples, and a test set with 10 samples. The main
can be performed on the signals comprising the external testprecaution taken when selecting a suitable composition of
set, also leading to their corresponding corrected compressedhe external test set was to verify that the contained samples
wavelet coefficients matrix. uniformly covered the whole range of response values. The

A clear difference was observed when checking the ap- second response analysed was the chlorogenic acid contentin
plication order of the diverse steps involved in the new ver- percentage terms within the range from 2.15 to 4.50% (w/w),
sion of OWAVEC with respect to the order followed in the for the samples contained in the data set. In this case, the
former version of the method; in the first approach, the or- data set was split into two independent subsets: a calibration
thogonalization procedure was applied to the wavelet coeffi- set with 67 samples and a test set with 16 samples, properly
cients matrix after performing the corresponding wavelet de- selected in such a way that they appropriately and uniformly
noising, whereas now the orthogonalization algorithm was covered the whole response range.
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Both data sets had previously been used in several studiesvays centered before use. It is known that orthogonal signal
carried outin our research gro[ip22], which were aimed at  correction methods can produce a notable overfitting when
testing the ability of certain pre-processing methods (includ- applied to the spectra forming the calibration set. For this
ing the first version of OWAVEC in the case of chlorogenic reason, although the number of significant latent variables in
acids content) to correct data and to improve the final qual- all the regression models were assessed by cross-validation
ity of the regression models developed thereafter. Therefore,(all the PLS regression models were built by cross-validation
such prior applications might serve as a useful reference tousing five deletion groups in all cases), we decided to also
subsequently evaluate and compare the results provided byalidate the actual predictive abilities of the obtained calibra-
the regression models constructed after data pre-processingion models by testing their performance on an external test

by the new version of OWAVEC presented here. set, in order to control and avoid a possible overfitting. Thus,
all PLS models tested were subjected to external validation
3.2. Software on their corresponding test sets. When OSC was used as a

pre-processing method, prior to the mean-centering step, the

The OSC and DOS(L3] routines were implemented in  spectra were transformed into their first derivative spectra, as
MATLAB ®, version 6.924], in the same way as OWAVEC, this preliminary step significantly improved the quality of the
which was entirely developed using this technical computing model. The root mean square error (RMSE) of the residuals
language. Moreover, the steps of the OWAVEC procedure obtained (termed RMSEC in calibration, RMSECV in cross-
that involved the performance of wavelet analysis were car- validation and RMSEP in external prediction) was used to
ried out using the Wavelet Toolbox version 2 (for use with evaluate and compare the respective goodness of the regres-
MATLAB ®) [25]. The main objective of using the OSC and sion models constructed, since this parameter represented an
DOSC methods to pre-process the data was simply to serveobjective measurement of the resulting model predictive abil-
as a reference point for evaluating the results provided by ity, being dimensionally comparable to the studied response.
OWAVEC. Thus, the OSC method developed by Wise and Likewise, the percentage of RMSE over the response range
Gallagher[9], available in PLS-Toolbox 2.1 for use with was also computed in all cases, thus allowing results corre-
MATLAB ® [26], was used for the OSC calculations. sponding to both analyzed responses, not directly comparable

For the development of all the calibration models, PLS in terms of dimensionality, to be compared.
regression was performed using the PLS program contained In order to obtain regression models with as high a predic-

in V-PARVUS [23]. tive ability as possible, the effect of the number of orthogonal
LVs (OSC) or orthogonal PCs (DOSC) to be removed from
3.3. Recording of spectra the raw data was studied for both data sets. In all cases the se-

lection of the optimum number of orthogonal factors to be re-
Reflectance spectra were obtained directly from untreatedmoved was determined by cross-validation with five groups.

samples. Each spectrum was obtained from 32 scans withinlt is important to bear in mind that to apply cross-validation
the wavelength ranges 1100-2500 nm (performed at 4 nmwith either OSC or DOSC, filtering matrices should be recal-
intervals) and 1100-2200 nm (performed at 2 nm intervals) culated each time cross-validation samples are left out from
when considering ash content and CGA content as responséhe calibration set.
variables, respectively, with five replicates for eachindividual ~ Spectral variables were always centered but no scaled prior
sample. Due care was taken to ensure that the same amourtb OWAVEC application, i.e., the wavelet coefficients ma-
of sample was always used to fill up the sample cup. The sam-trix retained the original variance natural for NIR spectra.
ples were decompacted between the recordings. An averagé&onsequently, the last optional step of corrected spectra re-
spectrum was subsequently computed from collected sampleconstruction implemented in OWAVEC would imply a final
spectra replicates. rescaling operation, so the global shape of spectra will be

preserved.
3.4. Data processing

Several pre-processing methods, such as mean-centering. Results and discussion

and two orthogonal signal correction methods (OSC and

DOSC), were applied to the data sets, testing the quality of  In this section, we will demonstrate the efficiency of
the respective calibration models constructed and comparingthe modified, generalized version of the OWAVEC pre-
them to those developed after applying OWAVEC, to eval- processing method, highlighting its usefulness as a com-
uate the performance of the new method introduced. After pression tool by comparing the PLS models developed from
the application of all these tested pre-processing methods tathe wavelet coefficients matrix corrected and compressed by
each data set, corresponding PLS calibration models were de OWAVEC with both the original PLS models (constructed
veloped between NIR spectra (or the pre-processed wavelefrom mean-centered variables), and the PLS models built
coefficients matrix in the case of OWAVEC) (calibration set) after applying several orthogonal signal correction methods
and the respective responses considered. The data were al{OSC and DOSC) to NIR spectra, for both studied responses.
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Table 1
Calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP) errors, and percentages of explained variance obtained with every data pre
processing method, using the set of roasted coffee samples and the ash content as response variable

PLS-LVs RMSEC %RMSEC %Explained RMSECV %RMSECV  %Explained RMSEP  %RMSEP

variance (cal) variance (CV)
Centering 10 0.2044 7.72 84.02 0.2480 9.37 76.42 0.1889 7.13
OSC (2 O-LVs) 2 0.0814 3.07 97.43 0.0890 3.36 96.96 0.1305 4.93
DOSC (4 O-PCs) 4 0.1240 4.68 94.03 0.1550 5.85 90.79 0.1308 4.94
OWAVEC (DB4/CQV) 2 0.0820 3.10 97.39 0.1057 3.99 95.72 0.0821 3.10

Only the model yielding the best performance for each method is shown.

4.1. Prediction of ash content of roasted coffee samples  terms of model reliability and complexity. Nevertheless, note
that, although the number of orthogonal latent variables to be

The external test set used represented 12% of total roastedemoved was selected in order to control overfitting, OSC
coffee samples. The same calibration set and external evalprovided a relatively overfitted solution, since the resulting
uation set compositions were used for all the pre-processinglow calibration error was not accompanied by a similar de-
methods applied and calibration models constructed. crease in the prediction error.

Results from the original PLS model, developed from the In spite of the unquestionable improvement in the qual-
mean-centered data to model the ash content of roasted cofity of the developed models achieved by applying OSC and
fee samples, are shownTable 1 The best regression model DOSC methods, the aim of this study was precisely to try
gave 10 PLS-LVs and predicted ash content with a quite high to perform a more efficient signal correction and compres-
prediction error (7.13% RMSEP). AdditionallJable lalso sion by applying OWAVEC with all the modifications that
shows the modelling results from the improved PLS mod- this involved. Thus,Table 2 summarizes the results from
els constructed on the basis of corrected NIR spectra pre-the PLS models based on the OWAVEC corrected and com-
processed by OSC and DOSC methods, after selection ofpressed wavelet coefficients matrix, comparing the various
the most suitable number of orthogonal factors (LVs or PCs) wavelet functions tested and both compression approaches
to be removed in order to later obtain the model yielding applied. Of all these PLS models constructed after apply-
the best performance. These PLS models developed after aping the updated OWAVEC pre-processing method, the use
plying both orthogonal signal correction methods provided of Daubechies-4 as wavelet basis function, associated with a
very similar results in terms of predictive ability (4.93-4.94% four-level decomposition structure, together with the appli-
RMSEP for OSC and DOSC methods, respectively), and rep- cation of the variance spectrum of the corrected coefficients
resented a considerable improvement in the resulting regres-matrix in the compression step, provided not only a notable
sion model quality compared to that of the original in both compression rate (only 57 from a total of 375 wavelet coef-
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Table 2

Calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP) errors and percentages of explained variance of PLS models devefopappliation of OWAVEC from corrected and

compressed wavelet coefficients matrix, comparing the various wavelet functions tested and both compression approaches available, usihgsastsponte variable
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Number of retained coefficients and percentage of zero coefficients are also shown (compression scores). Several OWAVEC parameters suchwedetpt@naimpasition level and tolerance factor used to

compute the generalised inverse in the orthogonalization procedure are also included.
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ficients were retained, 84.80% zero coefficients) but also a
very high predictive power (3.10% RMSEP) with low model
complexity (only two PLS-LVs). This particular model (se-
lected from all OWAVEC-based models mainly to serve as
a representative example of method performance, since all
of them provided very similar results) represented a very no-
table improvement with respect to the case where no data pre-
processing was performe#i@. 2). However, an even more
significant finding may have been the fact that OWAVEC
led to improved (more reliable) PLS models in comparison
to other orthogonal signal correction methods (Sakle J).

The considerable reduction in overfitting (good agreement
between results in calibration, cross-validation and exter-
nal prediction is observed) is particularly remarkable, thus
demonstrating the efficiency of the new version of OWAVEC
presented here.

A special consideration should be made regarding ash con-
tent range of roasted coffee samples. The samples appeared
to be clustered into two separate groups according to ash
content. This existing gap observed only corresponds to the
particular origin of certain samples that results in a consid-
erably higher ash content than most roasted coffee samples.
From a practical point of view, in order to develop a suitable
calibration model for predicting ash content, these ‘extreme’
roasted coffee samples must be included in the calibration set
for being representative. Nevertheless, this particular com-
position of the calibration set can lead to draw wrong con-
clusions when comparing results obtained in calibration and
cross-validation. The apparent ‘overfitting’ observed should
be carefully analysed, since it can be mainly due to the poten-
tial exclusion of some of these ‘extreme’ samples in cross-
validation cycles.

4.2. Prediction of chlorogenic acids content of roasted
coffee samples

The test set used represented 20% of total roasted coffee
samples. The same calibration set and test set compositions
were used for all the pre-processing methods applied and
calibration models developed.

When original data were only mean-centered, alarge num-
ber of latent variables (nine) had to be included to develop the
calibration model in order to obtain a relatively low error in
prediction when considering chlorogenic acids (CGA) con-
tent of roasted coffee samples as response varidbldd 3.
Nevertheless, the fact that errors in both calibration and cross-
validation were higher than the error obtained in external
prediction demonstrated the lack of reliability of the original
PLS model, thus confirming the need for pre-processing data
prior to the development of a suitable model.

The results corresponding to the PLS models developed
from NIR spectra after applying both OSC and DOSC pre-
processing methods, once the most suitable number of or-
thogonal factors to be removed had been selected, are also
included in Table 3 As can be observed, the final com-
plexity of the respective regression models obtained af-
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Table 3
Calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP) errors and percentages of explained variance obtained with every data pre-
processing method, using the set of roasted coffee samples and the CGA content as response variable

PLS-LVs RMSEC %RMSEC %Explained RMSECV %RMSECV  %Explained RMSEP  %RMSEP

variance (cal) variance (CV)
Centering 9 0.1299 5.61 94.27 0.1633 7.06 90.96 0.1118 4.83
OSC (2 O-LVs) 2 0.0674 291 98.46 0.0714 3.09 98.27 0.1247 5.39
DOSC (3 O-PCs) 1 0.0819 3.54 97.72 0.0825 3.56 97.70 0.1162 5.02
OWAVEC (DB4/CORR) 2 0.0716 3.09 98.26 0.0795 3.44 97.86 0.0707 3.05

Only the model yielding the best performance for each method is shown.

ter applying OSC and DOSC was significantly reduced. pression procedure, resulted in an impressive compression
This fact, together with the improved calibration and cross- rate (only 15 from a total of 579 wavelet coefficients were re-
validation results, suggested a simplification and improve- tained; 97.41% zero coefficients), also providing a very low
ment with respect to the model constructed with unpro- error in external prediction (3.05% RMSEP) with no sig-
cessed spectra, although a notable overfitting was observedificant signs of overfitting (3.09% RMSEC versus 3.44%
in the resulting OSC and DOSC based models. The appar-RMSECV). Therefore, the application of OWAVEC as a pre-
ent decrease observed in terms of the predictive ability ob- processing method not only led to an important improvement
tained in both cases was not too important considering thein the final quality of the calibration model later developed
abovementioned unreliability displayed by the original PLS with respect to the original PLS modéli§. 3), but also with
model. regard to the results obtained by other orthogonal signal cor-
Table 4shows the results obtained from the various PLS rection methods (s€Eable 3, particularly in terms of model
models developed from the OWAVEC corrected and com- reliability.
pressed wavelet coefficients matrix, both varying the wavelet
function used and the compression criterion applied. Al- 4.3. Spectral profiles
though either of these OWAVEC-PLS models could be di-
rectly considered as an improved solution to the problem  The scatter effects that are inherently in near-infrared re-
studied here in terms of model reliability and robustness, flectance spectroscopy can be significant and produce an ex-
the selection of Daubechies-4 as a wavelet basis function,pansion of the absorbance interval for the individual wave-
associated with a decomposition structure of four levels, to- lengths. This effect can be seenFigs. 4a and 5awhich
gether with the use of the vector containing the correlation show the distribution of the original spectra corresponding to
coefficients computed between the response variable (CGAthe roasted coffee samples along the spectral range analysed
content) and the individual wavelet coefficients in the com- for each studied response.

CENTERED SPECTRA
45 T T T T =
CALIBRATION SET: y = 0.9222*x +0.246; R2 = 0.9098 . )/ =5
" TEST SET:----y = 0.9932'x + 0.0542; R2 = 0.9644 Tl iy
[ o
E
3} i
(=
w
[an I
. 4 45
&
£ OWAVEC CORRECTED AND COMPRESSED COEFFICIENTS (DB4/CORR)
45 T T T T =
8 CALIBRATION SET: y = 0.9751*x +0.0838; R2 = 0.9786 ﬂﬂ-/"“/
& 4 TESTSET:----y=09845+0.0864; R2 = 09847 PR 1
© a5 e 1
ek
L R -t -
s e
25t il 7
Sl ©
2 25 3 a5 3 45
(b) CGA CONTENT MEASURED

Fig. 3. Measured vs. predicted CGA content valu@:if cross-validation for calibration samplegs)(in external prediction for test samples. (a) PLS model
based on original spectra (only mean-centered). (b) Improved PLS model based on the OWAVEC corrected and compressed wavelet coefficients matrix (onc
selected the most suitable one among all OWAVEC models evaluated).



Table 4

Calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP) errors and percentages of explained variance of PLS models devefopappliation of OWAVEC from corrected and

compressed wavelet coefficients matrix, comparing the various wavelet functions tested and both compression approaches available, using &Aspmrise variable

%Zero
coeff.

TOL NCOF

%Explained RMSEP  %RMSEP LEVEL

%RMSECV

%Explained RMSECV

RMSEC  %RMSEC
variance (cal)

PLS-LVs

Compression criterium

variance (CV)

Daubechies-4

97.41
95.75

4 -3 1lel5
—4 94

3.05
3.

0.0707

97.86
98.04

98.26 0.0795 3.44

3.09

2 0.0716

Correlation coefficient

21

0.0742

3.29

0.0684 2.96 98.41 0.0761

2

Covariance spectrum
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3.00

2 0.0694

Correlation coefficient
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3.25 2

0.0752
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Covariance spectrum

Symlet-8

97.54
95.87

3.65 4 —3 lel5
—4 9e@4

0.0844

97.70
98.02

3.56

0.0824

98.15

3.19

2 0.0739
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2
Number of retained coefficients and percentage of zero coefficients are also shown (compression scores). Several OWAVEC parameters suchwedetpt@naimpasition level and tolerance factor used to

compute the generalised inverse in the orthogonalization procedure are also included.
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Fig. 4. NIR spectral profiles corresponding to all the roasted coffee sam-
ples in the data set (including both calibration and test samples). (a) Raw
spectra; (b) reconstructed spectra after OWAVEC application, considering
ash content as response variable and the corrected and compressed wavelet
coefficients matrix yielding better results.

One of the main objective that OWAVEC attempts to ac-
complish is precisely the minimization of these scatter ef-
fects, by removing systematic variations not related to the
response to be modelled and predicted that have a harmful
influence on the quality of the resulting calibration model.

In this section we have attempted to demonstrate the use-
fulness and efficiency of OWAVEC for correcting and com-
pressing data prior to the development of areliable calibration
model, mainly by expounding the numerical results. How-
ever, agraphical analysis of the spectral profiles, once the data
have been pre-processed by OWAVEC, could also be interest-
ing for evaluating the performance of the method and its effect
on the original signals; and for this reason, we have addition-
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Fig. 5. NIR spectral profiles corresponding to all the roasted coffee sam-
ples in the data set (including both calibration and test samples). (a) Raw
spectra; (b) reconstructed spectra after OWAVEC application, considering
CGA content as response variable and the corrected and compressed wavelet
coefficients matrix yielding better results.
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