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Abstract

This paper presents modifications to our recently introduced pre-processing method, orthogonal WAVElet correction (OWAVEC), based
on the combination of wavelet analysis and an orthogonal correction algorithm, described in detail in a former paper [I. Esteban-Dı́ez, J.M.
Gonźalez-Śaiz, C. Pizarro, OWAVEC: a combination of wavelet analysis and an orthogonalization algorithm as a pre-processing step in
multivariate calibration, Anal. Chim. Acta 515 (2004) 31–41], aimed at extending its applicability and at improving its performance; thanks
to an additional use of OWAVEC as an effective data compression tool. The OWAVEC method uses the discrete wavelet transform (DWT)
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o decompose each individual signal into the wavelet domain, and then an orthogonalization algorithm is applied to the obtain
oefficients matrix to remove the information not related to a considered response variable. Later, the corrected wavelet coefficient
y their variance or by their correlation coefficient with the response variable, and the subset providing the most stable and reliable
odel is finally selected (data compression). The new version of OWAVEC has been applied to two NIR data sets to test its pe
or both regression problems studied, high quality calibration models with very high compression ratios were obtained, providing
redictive results and a considerably lower overfitting than other orthogonal signal correction methods. The generalized OWAVE
resented here may be used as a global tool for simultaneous noise suppression, data compression and orthogonal correction o
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. Introduction

We recently introduced a new pre-processing method,
rthogonal WAVElet correction (OWAVEC)[1], which at-

empted to lump together two important needs in multivariate
alibration: signal correction and data compression. The dis-
inctive features of OWAVEC with respect to other commonly
pplied pre-processing methods (e.g., derivation to different
rders[2], standard normal variate (SNV) and multiplica-

ive scatter correction (MSC)[3–5] or different orthogonal
ignal correction methods[6–13]) are focused on unifying
n the same method, the huge potential that wavelet analy-
is has demonstrated for signal processing (smoothing/de-
oising/data compression)[14–21], and the application of a
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particular orthogonal signal correction algorithm to the d
prior to being used as the basis for developing a calibra
model to model and predict a certain response, thus pur
an enhancement of the resulting model predictive ability

The first version of the OWAVEC method focused on
nal correction, i.e., on the removal of information not rela
to a studied response in the wavelet domain (orthogona
tion procedure) and the de-noising processes of the wa
coefficients matrix. Nevertheless, today, effective data c
pression methods are increasingly necessary in multiva
calibration mainly due to the redundant nature of many t
of collected signals (collinearity problems). The main ben
cial effects derived from successful data compression inc
a reduction of memory storage, an improved generaliz
ability and robustness of the resulting calibration model
a simpler model representation. The aim of this paper
describe the additional utility of OWAVEC for achieving e
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Fig. 1. An overview of the steps involved in the OWAVEC procedure. (1) The previously centered spectra are padded to the nearest length 2n. Wavelet
decomposition: each spectrum is transformed individually using a selected wavelet function. (2) Direct orthogonalization: the wavelet coefficient matrix is
corrected by removing a part unrelated to the considered response. (3) Data compression: two different approaches are available; wavelet coefficients selection
based on the variance spectrum or on the correlation coefficients vector. (4) Filtered spectra can be reconstructed using the IWT. PLS regression is performed
on the basis of the corrected and compressed wavelet coefficients matrix obtained.

cient signal compression, thus improving the predictive abil-
ity of the calibration model later developed from the result-
ing corrected and compressed wavelet coefficients matrix,
through an appropriate selection of wavelet coefficients, re-
moving those coefficients that do not hold significant infor-
mation. Two different approaches are available in the updated
version of OWAVEC for achieving such wavelet coefficients
compression, depending on the criterion chosen to select the
significant coefficients (the variance spectrum of the coef-
ficients matrix or the correlation coefficients computed be-
tween response variable and wavelet coefficients).

The generalized method presented here was tested on a
set of roasted coffee NIR spectra using both ash content and
chlorogenic acid content as response variables and the per-
formance of the finally selected OWAVEC-PLS regression
models (considered as the most suitable for modelling and
predicting each studied response) was compared not only
with that obtained from original data (using mean-centering
as the only pre-processing method applied) but also with that
provided by other signal correction methods (i.e., OSC[9]
and DOSC[13]). Taking into account the huge amount of
overlapping information present in NIR spectra, it is easy to
understand that much redundant information will be present
in NIR data, and that a great part of it can be irrelevant to
model and predict a certain response variable. Thus, the ap-
plication of suitable methods to compress NIR data and prop-
e nce
t . For
t ance

as an effective compression tool for NIR spectra considering
two different regression problems.

2. Methods: new OWAVEC features

Fig. 1shows a schematic view of all the steps involved in
the OWAVEC method as applied in the present study. On the
face of it, four main stages can be perfectly differentiated in
the procedure carried out by OWAVEC: wavelet decompo-
sition of signals, direct orthogonalization of the wavelet co-
efficients matrix, corrected wavelet coefficients matrix com-
pression and final reconstruction of corrected signals.

As a first step, OWAVEC uses the discrete wavelet trans-
form (DWT) as wavelet transform technique to decompose
each spectrum, through the use of a selected wavelet function
in this transformation. In DWT the choice of different wavelet
basis functions produces different decompositions of a sig-
nal in the resulting wavelet domain. Therefore, the selection
of a suitable wavelet function is a crucial parameter, which
will depend on the particular shape of the considered signal.
In the present study, we used three wavelet functions corre-
sponding to different families of orthogonal wavelet bases
and wavelet order – Daubechies-4, Coiflet-2 and Symlet-8 –
since they are probably among the most used wavelets and
they all have several vanishing moments, which essentially
m nals,
l the
l

rly extract the most useful information is of great importa
o produce more robust and reliable regression models
his reason, we have decided to test OWAVEC perform
eans that polynomials of low degree, i.e., smooth sig
ike NIR data, are well compressed. The DWT requires
ength of the analysed signal to be dyadic, i.e., 2n, wheren
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is an integer. Nevertheless, if this condition is not fulfilled a
number of methods exist for extrapolating the signal, such
as zero padding, symmetric extension or linear padding. In
this report, all signal extrapolations were performed by lin-
ear padding, which involves connecting the last and the first
values of the signal by means of a straight line. This applied
extrapolation method takes advantage of the vanishing mo-
ments property inherent in most wavelets in such a way that
minimal edge effects are caused. Another key parameter to
be optimized when applying DWT for regression purposes is
the optimal decomposition level. In order to identify the most
suitable wavelet decomposition, depending on the wavelet
function selected and the coefficients selection criterion later
applied, several decomposition levels were tested (always re-
specting the maximum allowed wavelet decomposition level
associated with a certain wavelet function and the particular
extended length of the analysed signals). The choice of the
final optimal decomposition level was based on several crite-
ria, including compression rate and the predictive ability of
the resulting calibration model, once the OWAVEC procedure
had been completed.

The DWT can be seen as a special case of a more general
wavelet transform technique: the wavelet packet transform
(WPT). In the updated version of OWAVEC introduced here,
we preferred to apply the DWT because of its simplicity and
computation speed. Nevertheless, the OWAVEC method will
c nd a
m sis
s

the
c m is
a ular
r steps
i d in
O n
p set
s ecom
p ts of
t ace
o a
c ical
v nts
m ctor
u coef-
fi pute
t in
t e loss
o that
t trix
i The
r n by
t nce
i velet
c lity.
A ma-
t e re-

sulting calibration model, but this is not necessarily true for
predictions of a separate test set and prediction errors can
decrease notably, due to the fact that non-stable directions
in the wavelet coefficients matrix are not used in calcula-
tion. For this reason, different values of the tolerance factor
have been tested in each case, in order to avoid overfitting,
thus selecting that, which enhances the predictive ability of
the regression model finally constructed on the basis of the
resulting corrected and compressed wavelet coefficients ma-
trix. Logically, the final choice of the most suitable tolerance
factor value to be applied will depend on several parame-
ters, including the wavelet basis function used, the particular
wavelet decomposition level considered and the compression
rate achieved.

Considering the wavelet coefficients matrix obtained after
wavelet decomposition, we can realize that as we move fur-
ther to the right, information about higher and higher frequen-
cies in the original signal is encountered. In the case of NIR
spectra, since they are usually smooth signals, it is expected
that most low frequency wavelet coefficients (approximation
coefficients) will be large, whereas wavelet coefficients rep-
resenting higher frequencies (detail coefficients) will be close
to zero. Therefore, there would be many wavelet coefficients
with very small values, which could be regarded as uninfor-
mative and could be suppressed without any significant effect
on the main information of the original signals.
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ontinue to be improved and completed in the future, a
odification, which will apply the WPT with a best ba

election criterion is expected to be developed.
Once the wavelet coefficients matrix corresponding to

alibration set is computed, an orthogonalization algorith
pplied to deflate it of information not related to the partic
esponse to be modelled later. Further details on all the
nvolved in the orthogonalization procedure implemente
WAVEC can be found in[1]. Once the orthogonalizatio
rocedure has been completed working on calibration
pectra and the spectra in the prediction set have been d
osed by wavelet analysis, the resulting matrix of weigh

he original wavelet coefficients in the orthogonal subsp
f these coefficients,W, can be applied to obtain directly
orrected wavelet coefficients matrix for new data. A crit
alue to be optimized when performing wavelet coefficie
atrix orthogonalization is the value of the tolerance fa
sed to compute the generalized inverse of the wavelet
cients matrix. The use of a generalized inverse to com
he matrix of weights of the original wavelet coefficients
he orthogonal subspace of these coefficients implies th
f the complete orthogonality constraint, which means

he information removed from the wavelet coefficients ma
s not ‘necessarily’ orthogonal to the response variable.
eal deviation degree from orthogonality is precisely give
he tolerance factor value in such a way that if the tolera
s increased, then the information removed from the wa
oefficients matrix slowly moves away from orthogona
llowing some correlation between the removed infor

ion and response variable can produce a lower fit in th
-

Besides, if we take into account that once the orthogo
zation algorithm is applied, the wavelet coefficients ma
ould be deflated of information unrelated to the depen
ariable, it is easy to understand that many wavelet co
ients considered originally as ‘informative’ could sign
antly modify their final size depending on their particu
orrelation degree with the response variable. As a resu
mount of non-significant wavelet coefficients, which co
e discarded, would be expected to increase.

However, neither the wavelet transforms itself nor
rthogonalization procedure, later applied, provides
ffective data compression. The wavelet transformed
orrected signal would have the same length than the ori
extrapolated’ signal. Compression will be only achie
fter removing the wavelet coefficients that do not con
elevant information. As previously noted, the main mod
ation included in the OWAVEC method with respect to
riginal version is precisely the added alternative of perfo

ng real data compression in the wavelet domain, regar
f whether a specific signal de-noising procedure has
pplied. The feature selection (data compression) carrie
y OWAVEC is aimed at selecting a reduced subset of si

cant wavelet coefficients to develop on its basis a calibra
odel with an enhanced prediction ability, since irrelev
avelet coefficients contained in the wavelet coeffici
atrix will usually worsen the performance of the develo

egression model and the precision of the prediction.
otential use of OWAVEC as a compression tool wo
ubstantially improve its practical usefulness in multivar
alibration.
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The selection of which specific wavelet coefficients will
be retained in the data compression step implemented in
OWAVEC depends on the criterion adopted to estimate the
relevance of each individual wavelet coefficient. Since we are
interested in keeping those coefficients, which represent the
underlying features responsible for a successful prediction,
the value of the correlation coefficient computed between
the response variable and each wavelet coefficient is a logi-
cal selection criterion to be used in compression. On the other
hand, since the systematic variation in the corrected coeffi-
cients matrix should remain intact, the amount of variance
captured by each coefficient can also be used as a compres-
sion criterion. Taking into account that the information not
related to the response variable has been already removed in
the orthogonalization step, both selection criteria would be
expected to be closely related. However, due to the loss of
the complete orthogonality constraint, the same results are not
obtained when performing wavelet coefficients selection by
applying each compression approach. Once the particular cri-
terion to be used for selecting significant wavelet coefficients
has been determined, another crucial parameter to be set is the
final number of coefficients to be retained. A visual screen-
ing of the size distribution of the variance/correlation vector
might suggest an approximate number of wavelet coefficients
that may be used at the outset. As a first estimation, the posi-
tions of the 15 largest variance/correlation coefficients were
e effi-
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applied as a prior step to wavelet compression. The reason
for this change in the application sequence was justified by
the fact that it is more logical to select the final subset of sig-
nificant coefficients, i.e., to perform the data compression,
considering only information closely related to the studied
response. Otherwise, if the compression procedure was ap-
plied prior to wavelet coefficients matrix orthogonalization,
the information content not directly related to the considered
response variable could interfere with the compression re-
sults and lead to a final wavelet coefficients selection that
might be unsuitable for reliably modelling the response. If
the aim of applying OWAVEC is to signal de-noising instead
of data compression, this aspect is not so crucial and similar
results are obtained regardless the order applied.

The final step involved in the procedure carried out by
OWAVEC was related to the possibility of reconstructing
the corrected spectra into the original domain from the re-
spective corrected and compressed wavelet coefficients ma-
trices by inverse wavelet transform, for both the calibration
and evaluation sets. Wavelet transform is a linear transform,
and a complete reconstruction of the signals can be always
performed from all the computed wavelet coefficients. How-
ever, when an orthogonal set of basis functions is used, as in
the present case, the signals can still be reconstructed even
if some coefficients have been discarded. In this way, the
corrected spectra can be reconstructed back into the origi-
n llow
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xtracted, and, from these, the effect of adding more co
ients to the PLS model was studied. Thus, after identif
he positions representing the selected number of the la
orrelation/variance coefficients, the corresponding colu
rom the corrected wavelet coefficient matrix were extra
nd fed into a corrected compressed wavelet coefficient

rix. The original positions of the extracted coefficients w
aved for use in future compression of new spectra (tes
ater, these corrected and compressed wavelet coeffi
atrices (obtained for both calibration and test sets), fre

nformation not related to the studied response, would s
s the basis for the subsequent development of a robu
eliable calibration model.

The global result after consecutively applying the
hree steps involved in OWAVEC (wavelet decomposition
ect orthogonalization and data compression) is a compr
ersion of a wavelet coefficients matrix, deflated of infor
ion not related to a response of interest, representing a
nput signals. Once this whole process has been iterate
pectra contained in the calibration set, the same proc
an be performed on the signals comprising the externa
et, also leading to their corresponding corrected compr
avelet coefficients matrix.
A clear difference was observed when checking the

lication order of the diverse steps involved in the new
ion of OWAVEC with respect to the order followed in t
ormer version of the method; in the first approach, the
hogonalization procedure was applied to the wavelet co
ients matrix after performing the corresponding wavele
oising, whereas now the orthogonalization algorithm
al domain using the selected wavelet coefficients, to a
or chemical interpretation of the results. In this study,
onstructed NIR spectra, once pre-processed (correcte
ompressed) by OWAVEC, were used mainly to evaluat
ffect on the spectral profiles after applying the OWAV
re-processing method to the original signals.

. Experimental

.1. Data sets

The two data sets used to test the efficiency of OWAV
onsisted of 83 NIR spectra of roasted coffee samples
aried origins and varieties (36arabicaand 47robustacof-
ees), processed under different roasting conditions. The
esponse studied was the ash content expressed as a p
ge, within the range from 3.8 to 6.5% (w/w). This data
as randomly split into two separate subsets: a calibr
et with 73 samples, and a test set with 10 samples. The
recaution taken when selecting a suitable compositio

he external test set was to verify that the contained sam
niformly covered the whole range of response values.
econd response analysed was the chlorogenic acid con
ercentage terms within the range from 2.15 to 4.50% (w

or the samples contained in the data set. In this case
ata set was split into two independent subsets: a calibr
et with 67 samples and a test set with 16 samples, pro
elected in such a way that they appropriately and unifo
overed the whole response range.
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Both data sets had previously been used in several studies
carried out in our research group[1,22], which were aimed at
testing the ability of certain pre-processing methods (includ-
ing the first version of OWAVEC in the case of chlorogenic
acids content) to correct data and to improve the final qual-
ity of the regression models developed thereafter. Therefore,
such prior applications might serve as a useful reference to
subsequently evaluate and compare the results provided by
the regression models constructed after data pre-processing
by the new version of OWAVEC presented here.

3.2. Software

The OSC and DOSC[13] routines were implemented in
MATLAB ®, version 6.5[24], in the same way as OWAVEC,
which was entirely developed using this technical computing
language. Moreover, the steps of the OWAVEC procedure
that involved the performance of wavelet analysis were car-
ried out using the Wavelet Toolbox version 2 (for use with
MATLAB ®) [25]. The main objective of using the OSC and
DOSC methods to pre-process the data was simply to serve
as a reference point for evaluating the results provided by
OWAVEC. Thus, the OSC method developed by Wise and
Gallagher[9], available in PLS-Toolbox 2.1 for use with
MATLAB ® [26], was used for the OSC calculations.

For the development of all the calibration models, PLS
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ways centered before use. It is known that orthogonal signal
correction methods can produce a notable overfitting when
applied to the spectra forming the calibration set. For this
reason, although the number of significant latent variables in
all the regression models were assessed by cross-validation
(all the PLS regression models were built by cross-validation
using five deletion groups in all cases), we decided to also
validate the actual predictive abilities of the obtained calibra-
tion models by testing their performance on an external test
set, in order to control and avoid a possible overfitting. Thus,
all PLS models tested were subjected to external validation
on their corresponding test sets. When OSC was used as a
pre-processing method, prior to the mean-centering step, the
spectra were transformed into their first derivative spectra, as
this preliminary step significantly improved the quality of the
model. The root mean square error (RMSE) of the residuals
obtained (termed RMSEC in calibration, RMSECV in cross-
validation and RMSEP in external prediction) was used to
evaluate and compare the respective goodness of the regres-
sion models constructed, since this parameter represented an
objective measurement of the resulting model predictive abil-
ity, being dimensionally comparable to the studied response.
Likewise, the percentage of RMSE over the response range
was also computed in all cases, thus allowing results corre-
sponding to both analyzed responses, not directly comparable
in terms of dimensionality, to be compared.
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n V-PARVUS[23].

.3. Recording of spectra

Reflectance spectra were obtained directly from untre
amples. Each spectrum was obtained from 32 scans w
he wavelength ranges 1100–2500 nm (performed at
ntervals) and 1100–2200 nm (performed at 2 nm interv
hen considering ash content and CGA content as resp
ariables, respectively, with five replicates for each individ
ample. Due care was taken to ensure that the same a
f sample was always used to fill up the sample cup. The
les were decompacted between the recordings. An av
pectrum was subsequently computed from collected sa
pectra replicates.

.4. Data processing

Several pre-processing methods, such as mean-cen
nd two orthogonal signal correction methods (OSC
OSC), were applied to the data sets, testing the qual

he respective calibration models constructed and comp
hem to those developed after applying OWAVEC, to e
ate the performance of the new method introduced. A

he application of all these tested pre-processing metho
ach data set, corresponding PLS calibration models we
eloped between NIR spectra (or the pre-processed wa
oefficients matrix in the case of OWAVEC) (calibration s
nd the respective responses considered. The data w
t

-

In order to obtain regression models with as high a pre
ive ability as possible, the effect of the number of orthog
Vs (OSC) or orthogonal PCs (DOSC) to be removed f
he raw data was studied for both data sets. In all cases t
ection of the optimum number of orthogonal factors to be

oved was determined by cross-validation with five gro
t is important to bear in mind that to apply cross-valida
ith either OSC or DOSC, filtering matrices should be re
ulated each time cross-validation samples are left out
he calibration set.

Spectral variables were always centered but no scaled
o OWAVEC application, i.e., the wavelet coefficients m
rix retained the original variance natural for NIR spec
onsequently, the last optional step of corrected spect
onstruction implemented in OWAVEC would imply a fin
escaling operation, so the global shape of spectra w
reserved.

. Results and discussion

In this section, we will demonstrate the efficiency
he modified, generalized version of the OWAVEC p
rocessing method, highlighting its usefulness as a
ression tool by comparing the PLS models developed

he wavelet coefficients matrix corrected and compresse
WAVEC with both the original PLS models (construc

rom mean-centered variables), and the PLS models
fter applying several orthogonal signal correction meth
OSC and DOSC) to NIR spectra, for both studied respo



94 I. Esteban-D´ıez et al. / Analytica Chimica Acta 544 (2005) 89–99

Table 1
Calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP) errors, and percentages of explained variance obtained with every data pre-
processing method, using the set of roasted coffee samples and the ash content as response variable

PLS-LVs RMSEC %RMSEC %Explained
variance (cal)

RMSECV %RMSECV %Explained
variance (CV)

RMSEP %RMSEP

Centering 10 0.2044 7.72 84.02 0.2480 9.37 76.42 0.1889 7.13
OSC (2 O-LVs) 2 0.0814 3.07 97.43 0.0890 3.36 96.96 0.1305 4.93
DOSC (4 O-PCs) 4 0.1240 4.68 94.03 0.1550 5.85 90.79 0.1308 4.94
OWAVEC (DB4/COV) 2 0.0820 3.10 97.39 0.1057 3.99 95.72 0.0821 3.10

Only the model yielding the best performance for each method is shown.

4.1. Prediction of ash content of roasted coffee samples

The external test set used represented 12% of total roasted
coffee samples. The same calibration set and external eval-
uation set compositions were used for all the pre-processing
methods applied and calibration models constructed.

Results from the original PLS model, developed from the
mean-centered data to model the ash content of roasted cof-
fee samples, are shown inTable 1. The best regression model
gave 10 PLS-LVs and predicted ash content with a quite high
prediction error (7.13% RMSEP). Additionally,Table 1also
shows the modelling results from the improved PLS mod-
els constructed on the basis of corrected NIR spectra pre-
processed by OSC and DOSC methods, after selection of
the most suitable number of orthogonal factors (LVs or PCs)
to be removed in order to later obtain the model yielding
the best performance. These PLS models developed after ap-
plying both orthogonal signal correction methods provided
very similar results in terms of predictive ability (4.93–4.94%
RMSEP for OSC and DOSC methods, respectively), and rep-
resented a considerable improvement in the resulting regres-
sion model quality compared to that of the original in both

terms of model reliability and complexity. Nevertheless, note
that, although the number of orthogonal latent variables to be
removed was selected in order to control overfitting, OSC
provided a relatively overfitted solution, since the resulting
low calibration error was not accompanied by a similar de-
crease in the prediction error.

In spite of the unquestionable improvement in the qual-
ity of the developed models achieved by applying OSC and
DOSC methods, the aim of this study was precisely to try
to perform a more efficient signal correction and compres-
sion by applying OWAVEC with all the modifications that
this involved. Thus,Table 2 summarizes the results from
the PLS models based on the OWAVEC corrected and com-
pressed wavelet coefficients matrix, comparing the various
wavelet functions tested and both compression approaches
applied. Of all these PLS models constructed after apply-
ing the updated OWAVEC pre-processing method, the use
of Daubechies-4 as wavelet basis function, associated with a
four-level decomposition structure, together with the appli-
cation of the variance spectrum of the corrected coefficients
matrix in the compression step, provided not only a notable
compression rate (only 57 from a total of 375 wavelet coef-

F for ca del
b odel ba matrix (onc
s ).
ig. 2. Measured vs. predicted ash content values: (�) in cross-validation
ased on original spectra (only mean-centered). (b) Improved PLS m
elected the most suitable one among all OWAVEC models evaluated
libration samples; (�) in external prediction for test samples. (a) PLS mo
sed on the OWAVEC corrected and compressed wavelet coefficientse
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ficients were retained, 84.80% zero coefficients) but also a
very high predictive power (3.10% RMSEP) with low model
complexity (only two PLS-LVs). This particular model (se-
lected from all OWAVEC-based models mainly to serve as
a representative example of method performance, since all
of them provided very similar results) represented a very no-
table improvement with respect to the case where no data pre-
processing was performed (Fig. 2). However, an even more
significant finding may have been the fact that OWAVEC
led to improved (more reliable) PLS models in comparison
to other orthogonal signal correction methods (seeTable 1).
The considerable reduction in overfitting (good agreement
between results in calibration, cross-validation and exter-
nal prediction is observed) is particularly remarkable, thus
demonstrating the efficiency of the new version of OWAVEC
presented here.

A special consideration should be made regarding ash con-
tent range of roasted coffee samples. The samples appeared
to be clustered into two separate groups according to ash
content. This existing gap observed only corresponds to the
particular origin of certain samples that results in a consid-
erably higher ash content than most roasted coffee samples.
From a practical point of view, in order to develop a suitable
calibration model for predicting ash content, these ‘extreme’
roasted coffee samples must be included in the calibration set
for being representative. Nevertheless, this particular com-
p on-
c and
c ould
b oten-
t oss-
v

4
c

offee
s itions
w and
c

um-
b p the
c r in
p on-
t
N ross-
v rnal
p nal
P data
p

oped
f pre-
p of or-
t e also
i m-
p af-
osition of the calibration set can lead to draw wrong c
lusions when comparing results obtained in calibration
ross-validation. The apparent ‘overfitting’ observed sh
e carefully analysed, since it can be mainly due to the p

ial exclusion of some of these ‘extreme’ samples in cr
alidation cycles.

.2. Prediction of chlorogenic acids content of roasted
offee samples

The test set used represented 20% of total roasted c
amples. The same calibration set and test set compos
ere used for all the pre-processing methods applied
alibration models developed.

When original data were only mean-centered, a large n
er of latent variables (nine) had to be included to develo
alibration model in order to obtain a relatively low erro
rediction when considering chlorogenic acids (CGA) c

ent of roasted coffee samples as response variable (Table 3).
evertheless, the fact that errors in both calibration and c
alidation were higher than the error obtained in exte
rediction demonstrated the lack of reliability of the origi
LS model, thus confirming the need for pre-processing
rior to the development of a suitable model.

The results corresponding to the PLS models devel
rom NIR spectra after applying both OSC and DOSC
rocessing methods, once the most suitable number

hogonal factors to be removed had been selected, ar
ncluded in Table 3. As can be observed, the final co
lexity of the respective regression models obtained
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Table 3
Calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP) errors and percentages of explained variance obtained with every data pre-
processing method, using the set of roasted coffee samples and the CGA content as response variable

PLS-LVs RMSEC %RMSEC %Explained
variance (cal)

RMSECV %RMSECV %Explained
variance (CV)

RMSEP %RMSEP

Centering 9 0.1299 5.61 94.27 0.1633 7.06 90.96 0.1118 4.83
OSC (2 O-LVs) 2 0.0674 2.91 98.46 0.0714 3.09 98.27 0.1247 5.39
DOSC (3 O-PCs) 1 0.0819 3.54 97.72 0.0825 3.56 97.70 0.1162 5.02
OWAVEC (DB4/CORR) 2 0.0716 3.09 98.26 0.0795 3.44 97.86 0.0707 3.05

Only the model yielding the best performance for each method is shown.

ter applying OSC and DOSC was significantly reduced.
This fact, together with the improved calibration and cross-
validation results, suggested a simplification and improve-
ment with respect to the model constructed with unpro-
cessed spectra, although a notable overfitting was observed
in the resulting OSC and DOSC based models. The appar-
ent decrease observed in terms of the predictive ability ob-
tained in both cases was not too important considering the
abovementioned unreliability displayed by the original PLS
model.

Table 4shows the results obtained from the various PLS
models developed from the OWAVEC corrected and com-
pressed wavelet coefficients matrix, both varying the wavelet
function used and the compression criterion applied. Al-
though either of these OWAVEC-PLS models could be di-
rectly considered as an improved solution to the problem
studied here in terms of model reliability and robustness,
the selection of Daubechies-4 as a wavelet basis function,
associated with a decomposition structure of four levels, to-
gether with the use of the vector containing the correlation
coefficients computed between the response variable (CGA
content) and the individual wavelet coefficients in the com-

pression procedure, resulted in an impressive compression
rate (only 15 from a total of 579 wavelet coefficients were re-
tained; 97.41% zero coefficients), also providing a very low
error in external prediction (3.05% RMSEP) with no sig-
nificant signs of overfitting (3.09% RMSEC versus 3.44%
RMSECV). Therefore, the application of OWAVEC as a pre-
processing method not only led to an important improvement
in the final quality of the calibration model later developed
with respect to the original PLS model (Fig. 3), but also with
regard to the results obtained by other orthogonal signal cor-
rection methods (seeTable 3), particularly in terms of model
reliability.

4.3. Spectral profiles

The scatter effects that are inherently in near-infrared re-
flectance spectroscopy can be significant and produce an ex-
pansion of the absorbance interval for the individual wave-
lengths. This effect can be seen inFigs. 4a and 5a, which
show the distribution of the original spectra corresponding to
the roasted coffee samples along the spectral range analysed
for each studied response.

F n for ca del
b odel ba matrix (onc
s ).
ig. 3. Measured vs. predicted CGA content values: (�) in cross-validatio
ased on original spectra (only mean-centered). (b) Improved PLS m
elected the most suitable one among all OWAVEC models evaluated
libration samples; (�) in external prediction for test samples. (a) PLS mo
sed on the OWAVEC corrected and compressed wavelet coefficientse
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Fig. 4. NIR spectral profiles corresponding to all the roasted coffee sam-
ples in the data set (including both calibration and test samples). (a) Raw
spectra; (b) reconstructed spectra after OWAVEC application, considering
ash content as response variable and the corrected and compressed wavelet
coefficients matrix yielding better results.

One of the main objective that OWAVEC attempts to ac-
complish is precisely the minimization of these scatter ef-
fects, by removing systematic variations not related to the
response to be modelled and predicted that have a harmful
influence on the quality of the resulting calibration model.

In this section we have attempted to demonstrate the use-
fulness and efficiency of OWAVEC for correcting and com-
pressing data prior to the development of a reliable calibration
model, mainly by expounding the numerical results. How-
ever, a graphical analysis of the spectral profiles, once the data
have been pre-processed by OWAVEC, could also be interest-
ing for evaluating the performance of the method and its effect
on the original signals; and for this reason, we have addition-

F sam-
p ) Raw
s ering
C wavelet
c

ig. 5. NIR spectral profiles corresponding to all the roasted coffee
les in the data set (including both calibration and test samples). (a
pectra; (b) reconstructed spectra after OWAVEC application, consid
GA content as response variable and the corrected and compressed
oefficients matrix yielding better results.
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ally reconstructed the corrected and compressed spectra in the
original domain.Figs. 4b and 5bshow the spectral profiles
corresponding to all roasted coffee samples after application
of OWAVEC, taking into account ash content and CGA con-
tent as response variables, respectively. The spectral profiles
obtained after applying OWAVEC for ash content were par-
ticularly interesting, since despite the high degree of over-
lapping among spectra, a small set of 10 samples appeared
clearly separate from the rest at some wavelength regions.
The reason for this behaviour can be easily explained bear-
ing in mind that only information related to ash content was
contained in the corrected spectra and, as previously noted,
that the ash content values in these particular samples were
considerably higher than in the rest. Likewise, when con-
sidering CGA content as response variable to be modelled,
the great compression rate achieved with the application of
OWAVEC resulted not only in the minimization of spectral
differences in certain spectral ranges to a great extent com-
pared to raw spectra, but also in considering certain broad
wavelength regions as being completely ‘empty of valuable
information’.

5. Conclusions

This study introduced an updated version of OWAVEC
m ning
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