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Abstract Ten techniques used for selection of useful
predictors in multivariate calibration and in other
cases of multivariate regression are described and dis-
cussed in terms of their performance (ability to detect
useless predictors, predictive power, number of re-
tained predictors) with real and artificial data. The
techniques studied include classical stepwise ordinary
least-squares (SOLS), techniques based on the genetic
algorithms, and a family of methods based on partial
least-squares (PLS) regression and on the optimization
of the predictive ability. A short introduction presents
the evaluation strategies, a description of the quantities
used to evaluate the regression model, and the criteria
used to define the complexity of PLS models. The
selection techniques can be divided into conservative
techniques that try to retain all the informative, useful
predictors, and parsimonious techniques, whose
objective is to select a minimum but sufficient number
of useful predictors. Some combined techniques, in
which a conservative technique is used to perform a
preliminary selection before the use of parsimonious
techniques, are also presented. Among the conservative
techniques, the Westad–Martens uncertainty test

(MUT) used in Unscrambler, and uninformative vari-
ables elimination (UVE), developed by Massart et al.,
seem the most efficient techniques. The old SOLS can
be improved to become the most efficient parsimonious
technique, by means of the use of plots of the F-sta-
tistics value of the entered predictors and comparison
with parallel results obtained with a data matrix with
random data. This procedure indicates correctly how
many predictors can be accepted and substantially re-
duces the possibility of overfitting. A possible alter-
native to SOLS is iterative predictors weighting (IPW)
that automatically selects a minimum set of informa-
tive predictors. The use of an external evaluation set,
with objects never used in the elimination of predic-
tors, or of ‘‘complete validation’’ is suggested to avoid
overestimate of the prediction ability.

Keywords Multivariate calibration Æ Predictor selection

Introduction

Multivariate regression techniques are widely used for
multivariate chemical calibration (determination of
chemical quantity from physical measured quantities),
multivariate physical calibration (physical quantity as
octane index, viscosity from other physical quantities),
multivariate sensory calibration (panel scores from
physical or chemical quantities), and for study of the
relationship between property (retention time, partition
coefficient, biological activity) and molecular structure.

In recent years multivariate chemical calibration was
first applied in NIR spectroscopy, then in other wave-
length intervals, and in ‘‘electronic’’ noses and tongues,
whenever the information from the physical instrument
is not specific. In many cases, the process to reach con-
ditions of specificity, where the physical quantity is re-
lated unequivocally to the chemical quantity, requires
time and chemicals, and cost or time are too large
compared with the requirements.
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In these cases, multivariate calibration solves a
complex system of equations and performs a ‘‘mathe-
matical separation’’. From the multivariate regression
model the chemical quantity can frequently be estimated
with reasonable, sufficient, accuracy, generally with a
minimum sample treatment, almost always very quickly
and at very low cost.

Calibration requires standards. In real problems
where multivariate calibration is applied standards are
usually samples (below OBJECTS) for which the
chemical quantity (below the RESPONSE) is known,
obtained by a reference method. Because of the cost/
time of the reference technique the number of such
‘‘standards’’ is not usually very large, often between 50
and 100. For each sample many physical quantities
(below the PREDICTORS) are measured, frequently
many hundred. So, the classical multivariate regression
technique, the ordinary least-squares (OLS) regression,
cannot be applied, and a ‘‘biased’’ technique such as
principal-components regression (PCR) or partial-least
squares (PLS) regression must be applied.

Also ridge regression (RR) can work when the
number of predictors is larger than the number of ob-
jects, but it is very rarely applied in multivariate chem-
ical calibration, where PLS and, less often, PCR are
applied. The use of artificial neural networks (ANN) is
less frequent and very often the nets work on the prin-
cipal components to avoid too heavy overfitting.

A second possibility is that of the selection of a re-
duced number of predictors. The selection can be based
on previous knowledge of the informative predictors
(really chemical experience should be always used to
select an optimum set of predictors) or by means of
another biased technique, e.g. stepwise ordinary least-
squares (SOLS) regression.

A second important reason to eliminate predictors is
that frequently many predictors are useless, and cause
worsening of the predictive ability of the regression
model. Sometimes, the elimination of these noisy pre-
dictors can be important for economy (e.g. in process
control with reduction of the number of sensors) or can
help in the interpretation—very important in sensory
analysis and in quantitative structure–activity relation-
ships (QSAR).

For this reason many techniques have been developed
to eliminate useless predictors. The techniques for the
elimination of useless predictors can be classified into
three categories:

(a) Subset selection, e.g. by means of SOLS or of genetic
algorithms (GA) [1–3] coupled with OLS or with
PLS.

(b) Dimension-wise selection. Dimension-wise tech-
niques work on the single dimension (principal
component of PCR, latent variable of PLS) of the
regression technique. Martens and Naes [4] sug-
gested replacement with zero of the small PLS
weights in each latent variable, so that the corre-

sponding predictors are cancelled from the latent
variable, but they can be used in one or more of the
subsequent steps. Frank [5] improved this procedure
in the technique called intermediate least-squares
(ILS). Other strategies were used by Kettaneh-Wold
et al. [6], Lindgren et al. [7], and Forina et al. [8].

(c) Model-wise elimination. The regression model is
developed many times with all the predictors but
with only a fraction of the available objects. The
useless predictors are eliminated on the basis of the
value and/or the dispersion of their regression coef-
ficient b in the regression model:

y ¼ b0 þ b1x1 þ � � � þ bvxv þ � � � þ bV xV ð1Þ

Alternatively, many regression models are developed
with all the objects but only a fraction of the pre-
dictors, and the useless predictors are eliminated on
the basis of their participation (or not) in models
with better prediction ability.

(d) Interval or group selection. In spectroscopy ‘‘con-
tiguous’’ predictors correlate very well, because they
are the absorbance at close wavelengths. Grid pre-
dictors of QSAR measure the interaction between a
probe at a point in the space around a molecule and
the molecule. Here, the contiguity is a neighbor in
space, and contiguous predictors correlate very well.
So, in these cases the interest is in a group or interval
of predictors, not in the single predictor, and tech-
niques to select clusters of contiguous predictors
have been developed for QSAR [9, 10] and for
multivariate calibration [11, 12]. Group selection
will not be treated here.

Here, we will present and discuss some results ob-
tained with some selection techniques, selected on the
basis of availability of related software, of the simplicity
of the theory (so that they can be easily understood by
chemists without a high chemometric background), and
of our experience.

For these reasons, we will treat some methods of
subset selection (SOLS, GA–OLS) and of model-wise
elimination (ISE, UVE, IPW, GOLPE, MUT, MAX-
COR). In some cases, we will compare the results with
those obtained on the same data by other authors with
least absolute shrinkage and selection operator (LASSO)
and variable selection (VS), used for GA coupled with
PLS.

With the exception of SOLS, the selection techniques
used here are based on evaluation and optimization of
the predictive ability of the regression model. Almost all
the techniques presented (with the exception of SOLS
and GA–OLS) are based on PLS regression.

For all these reasons this paper presents first:

– A short introduction to the evaluation strategies
– A description of the quantities used to evaluate the

regression model
– The criteria used to define the complexity of PLS

models.
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Evaluation

Many strategies are used to evaluate the predictive
ability of the regression model. Predictive ability mea-
sures the error on objects that are not used to build the
regression model.

The usual two-sets strategy divides, one or more
times, the available objects (samples with known value
of the response) into two sets, the training set, used to
compute the model parameters, and the evaluation set,
used to measure the error of prediction.

The PLS and PCR use explicitly the evaluation set(s)
to evaluate the optimum complexity of the model (how
many latent variables, how many principal compo-
nents). Techniques such as GA, iterative stepwise elim-
ination (ISE), and iterative predictors weighting (IPW)
use more or less explicitly the evaluation set(s) to opti-
mize the selection of useful predictors. So, these evalu-
ation sets are really sets for ‘‘predictive optimization’’.
This is not very important for use in PLS and PCR. In
other cases, the final regression model (after elimination
of useless predictors) should be evaluated on a number
of samples never used in the development/refinement of
the model, the ‘‘external’’ or ‘‘third’’ set, a true evalua-
tion set.

The procedures most frequently used to obtain a
suitable evaluation set are:

– Ordering of the samples according to the value of the
response. Division of ordered samples into C cancel-
lation groups. Selection of one or more C cancellation
groups for the unique evaluation set. The other ob-
jects are used also for predictive optimization, fre-
quently by means of cross-validation (CV).

– Casual subdivision by means of the generation of
random numbers in two or three sets; sometimes only
the true evaluation set is obtained by random gener-
ation and the other objects are used for predictive
optimization also.

– CV. Many times the total number of objects is divided
into sets for calibration and evaluation with the sys-
tematic procedure of CV. In turn, each calibration set
is divided into training set and optimization set.

Two-sets N-fold CV assigns the objects to N cancel-
lation groups, by ordered numbering 1 2 3 ... k ... N. The
objects numbered with k are assigned to the k-th eval-
uation group. They will be used to constitute the k-th
evaluation set, and the other will constitute the k-th
training set. The final model is built with all the objects,
so that N+1 models are computed.

When N is equal to the total number of objects, the
evaluation sets contain only one object. Obviously, the
leave-one-out or jackknife procedure requires more
computing time. Two-sets CV is probably the most used
validation technique. Three-sets NM CV build N true
evaluation sets. For each subdivision (+1 without
evaluation set) uses M-fold CV for the predictive
refinement of the model, so that (M+1)(N+1) models

are computed. Because of the long time required this
procedure is used very rarely.

– Monte Carlo validation or multiple evaluation set.
Often the total number of objects is divided into sets
for calibration and evaluation by random assignment
with a pre-selected probability of assignment to one of
the sets. In turn, each calibration set is divided into
training set and optimization set. The number of
models computed can be very large, with very differ-
ent combinations of the objects in the sets.

– Methods of experimental design, especially one of the
techniques for uniform design, e.g. the Kennard–
Stone [13] and twin Kennard–Stone algorithms [14].

Some people indicate with the name ‘‘full validation’’
the leave-one-out procedure. The word ‘‘full’’ has a
positive significance, but the leave-one-out procedure
has been criticized [15, 16] because it is too optimistic in
the evaluation of the predictive ability. We prefer to use
the words ‘‘full validation’’ to indicate the repeated use
of validation, e.g. with threefold, fivefold, tenfold CV all
repeated after random sorting of the objects, or with a
large use of Monte Carlo validation.

The results presented here have been obtained with
two or three sets. In the case of two sets, the training and
evaluation sets have been obtained with CV with five
cancellation groups or with the leave-one-out procedure.
The three-sets procedure has been used for simulated
data only, when it is possible to have an evaluation set
with many objects, so that the evaluation of the pre-
diction error is accurate, without the possibility of casual
overestimation as can happen for an evaluation set with
too few objects. The other objects were in turn divided
between training and optimization sets by fivefold or
leave-one-out CV.

Quantities used for evaluation of regression models

Many quantities are used as a measure of the prediction
error, frequently with different acronyms for the same
quantity.

Root-mean-square error of prediction (RMSEP) [17]

(The use of the word ‘‘error’’ to indicate the estimate of
a standard deviation is frequent in multivariate cali-
bration.)

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PIE
i¼1 ðyi � ŷiÞ2

IE

s

ð2Þ

where IE is the number of samples in the ‘‘external’’
evaluation set (third set).

Root-mean-square error of cross validation (RMSECV)
[17]
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RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PI
i¼1 ðyi � ŷiÞ2

I

s

ð3Þ

where I is the number of calibration samples; ŷi is the
predicted response when the model is built without
sample i. RMSECV, as defined in [17], is really a
RMSELOU, leave-one-out.

Frequently, RMSECV is indicated with standard er-
ror of prediction (SEP), independently of the number of
CV groups, or with RMSEP, as for an external evalua-
tion set, or with standard deviation of the error of pre-
diction (SDEP).

The SEP has been used also for standard error
of performance, a strange mixture of prediction and
fitting:

SEPperformance ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PI
i¼1 ðyi � ŷi � biasÞ2

I � 1

s

with bias ¼
PI

i¼1 ðyi � ŷiÞ
I

ð4Þ

Kowalski and Seasholtz [17] suggests also the approxi-
mation (valid in the case of OLS with leave-one-out
prediction):

yi � ŷi ¼
yi � ~yi

1� hi
ð5Þ

For the sample i, ~yi is the fitting estimate of the response
and hi is the leverage.

Equation (5) is valid for OLS with leave-one-out
prediction, and it is largely used in the leave-one-out
diagnosis of OLS.

Percentage CV-explained variance (Q2)

This frequently used quantity is strictly connected with
the RMSECV:

Q2 ¼ 100

PI
i¼1 ðyi � �ygÞ2�

PI
i¼1 ðyi � ŷiÞ2

PI
i¼1 ðyi � �ygÞ2

ð6Þ

where
PI

i¼1 ðyi � �ygÞ2 is the before-regression variance.
The mean of the response must be evaluated in each CV
segment g.

Predictive residual-error sum of squares (PRESS, from
RMSECV) [17]

PRESS ¼
X

I

i¼1
ðyi � ŷiÞ2 ð7Þ

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PRESS

I

r

ð8Þ

Mean-square error of prediction [18]

MSEP ¼ Eðy � ŷÞ2 ð9Þ

(The operator E indicates the mean of the infinite pop-
ulation.) M̂SEP is an estimate of MSEP with I predic-
tions:

M̂SEP ¼
PI

i¼1 ðyi � ŷiÞ2

I
¼ PRESS

I
ð10Þ

Sometimes MSEP is used to indicate M̂SEP:

Criteria

Many techniques have been suggested for evaluation of
the pseudo-rank of the matrix of the predictors, i.e. the
optimum complexity of the regression model. Some
criteria can be applied also to compare regression
models from different techniques.

1. Minimum PRESS (CV or Leave-one-out) The com-
mon practice of calculating M̂SEP for a score of models
and just selecting themodel with the lowest value has been
called, derogatorily, the ‘‘European Song Contest meth-
od’’ (A.G. Steerneman, reported in [18]).
2. First minimum PRESS Selects the number of com-
ponents corresponding to the local minimum in PRESS
associated with the smallest possible number of com-
ponents.
3. Haaland–Thomas F-statistics [19, 20]

FaðI ; IÞ ¼
PRESSa

PRESSm
ð11Þ

PRESSm is the minimum of PRESS, when the number
of components is A, which is estimated by means of
criterion 1.

The optimum complexity is the smallest value of
a<A such that F is not significant.

However, ‘‘While we believe that the procedures out-
lined above for model selection and comparison of methods
will work reasonably well in practice, we admit that they
could be improved by taking into consideration the cor-
relation of prediction errors.’’ [19].
4. Osten F-statistics [21]

Fað1; I � a� 1Þ ¼ PRESSa � PRESSaþ1
PRESSaþ1

ðI � a� 1Þ

ð12Þ

The optimum complexity is the smallest value of a such
that F is not significant.
5. PRESS threshold [21] Selects the smallest number
of components for which the PRESS value is below a set
threshold. The threshold is calculated as a percentage
between the maximum and minimum observed PRESS
values. Osten [21] indicates for this percentage 3 or 5%.
6. t-Test on the difference between two means of absolute
prediction errors The means of the absolute prediction
errors
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ma ¼
PI

i¼1 yi � ŷaij j
I

mb ¼
PI

i¼1 yi � ŷbij j
I

ð13Þ

are computed.
As usual the two variances are compared by means of

a variance-ratio test. If the variances are not significantly
different, the pooled standard deviation s is computed,
and the t value for the test is:

t ¼ ma � mbj j

s
ffiffi

2
I

q ð14Þ

7. Matching pairs t-statistics (residuals) Matching
pairs tests take into account the correlation between the
prediction errors.

For a<A, the differences:

di ¼ eaij j � emij j ¼ yi � ŷaij j � yi � ŷmij j ð15Þ

are computed.
sd is the standard deviation of the difference.
The value of the t-statistic is

t ¼
�d

sd=
ffiffi

I
p ð16Þ

The null hypothesis is that �d is not significantly different
from 0; the alternative hypothesis is that �d is signifi-
cantly <0 (unilateral left).
8. Matching-pairs t-statistics (square residuals)
[18] For a<A, the differences:

di ¼ e2ai � e2mi ð17Þ

are computed.
The mean of these differences is:

�d ¼
PI

i¼1 ½ðyi � ŷaiÞ2 � ðyi � ŷmiÞ2�
I

¼ M̂SEPa � M̂SEPm

ð18Þ

sd is the standard deviation of these differences.
The value of the t-statistic is:

t ¼
�d

sd=
ffiffi

I
p ð19Þ

The null hypothesis is that �d is not significantly different
from 0; the alternative hypothesis is that �d is signifi-
cantly <0 (unilateral left).
9. Van der Voet randomization test [18] The t-ran-
domization test of Van der Voet [18] is based on the
null hypothesis of equal distribution of the squared
residuals.

The algorithm for the one-side (unilateral left)
hypothesis M̂SEPa\M̂SEPm is:

1. Calculate the differences di=eai
2)emi

2

2. Compute �d

3. Iterate M times:

(a) Attach random signs to each di
(b) Compute �dm

4. Rank �d in position K between the M�dm values.
Ranking must be from low to high.

5. Calculate the significance level: p=K/(M+1)
6. Accept the alternative hypothesis for p>10%.

The results presented here were obtained:

– with the criterion of the minimum PRESS, accord-
ing with the statement of Faber [22] in his study
comparing many criteria: ‘‘... the conventional
methods of optimizing the prediction error estimate
obtained from a test set or cross-validation are to be
preferred,’’ or

– with the Osten [21] 5% threshold criterion.

Moreover we will indicate the SDEP with SEP, be-
cause this was the acronym first used in multivariate
calibration and still used in important packages of che-
mometric methods.

Methods for selection of predictors

Stepwise ordinary least-squares

Ordinary least-squares regression [23, 24], known also
as multi linear regression (MLR) or classical least
squares regression (CLS) was the result of the studies
of Francis Galton and Karl Pearson more than a
century ago.

Stepwise ordinary least-square [23] or stepwise mul-
tiple regression is the oldest among the selection tech-
niques used here.

In each step, the ‘‘before’’ sum of the squared resid-
uals with the V)1 predictors entered in the previous
steps (the mean of the response for the N objects in the
first step) is computed:

S2
before ¼

X

N

i¼1
ðyi � ŷbeforei Þ2 ð20Þ

All the non-entered predictors are tested, and for each
predictor p a regression equation is computed with the
V)1 previously entered predictors and with predictor p.
The ‘‘after’’ sum of the squared residuals is:

S2
after ¼

X

N

i¼1
ðyi � ŷafteri Þ2 ð21Þ

The ratio:

F ¼ S2
before � S2

afterS
2
after ð22Þ

is a Fisher variable with 1 df for the numerator and
N)V)1 df for the denominator. The predictor with the
largest value of F is accepted, provided that F is larger
than a critical value (F-to-enter).
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Usually the critical value for the F test is 4 (this is a
good approximation of F 95%

1;m for N>20). A similar test
with a critical F-to-remove is used to check the reliability
of the entered predictors.

Predictors that produce collinearity are not consid-
ered for entering. Their F-to-enter value is considered to
be 0. Predictors correlating very well with one or more of
the entered predictors do not reduce the variance sig-
nificantly, so that their F-to-enter value is very small.

Here, SOLS has been used associated with fivefold
CV, which is not usual. SOLS was repeated 5+1 times,
with possibly different selection of predictors in each
run. The final run was used to select the predictors, but
the other runs indicate the ‘‘stability’’ of the selections.
The leave-one-out prediction error was obtained from
the final run, as a result of the usual leave-one-out
diagnostics of OLS regression [24]. Also CV was per-
formed with the predictors selected in the final run.
However, different prediction parameters can be ob-
tained by the evaluation sets in the five runs used to
evaluate the stability of the selection of useful predictors,
and in the five runs the selected predictors are not nec-
essarily the same, or the same as that selected in the final
run, with all the objects. Here, these prediction param-
eters will be reported as ‘‘Complete-C.V.’’ and as a re-
mark, because all other techniques perform only once
selection of useful predictors using all the objects, so that
the modified SOLS seems to be too much penalized in
comparison with the other techniques.

Stepwise ordinary least-squares is characterized by
the values of the critical F-to-enter and of F-to-remove
for the Fisher test. Moreover the user can decide the
maximum number of predictors to be selected. Finally,
the ‘‘goodness’’ of the information matrix XTX (X is the
matrix of the predictors), measured from its determi-
nant, or from the inflation factor of the predictors, or
from the confidence interval (CI) of the regression
coefficients, can suggest further reduction of the number
of selected predictors.

The maximum number of predictors selected in the
use of SOLS is indicated below in parenthesis, e.g. SOLS
(20) when the algorithm can select a maximum of 20
predictors.

Interactive stepwise elimination (ISE)

The elimination of predictors with small regression
coefficients, (provided that the regression model has
been computed with autoscaled predictors) was sug-
gested by Massart and co-workers [25]. ISE [26] is the
evolution of the above technique, in the sense that it can
be applied also when predictors are non-standardized.
ISE is based on the importance of the predictors, defined
as:

zv ¼
bvj jsv

PV
v¼1 bvj jsv

ð23Þ

It takes into account both the size of the regression
coefficient and the dispersion of the predictor, because sv
is the standard deviation of the predictor v. A small
value of |bv|sv indicates that the range of the contribu-
tion of the predictor to the response is small, frequently
much less than the error of the reference technique used
for determination of the response. After each ISE cycle
the predictor with the minimum importance is elimi-
nated, and the model is computed again with the
remaining predictors. The final model is that with the
maximum predictive ability.

The ISE can also eliminate, after each cycle (the first
cycle is that with all the predictors), some predictors, if
their importance is less than two to ten times that of the
worst predictor, with no more than 3–5% predictors
eliminated in each cycle.

Figure 1 shows how predictive ability changes in ISE
for the data set Moisture, with 19 predictors, described
later. In the examples with Moisture shown in this sec-
tion both predictors and response were always simply
centered.

The minimum SEP is obtained after elimination of 17
predictors, so that only two predictors are retained in the
refined PLS model.

Iterative predictors weighting

Iterative predictors weighting (IPW) [27] is one of the
techniques developed to eliminate useless predictors
associated with the PLS algorithm. IPW starts with the
usual PLS regression with centered or autoscaled vari-
ables. The importance, the product of the absolute value
of the regression coefficient bv and the standard deviation
sv (sv is 1 for autoscaled data) of each predictor, weights
each predictor in the next step. So, a predictorwith a small
bv will, in the next IPW cycle, have a smaller covariance
with the response and consequently a smaller bv, and
finally, after two-ten cycles, it will be eliminated (bv=0).

Fig. 1 Changes of predictive ability in ISE cycles (data set
Moisture)
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Figure 2 shows how the importance of the predictors
varies in the IPW cycles for the Moisture data set.

Uninformative variables elimination

Elimination of uninformative variables (UVE) [28] adds
to the original predictors an equal number of random
predictors,with very small value (range of about 10)10), so
that their influence on the regression coefficients of the
original predictors is negligible. The standard deviation of
the regression coefficients, sbv is obtained from the varia-
tion of the coefficients b by leave-one-out jack-knifing.
The reliability of each predictor v, cv, is obtained by:

cv ¼
bv

sbv

ð24Þ

The maximum of the absolute value of the coefficient cv
for the added artificial predictors is the cut-off value for
elimination of non-informative original predictors.
There are some variants of UVE, for example a-UVE in
which the cut-off value is the value of the a% quantile of
the coefficient cv of the added artificial predictors. Here
we used 90%, 95%, and Normal UVE. Figure 3 shows
the results obtained by 90%-UVE on data set Moisture.

Generating optimal linear PLS estimation

Generating optimal linear PLS estimations (GOLPE)
[9, 10] is a procedure used frequently in QSAR, very
rarely in multivariate calibration.

In a first step GOLPE selects predictors according to
their position in the PLS loading space, following a D-
optimal design criterion (predictors with small loadings
on the first PLS components are usually noisy predic-
tors). In QSAR studies, this first selection is performed
by removing constant predictors and predictors with few
levels, a common procedure for molecular descriptors.

In a second step, GOLPE builds a large number of
‘‘reduced models’’ similar to the complete model but
removing some variables. The predictive ability of each
model is evaluated using CV and, from these values,
GOLPE relates the predictive ability of the model to the
presence or absence of each X-variable.

The strategy used by GOLPE is to make a ‘‘design
matrix’’ with M ‘‘experiments’’, following a fractional
factorial design (FFD) scheme. According to this ma-
trix, in each experiment some predictors are left-out, so
that a ‘‘reduced’’ PLS model is built, and the CV-pre-
dicted response measures the predictive ability.

In our implementation the design matrix as built by
random generation at a pre-selected probability level p
of the predictor condition (p: probability of non-used,
1)p probability of used). To equilibrate the design, the
range of the predictor condition non-used (expectation
pM) was limited between 0.5 and 1.5 pM for each pre-
dictor. The M is as large as desired (not a power of two
as in FFD) and it is possible to explore more combi-
nations of used predictors.

When the M models have been obtained and SEP for
each one has been calculated, GOLPE computes how
the presence or absence of a given variable affects the
SDEP value. The effect of a predictor is obtained from
the equation:

Ev ¼ SEPvþ � SEPv� ð25Þ

where Ev is the effect of predictor v; SEPv+ is the average
SEP for all the models that include the variable, and
SEPv- is the average SEP for all the models that do not
include the variable.

E is negative when the predictor reduces the standard
deviation of the error, i.e. when it increases the predic-
tive ability of the model.

The GOLPE introduces in the design matrix some
‘‘dummy’’ predictors that appear in the design matrix
but have no equivalent in the X-matrix. The effect of the

Fig. 2 Evolution of the importance of the predictors in IPW cycles
(data set Moisture)

Fig. 3 UVE evaluation of the 19 predictors of data set Moisture
(100 noisy variables). Noisy added variables are ordered according
to their relevance
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true predictors is compared with the effect of dummy
predictors, by means of the 95% value of the Student
distribution.

The confidence interval of the effect of the dummies
(CID) is computed:

CID ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD
d¼1 E2

d

D

s

tcrit ð26Þ

where Ed is the effect of the dummy predictor d and D is
the number of dummy predictors. This number is limited
in the original GOLPE, because the dummies are in-
cluded in the design matrix. In our implementation the
dummy predictors are casually set to present–no present,
as the true predictors. Their number has no influence on
the number M of experiments, and a very small effect on
the computer time; tcrit is the 95% critical value of
Student distribution.

Instead of the above equation we use:

CID ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD
d¼1 ðEd � �EÞ2

D

s

tcrit ð27Þ

where the standard deviation of the effect of the dummy
predictors is computed in the usual way (the mean value
of E for dummy predictors is approximately 0 when a
large number of dummy predictors is used).

The effect of each variable (E) is compared with the
effect of the dummies (CID). From this comparison
the variables are labeled as fixed, excluded, or uncer-
tain:

E>CID the predictor increases SEP sub-
stantially (decreases predictivity).
Excluded.

E<CID and E‡0 the predictor increases SEP, but
within the uncertainty measured
by means of the dummy variables.
It is uncertain.

E<CID and E<0 the predictor reduces SEP (in-
creases predictivity). Retained.

E<)CID the predictor substantially reduces
SEP. Excellent.

We compute PLS models after elimination of ex-
cluded predictors (elimination level I), then after elimi-
nation of uncertain predictors (elimination level II), and
finally only with the excellent predictors (elimination
level III).

This last elimination level and the score ‘‘Excellent’’
was introduced in our implementation. Figure 4 shows
the results obtained by GOLPE on data set A.

Martens uncertainty test

The Martens uncertainty test (MUT) [29, 30] is based on
the standard deviation of the regression coefficients bv,

computed from their values in the cycles of leave-one-out
CV. The predictors for which the hypothesis bv=0 is ac-
cepted at significance level 5% are eliminated (Student t-
test).

The standard deviation of the regression coefficients
in the CV cycles is obtained by the equation:

s2bv ¼
PN

i ðbvðiÞ � �bvÞ2

N � 1
ð28Þ

where N is the number of objects, bv(i) is the value of bv
when object i is left out, and �bv is the mean of the N
bv(i).

MUT estimates the standard deviation of the
regression coefficients by means of the equation [30, 31]:

s2bv;jack ¼
PN

i ðbvðiÞ � �bvÞ2

N
ðN � 1Þ ð29Þ

the so-called jackknife variance estimator, that corre-
sponds to a value of the estimated standard deviation
approximately �N times larger than that obtained by use
of Eq. 28. So, taking into account that the perturbation
of the leave-one-out procedure is rather small, and that
the variability in the coefficients bv is smaller when the
size N of the sample is increased.

MUT was used here with the 95% probability value
for the CI.

Figure 5 shows as in the example of Moisture, the
regression coefficients have in the 60 jackknife repeti-
tions a relatively large jackknife dispersion around the
value of the model computed with all the 60 objects. The
95% CI of the regression coefficient of 11 predictors
contains the value 0, so that the 11 predictors are elim-
inated with MUT.

The MUT is the procedure used by Unscrambler
[29], a data-analysis package more often used in the
world of multivariate calibration, so that MUT is
probably the most frequently applied method for

Fig. 4 GOLPE evaluation of the 19 predictors of data set Moisture
(100 dummy predictors, 500 reduced models. p=10%, pM=50.
Predictors were ignored 30–70 times in the reduced models)
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elimination of useless predictors in multivariate cali-
bration.

MAXCOR

With the acronym MAXCOR we indicate here a tech-
nique suggested by Höskuldsson [12], ‘‘Most Correlated
Predictors’’. The squared correlation coefficients r2 of
the predictors with the response are computed. The
maximum and the minimum of r2 constitute the range of
exploration. When the minimum is less than the CI of r2

the limit of the CI is used instead of the minimum, which
means that the predictors with r2 less than the confidence
limit (at 0.01% significance level) are not considered
significantly different from 0, so that the corresponding
predictors are cancelled.

The confidence limit for r2 is obtained from the Stu-
dent distribution. The variable

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 2

1� r2

r

ð30Þ

is distributed as a Student variable with m=N)2 degrees
of freedom, so that the critical value for r2 is obtained by
means of equation:

r2crit ¼
t2crit

t2crit þ m
ð31Þ

The range is divided into, e.g., 20 intervals, and for each
corresponding cut-off value the predictors with r2 less
than the cut-off are not used in PLS regression. The
optimum cut-off, and consequently the significant pre-
dictors, is that with the maximum value of the CV-ex-
plained variance. Figure 6 shows the variation of the
squared correlation coefficients of the 19 predictors of
Moisture with response. The range of the squared cor-
relation coefficient was divided into 20 intervals. Fig-
ure 7 shows how the fitting and fivefold CV-explained
variances change with cut-off level. The maximum pre-

diction ability was obtained with ten predictors selected
at the cut-off level shown in Figure 6.

Genetic algorithm-ordinary least-squares

As far as we are aware GA were introduced in analytical
chemistry by Lucasius and Kateman [1]. In this paper,
the authors indicate possible applications of these
algorithms in optimization problems characterized by a
number of local maxima. Between these possible appli-
cations they indicate the use of GA to find the subset of
predictors that produces the best predictive ability with
the use of OLS regression.

The genetic algorithm starts with many random
guesses of the predictors (the starting population). The

Fig. 5 The MUT procedures illustrated with data set Moisture

Fig. 6 Optimum cut-off value of the squared correlation coefficient
in MAXCOR with the data set Moisture (see Fig. 7) and selected
predictors

Fig. 7 Explained variance as a function of the cut-off value of the
squared correlation coefficient in MAXCOR with the data set
Moisture
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best selections are then ‘‘merged’’ according to the rules
of the biological evolution (reproduction, mutation,
elitism, migration). The ‘‘evolution’’ continues until a
steady state is reached or a stop rule has been verified.
GA are essentially a technique of optimization that can
be applied advantageously when the all-subset search is
too expensive. In practice, the all-subset exploration is
more parsimonious than GA when the number of pre-
dictors is less than ten to twelve. GA cannot usually find
the true optimum but can easily find a near-optimum
solution, and generally a set of different but good other
solutions.

The GA–OLS uses OLS as regression technique and
searches for a subset of variables that can be managed
by OLS (which means that their number must be less
than the number of objects in the training set and that
the information matrix XTX must be invertible, i.e., that
the selected predictors must not be correlated too much).
For spectroscopic data with very large correlation
between predictors this requirement can substantially
reduce the number of predictors selected and models
evaluated.

VS or GA–PLS

Variable selection (VS) [32] and GA–PLS [2] are
the acronyms used for the search of the subset of pre-
dictors that produces the maximum prediction ability
when the regression technique is PLS. Compared with
GA–OLS, VS does not have the constraint of a reduced
number of predictors and of limited correlation among
them, so it can explore a much larger number of com-
binations.

Least absolute shrinkage and selection operator

Least absolute shrinkage and selection operator (LAS-
SO) [32, 33] searches for the vector b that minimizes the
function:

PN
i¼1 yi � bTxi
� �2

N
þ k

X

V

v¼1
bvj j ð32Þ

similar to the equation that defines RR:

PN
i¼1 yi � bTxi
� �2

N
þ kbTb ð33Þ

where b is the vector of the estimates of the V+1
regression coefficients, x is the vector of the predictors,
and k is a parameter.

The difference between LASSO and RR is that for
LASSO the constraint due to parameter k allows solu-
tions for which one or more coefficient is zero or very
small; LASSO thus acts as a technique for selection of
predictors.

For example, for this small example:

The RR solution is: b=0.6; 1.2 (the sum of the
squares of the coefficient, 1.8, is the minimum among all
the equivalent solutions). The Lasso solution is, instead:
b=0; 1.5, i.e. that with the minimum value of the sum of
the absolute values of the coefficients. RR is frequently
performed with autoscaled variables (see pretreatments,
below). The same pretreatment was used in LASSO [32].

Combination of methods

Some methods, such as MUT and GOLPE, can be used
(according the original literature) as preliminary elimi-
nation technique, to be followed by more parsimonious
techniques. Nowadays the parsimony principle attracts
much attention. A second principle, that of maximum
trueness and precision, is considered very important by
analytical chemists. This is one reason for the success of
PLS, which can use the synergy of very correlated pre-
dictors to reduce the error, just as repetition of a mea-
surement reduces the variance of the error. However,
PLS exploits the synergy of correlated predictors only
when the error of predictors is independent (which does
not always happen in spectroscopy) and when the error
in the response is negligible compared to the error in the
predictors. In contrast, in multivariate calibration the
error in the response is often rather large, because of the
precision of the reference technique and possible alter-
ation of the sample between classical analysis and
acquisition of spectra. In such a situation it is not pos-
sible to use synergy; this is probably why SOLS some-
times behaves better than PLS.

A second strategy suggested in the use of GOLPE
and MUT is iterative use of the selection of predictors.
Here, only some examples of the use of combined
methods are shown, all with Artificial, the combinations
are GOLPE–IPW, MUT–IPW, GOLPE–SOLS and
MUT–SOLS. GOLPE was used at the three levels of
selection, give an overview of the effect of a more or less
heavy pre-selection procedure.

Parameters with effect on the result of selection
techniques

The results of all the techniques depend more or less on
some selectable criteria and on the values of some
parameters:

– the validation procedure (number of cancellation
groups, ...) for almost all the techniques

– the criterion used to select the optimum complexity of
the model in PLS and related methods

X1 X2 Y

2 4 6
3 6 9
4 8 12
5 10 15
6 12 18
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– the number of CV groups in PLS and related methods
– the maximum number of selectable predictors in

SOLS and GA-based techniques
– the critical value of F-to-enter and of F-to-remove in

SOLS
– the number of predictors cancelled in each cycle in

ISEPLS
– the scaling procedure in LASSO
– the value of a, the number of noisy artificial predictors

and the randomization seed in UVE
– the confidence level in MUT
– the number of reduced models and of dummy vari-

ables and the cutting level in GOLPE
– the percentage of elitism, the probability of mutation,

the stop procedure, and the number of starting pop-
ulations in GA based techniques.

So, the results are not very indicative of the ‘‘value’’
of a selection technique. Moreover, a regression model
must be evaluated not only with reference to the pre-
dictive ability, but also on the basis of the number of
selected predictors and of its complexity (the number of
latent variables in PLS).

However, some general trends can be observed and,
finally, the objective of the selection is reliable evalua-
tion of the most important predictors and of the validity
of the associated regression models.

Software

All the above techniques were used as implemented in
V-PARVUS [34], or in the free version available in In-
ternet, or in the development version (GOLPE, MAX-
COR, and MUT). MUT was also used as implemented
in Unscrambler [29]. The results of LASSO and of VS
for data set Kalivas were obtained from the figures in the
paper of Ojelund et al. [32]. In this paper, both the re-
sponse and the predictors were autoscaled and both are
referred to the original variables (centering does not
modify the scale), so that the results drawn here from
Ref. [32] are apparently different from those in the ori-
ginal paper.

Data sets

The results reported here are for only three data sets,
that we consider fairly representative of the general
behavior of the selection techniques, as evaluated on
many other data sets, both for problems of multivariate
calibration and for QSAR studies.

Moisture—60 samples of soy flour, spectra measured
with a filter instruments, with 19 filters. The response
variable is moisture. Details are reported in the original
paper [35].

Kalivas—100 wheat samples, spectra measured with a
NIR spectrometer, 701 predictors corresponding to
wavelengths from 1102 to 2502 nm in 2-nm intervals.

Response was moisture. Details are reported in the ori-
ginal paper [36]. These data have been used also in [31].

Artificial—a response, 300 predictors, 400 objects. A
total of 300 objects constitute the third set, a true eval-
uation set, here called generally ‘‘external’’ set. The
predictors (all with range 0–1000) were organized into
six groups. The first five groups (A–E) contain ten very
correlated predictors (correlation coefficient >0.995).
The first predictor in groups A–E was obtained by
random extraction from a uniform distribution
U(0–1000). The other predictors in groups A–E were
obtained by addition of random rectangular noise,
centered, with range 50 to the first. The 250 predictors in
group F were obtained by random extraction from a
uniform distribution U(0–1000). The response was ob-
tained by means of the equation

Response ¼ 1:5x1 þ 1:2x11 þ 0:9x21 þ 0:6x31 þ 0:3x41

i.e., multiplying the first predictor of each group A–E by
the coefficients 1.5, 1.2, 0.9, 0.6, and 0.3, respectively, so
that the first E predictor contributes to the value of the
response with a value between 0 and 300. Because in
each group of ten predictors the predictors from the
second to the tenth are a copy of the first, the ‘‘theo-
retical’’ contribution h of the first ten predictors is 0.15,
of the second ten 0.012, and so on.

Rectangular noise was added to the response, cen-
tered around the original value and with range 300. So,
the first five groups of predictors make a decreasing
contribution to the response, and the last E has a con-
tribution of the same order of the added noise.

After addition of this noise the range of the response
was from 550 to 3660 in the training set, from 350 to
3930 in the third set, with a regular distribution.

The 250 predictors in F are useless predictors. The
‘‘errors’’ of each group of ten predictors are non-corre-
lated so that these predictors can be regarded as syner-
getic; this does not always happen for the predictors of
multivariate calibration. In spectroscopy, the error in a
wavelength is partially transmitted to the next predic-
tors.

Chemists rarely have a quantitative idea of the cor-
relation in their predictors. For the filter instrument the
mean correlation coefficient between a predictor and the
contiguous next predictor is 0.9980. The minimum cor-
relation coefficient (between predictors 12 and 19) is
0.9921.

For the instrument of data set Kalivas, the mean
correlation coefficient between contiguous predictors is
0.999984. The minimum correlation coefficient between
the first and the last predictor is 0.471. So, the Artificial
data set, in which the noisy predictors are almost non-
correlated (mean of the correlation coefficient between
contiguous predictors 0.00006; mean of the absolute
correlation coefficient between contiguous predictors
0.039) is not representative of the noise in NIR data, but
it represents other analytical calibration problems, as
artificial nose and tongue and data for property–struc-
ture relationship.
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Moreover, Artificial was built without interference,
with useful signal, proportional to the ‘‘interesting
analyte’’ and random noise. In real cases of multivariate
calibration interfering species, frequently unknown,
contribute with a variable signal to the total signal, and
their contribution overlaps more or less with the con-
tribution of the interesting analyte.

Pretreatments

In multivariate calibration many kinds of pretreatment
have been applied, depending on the analytical tech-
nique.

Column centering, i.e., the subtraction of the mean of
each predictor:

xcenterediv ¼ xiv � �xv ¼ xiv �
PN

i¼1 xiv

N
ð34Þ

and column autoscaling, i.e., the standardization of
centered data:

xautoscalediv ¼ xiv � �xv

sv
¼ xiv � �xv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1 ðxiv��xvÞ2

N�1

r ð35Þ

are the more general pretreatments. For spectral data
other kinds of pretreatment are frequent, for example
SNV (row autoscaling, i.e. subtraction of the mean of
sample and division for the standard deviation of the
sample), derivatives, Fourier transform coefficients,
wavelets, ...

Autoscaling must be applied when predictors have
different scales. Because for spectra all predictors are on
the same scale, autoscaling is not usually applied. Here,
we will use generally centered data, sometimes auto-
scaled data.

The results of the selection procedures depend on the
pretreatment, even when it has no theoretical effect,
because of numerical problems because of the limited
number of digits used in computation. This is the case
for OLS, in which autoscaling of predictors can some-
times enable inversion of the information matrix that
otherwise cannot be inverted, or can be inverted but at
the price of a very small determinant.

Results and discussion

Data set Moisture

The results obtained with data set Moisture are pre-
sented in Table 1 and Fig. 8. We can easily note:

– The large difference between the number of selected
predictors, from 2 to 16. Some techniques are rather
conservative, as GOLPE I; other techniques are very
parsimonious, for example the OLS-based techniques

and IPW. Also ISE seems here very parsimonious, but
this result is not always confirmed.

– The goodness of prediction is not directly correlated
with the number of retained predictors. SOLS and
GA–OLS, that select the same two predictors, are the
techniques with the largest CV-explained variance.

– The bottom two lines in Table 1 indicate that the
number of CV groups has an important effect in the
definition of the performance of PLS (leave-one-out is
slightly optimistic), but also on the optimum com-
plexity of the model, and on the performance of some
elimination techniques. Indeed, the very different
performance of normal UVE (both in the number of
retained predictors and in the explained variance) is
because the complexity of the model is different, so the
UVE reliability is computed with a very different
model.

– The ‘‘Complete-CV’’ parameters of SOLS indicate
that the selection of the useful predictors in the vali-
dation cycles is different from the final selection. In
this case the larger prediction error of Complete-CV is
also because of the presence of two outliers (objects 39
and 40, y-outliers, probably because of alteration of
the samples). Figure 9 shows the residuals (five CV
groups) obtained with the final selection of variables,
and those obtained with five or seven CV groups in
complete CV. The points fall outside the line when
they are predicted with predictors different from those
in the final selection.

Data set Kalivas

Kalivas predictors were obtained by NIR spectrometry,
so the data set is characterized by many highly corre-
lated predictors (more than for the filter instrument for
Moisture).

Table 1 Data set Moisture—results with the selection techniques
and five CV groups

Method Predictors CV-explained
variance (%)

SEP Componentsa

PLS 19 82.20 1.369 2
MUT 8 82.59 1.354 2
UVE normal 7 82.68 1.350 2
UVE 95% 10 82.81 1.346 2
UVE 90% 12 83.00 1.338 2
GOLPE I 15 83.48 1.319 2
IPW 3 83.77 1.307 3
GOLPE III 3 83.77 1.307 2
MAXCOR 10 84.74 1.268 2
ISE 2 84.82 1.264 2
GOLPE II 6 85.02 1.256 2
SOLS(5)b 2 85.68 1.202 2
GA–OLS 2 85.68 1.202 2
PLS LOO 19 83.19 1.302 5
UVE normal LOO 4 85.37 1.215 3

aFirst minimum for PLS-based techniques
bComplete-CV: 78.94% CV % explained variance, 1.489 SEP
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The results are reported in Table 2 and in Fig. 10a–c:

– The techniques seem separated (better than in Mois-
ture) between conservative (GOLPE, MAXCOR,
MUT, UVE) and parsimonious (GA–OLS, GA–PLS,
LASSO, ISE, IPW, SOLS, VS). The prediction per-

formance of the conservative techniques is almost the
same as for PLS with all the predictors.

– The predictive ability of the parsimonious techniques
seems slightly better than that of the conservative
techniques.

– Almost all the selection techniques select predictor
430 (wavelength 1960 nm), or a near predictor, or a

Fig. 8 Data set Moisture—selected predictors, number of selected
predictors, CV% (five groups) explained variance

Table 2 Data set Kalivas, results with the selection techniques

Method Predictors CV-explained
variance (%)

SEP Componentsa

SOLS(2)b 2 96.96 0.2408 2
GOLPE III 32 97.39 0.2231 6
UVE 95% 657 97.40 0.2227 5
MUT 575 97.40 0.2227 6
GOLPE I 648 97.43 0.2216 6
PLS 701 97.45 0.2218 5
SOLS(4)c 4 97.45 0.2207 4
MAXCOR 684 97.52 0.2217 5
IPW 3 COMP 11 97.52 0.2174 3
GOLPE II 352 97.54 0.2167 6
IPW 2 COMP 11 97.57 0.2155 2
ISE 7 97.57 0.2151 2
LASSO 14 97.58d 0.2153d 14
GA–OLS a 4 97.61 0.2154 4
VS 14 97.66 0.2111 6
GA–PLS 11 97.74 0.2078 6
GA–OLS b 4 97.75 0.2090 4

aFirst minimum in the case of PLS-based techniques
b96.88% complete-CV: explained variance, 0.2439 SEP
cWith autoscaled variables; 97.44% complete-CV: explained vari-
ance, 0.2208 SEP
dDeduced from Ref. [31]

Fig. 9 Data set Moisture. Residuals with five CV groups and the
final selection of predictors (line), and residuals with complete-CV
with five or seven validation groups
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group of near predictors, with positive regression
coefficient (region A), and predictor 615 (2330 nm), or
a near predictor, or a group of near predictors, with
negative regression coefficient (region B). Only
GOLPE III suggests three predictors with negative
coefficients at higher wavelengths.

– The IPW oscillates between two solutions, with the
same three predictors but with different weights
(Tables 3 and 4). Consequently the two near predic-
tors in region A share differently between them the
positive contribution. The minimum SEP is at two or
three PLS components, but the differences between
the predictive performance with two or three com-
ponents is in both cases very small; also small is the
difference from the performance of the model com-
puted when the three predictors are not multiplied by
the weight (Table 5).

– The SOLS anticipates region B at predictor 594
(2290 nm approx.). SOLS with the centered data was
not able to invert the information matrix with more

than two predictors. SOLS autoscaled, with auto-
scaled data, selected four predictors, but the quality of
the information matrix was not excellent. Moreover
SOLS autoscaled selected two contiguous (and con-
sequently highly correlated) predictors (506 and 507,
approx. 2110 nm, region C) with opposite regression
coefficient; which means that the two contributions
approximately annul each other. Two or four pre-
dictors seem too few to produce good results, so that
SOLS has the worst performance.

– The prediction ability with complete-CV was rather
good for both SOLS and SOLS autoscaled; this means
that the selection of predictors in the five groups of
validation is identical with predictors contiguous to
those selected in the final run with all the objects in the
training set.

– The GA–OLS does not always succeed in individu-
ating regions A and B, and substitutes region B with
region C. The predictors selected by LASSO and VS
represent both region B and region C (with prevalence

Fig. 10 Data set Kalivas.
Selected predictors and
regression coefficients of a ISE,
GOLPE III, and IPW; b SOLS
autoscaled, SOLS, GA–OLS b
and GA–OLS a; c LASSO, VS
and GA–PLS
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of negative regression coefficients) and region A (with
prevalence of positive coefficients)

– The GA–SOLS and VS (really the same technique
used by us and by Ojelund et al. [32]) select predictors
also in the first part of the spectrum. Really, when
used with PLS, GA are not limited in choice of pre-
dictor other than that imposed by the operator, be-
cause the PLS algorithm does not compute and invert
the information matrix. This freedom is used by GA–
PLS to use more predictors in the effort to obtain the
best prediction; this, unfortunately, very often pro-
duces an overestimate of the prediction ability

(‘‘overprediction’’ similar to the overfitting of other
techniques such as OLS) and selection of useless
predictors.

– The MAXCOR selects almost all the predictors, and
stops just because 17 predictors have correlation
coefficients less than the critical value of the test with
hypothesis r=0. The reason that the technique is not
able to individuate a subset of predictors with better
prediction ability is explained with the data in Fig. 11.
Here, regions B and C correspond in order to the two
peaks of largest correlation. In contrast, region A
corresponds to a relative minimum of the correlation.

Fig. 10b (Contd.)
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In this case we select only some predictors in region B
(cutting at the level indicated with the arrow in
Fig. 11) we obtain a ‘‘partial’’ PLS regression model.
The residuals with this partial model have in turn the
correlation coefficients with the predictors shown in
Fig. 11, curve (b), whose maximum corresponds to
region A. To select the predictors in this region
MAXCOR must reduce the cut-off substantially, with
selection of many useless predictors. In contrast
SOLS, after selection of only one predictor in region
C, searches for the predictor with the largest correla-
tion with the residuals, and finds it in region A.

– The correlation coefficients of the residuals shown in
Fig. 11 never are larger than the critical value of r2

(approx. 0.038). However, in region A there are more
than 100 contiguous predictors (from predictor 360 to
predictor 480) whose squared correlation coefficient
describes a regular peak: this event cannot be a casual
result obtained from the repetition, 100 times, of the
experiment that consists in the random extraction of
the correlation coefficient from an infinite population
with correlation coefficient q=0, i.e. of the experiment
to which the statistics of Eqs. (30) and (31) apply.
When the population has q=0 a peak of correlation
coefficients such as that of the residuals must be
considered a very rare event, so the peak is significant.

Data set Artificial

First Artificial was studied by normal PLS, both with all
the 300 predictors and with different subset of predic-
tors, as shown in Table 5.

With progressive addition to the set of predictors
used, initially only the first ten, of the first groups of

Fig. 10c (Contd.)

Table 3 Data set Kalivas, weight (importance) applied to the
predictors by IPW when it reaches a steady condition oscillating
between the two states

Predictor Wavelength Weight

State low State high

423 1946 0.049908 0.120490
428 1956 0.427477 0.356845
617 2334 0.522615 0.522665
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predictors, those with contribution to the response, the
CV-explained variance increases, at first very much, then
slowly, finally only 0.7%. The results with the external
evaluation set of 300 objects confirm it. Moreover, when
the number of predictors increases from 40 to 50, with
addition of the ten predictors E, the increase for the
external evaluation set is 1.1%, more than that evalu-
ated by CV.

The result obtained by PLS with the 50 first predic-
tors, 94.12% CV-explained variance with complexity
three and, more important, 93.39% explained variance
on the external validation set, is the ‘‘ideal’’ result, the
target of the techniques of selection.

When all the potentially useful predictors are used,
the regression coefficients of the PLS model are
approximately proportional to the ‘‘theoretical contri-
bution’’ h=0.15, 0.12, 0.09, 0.06, and 0.03 used to
compute the response. The regression coefficients b
represent, as estimated by PLS, the real contribution of
the predictors to the response. Table 6 shows that the
real contribution of the predictors in group E is
approximately one-half of the theoretical contribution.
In turn this means that the noise added to the response
partially hides the contribution of the less important
useful predictors. Figure 12 shows that the contribution
of the regression coefficients in the five groups of sig-
nificant predictors is almost the same.

Table 4 Data set Kalivas, results of PLS with the three predictors selected by IPW, in the two states of the oscillation, and without weights
applied to the three predictors

Complete Weight state low Weight state high No weight

CV residual SD CV-explained
variance (%)

CV residual SD CV-explained
variance (%)

CV residual SD CV-explained
variance (%)

01 1.2137 22.80 1.2078 23.55 1.2428 19.06
02 0.2188 97.49 0.2171 97.53 0.2176 97.522
03 0.2174 97.52 0.2174 97.52 0.2174 97.523

Table 5 Data set Artificial—results of PLS (CV% explained variance with five cancellation groups) with the selection of groups of
predictors based on the knowledge of their contribution to the response

PLS components A A, B A, B, C A, B, C, D A, B, C, D, E A, B, C, D, E, F F

1 40.023 70.066 85.443 91.946 91.475 82.951 )2.501
2 37.481 71.012 86.159 93.183 93.812 86.987 )8.321
3 36.463 61.356 86.144 93.338 94.120 87.999 )13.121
4 35.677 59.969 82.111 93.435 94.101 87.123 )17.121
5 35.003 59.3139 80.518 91.678 93.838 87.043 )18.901
6 34.984 59.150 79.427 91.699 92.216 86.826 )20.218
7 35.107 58.903 79.420 91.531 90.378 86.476 )20.145
8 35.108 58.941 79.171 91.331 89.452 86.407 )20.204
9 35.110 58.388 78.935 91.099 88.206 86.382 )20.191
10 35.110 58.374 78.473 91.016 87.171 86.387 )20.202
Optimum complexity
(threshold 5%)

1 2 2 3 2 3 1

External 47.281 73.710 87.206 92.270 93.391 88.715 )19.719

A predictors 1–10, B predictors 11–20, C predictors 21–30, D predictors 31–40, E predictors 41–50, F predictors 51–300

Fig. 11 Data set Kalivas—squared correlation coefficients a of the
original predictors with the response; b of the residuals (from PLS
regression performed using only the predictors with correlation
coefficient with the response larger than that shown by the arrow)
with the original predictor. The critical value of the squared
correlation coefficient is reported for two probability levels
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Addition of the 250 noisy predictors substantially
reduces the performance of the PLS model, by more
than 6% (4.5 for the external evaluation set). The
regression coefficients of the useful predictors change, as
shown by the data in Table 7 compared with those in
Table 6. The mean contribution of noisy predictors is
+0.003, but multiplied by 250 the total contribution
+0.76 is obtained; this explains the decrease of the
correlation coefficient of the most important predictors.
Figure 13 shows that some (4) noisy predictors, because
of the casual high covariance with the response or its
residuals, have a regression coefficient as large as the
predictors in group D. Many (53) noisy predictors have
a regression coefficient larger than those of group E.

The use of the 250 noisy predictors alone (group F)
gives a useless model, with negative explained variance;
this means that the mean of the response in the training
set is a better estimate of the value in the internal (CV)
or external evaluation sets than that computed by the
regression model. So, the noisy predictors have no useful
information (on the whole, because the single noisy
predictor can have an apparently significant fortuitous
correlation with the response).

With this knowledge of the true relevance of the
predictors it is possible to evaluate the performances of
the selection techniques with some elements more than
those obtained from real data. However, it must be
remembered that the noise of predictors and response in
Artificial is true random non-correlated noise (which

rarely happens with real data) and the number of noisy
non-correlated predictors is very large (in the case of real
data sometimes there are many noisy predictors, but
they are more or less correlated, so that the probability
of casual correlation with the response is not as large as
in Artificial).

Table 8 and Figs. 14, 15, and 16 show some results
obtained with the selection techniques. In the case of
PLS-based techniques a 5% Osten [21] cut-off is used:

– The results confirm the subdivision between conser-
vative and parsimonious techniques.

– SOLS(20) and the GA-based techniques show the
maximum difference between the CV-explained vari-
ance and the explained variance measured on the
external evaluation set. So, these techniques used
without an external evaluation set overestimate the
prediction ability (overprediction). The difference (6–
10%) is very large, despite all the methods used, with
a limit (20) in the maximum number of selectable
predictors.

– The IPW is the best parsimonious technique. It works
automatically, without a limit in the selectable pre-
dictors. The overestimate of the prediction ability is
only about 1.5%. It selects one predictor as repre-
sentative of the correlated predictors in each of the
more important groups and no predictors in the group
F of noisy. However, IPW is not able to detect the
utility of predictors in the fifth group, E.

Fig. 12 Data set Artificial—regression coefficients of the PLS
model with predictors of groups A, B, C, D, and E

Table 6 Regression coefficients of the PLS model with the first 50
predictors

Predictors Theoretical
contribution, h

Mean PLS
regression coefficient b
in the group

A 0.15 0.1513
B 0.12 0.1198
C 0.09 0.0956
D 0.06 0.0583
E 0.03 0.0170

Table 7 Regression coefficients of the first 50 predictors in the PLS
model with all the 300 predictors

Predictors Theoretical
contribution, h

Mean PLS regression
coefficient b
in the group

b/h

A 0.15 0.1271 0.847
B 0.12 0.1035 0.862
C 0.09 0.0733 0.814
D 0.06 0.0519 0.866
E 0.03 0.0181 0.604

Fig. 13 Data set Artificial—regression coefficients of the PLS
model with all 300 predictors
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– The F-test used in SOLS causes selection of all 20
permitted predictors. The first five selected predictors
are predictors 3, 20, 24, 40, 47, i.e. one for each group
of significant predictors. Unfortunately selection
based on the F-test continues with many noisy entered
predictors. Figure 14 shows that after the fourth en-
tered predictor the percentage of explained variance
continues to increase almost regularly. The change in
the trend, from abrupt to regular, can be used to
evaluate the number of significant selected predictors,
four or five. A better evaluation can be performed
with the plot of the F-values of the entered predictors,
shown in Fig. 15. Here, the value of F, very large with
the first four entered predictors, decreases to an

almost steady level. The magnified plot in Fig. 15
(below) suggests that also the fifth entered predictor is
significant.

– We find it very useful to compare the F-plot of the
studied data set with the same plot obtained with a
similar set (approximately the same number of rows
and columns) of purely noisy predictors. In this case,
we used the 250 predictors of group F. SOLS(20)
accepts 20 predictors in this case also, with a notice-
able value of the fitting explained variance (74.7%),
but also with apparent good value of the leave-one-
out-explained variance (68.4%) and of the CV-ex-
plained variance (68.9%). The complete CV-ex-
plained variance is negative ()79.5%), as is the
percentage of explained variance for the external
evaluation set ()105.8%) (which means that the
complete CV validation can substitute the use of an
external evaluation set). The F-plot in Fig. 15 shows
that the F-value of the entered noisy predictors ranges
form nine to five, approximately, for the SOLS cycles,
much more than the commonly used F-to-enter value.
The difference between the F-values of the fifth good
predictor 47 and the noisy predictors, more than five,
seems very indicative of the usefulness of predictor
47. SOLS, with the help of the suggested procedure,
SOLS(5), behaves very well. The CV-explained vari-
ance is a bit less than that of MUT, but the result
with the external evaluation set is excellent, just 0.1%
less than that of PLS with the 50 useful predictors.
The difference is just the price of the use of the syn-
ergism.

– The complete validation performs efficiently. It over-
estimates, but only by approximately 1%, the per-
centage of explained variance as evaluated by the
external evaluation set. For real data it is rarely pos-
sible to have a numerous external set, so that complete
validation seems to be a cheap and reliable alternative
to the external evaluation set.

Table 8 Data set Artificial—results with the selection techniques

Method Predictors
retained

Good
predictors
retained

Noisy
predictors
retained

Complexitya CV-explained
variance

CV residual
SD

Evaluation
set-explained
variance

Evaluation
set residual
SD

SOLS(20)b 20 7 13 20 97.41 106.1 87.98 240.5
GOLPE I 279 50 229 3 90.11 207.6 89.10 229.1
GA–OLS 10 7 3 10 96.34 126.0 90.10 218.3
GA–PLS 17 6 11 4 96.57 122.2 90.48 214.0
GOLPE II 142 40 102 3 95.43 141.1 91.02 207.9
ISEc 109 46 63 3 96.35 122.2 91.13 206.7
GOLPE III 34 22 12 4 93.67 166.1 91.71 199.8
SOLS(4)d 4 4 0 4 93.58 166.9 92.08 195.3
MAXCOR 42 40 2 3 93.23 171.7 92.29 192.6
IPW 4 4 0 4 93.88 163.3 92.29 192.6
UVE 67 50 17 3 95.53 139.5 92.54 189.6
ISEe 61 44 17 3 96.62 121.3 92.57 189.1
MUT 59 50 9 3 94.98 147.8 92.93 184.5
SOLS(5)f 5 5 0 5 94.48 154.8 93.23 180.5

a5% Osten [21] cut-off for PLS-based techniques
b88.68% Complete CV: explained variance, 222.1 SEP
cISE with elimination of more ( £ 10) predictors in each step

d93.55% complete CV: explained variance, 167.6 SEP
eISE with elimination of only one predictor in each step
f93.45% complete CV: explained variance, 168.9 SEP

Fig. 14 Data set Artificial—fraction of the CV-explained variance
as a function of the number of entered predictors: A all the
predictors; B only noisy predictors, group F
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– Among the conservative techniques MUT, UVE, and
ISE behave rather well. MUT retains all the good
predictors and only nine noisy predictors. UVE re-
tains more noisy predictors. ISE retains fewer useful
predictors than UVE. Moreover ISE is more opti-
mistic in the CV-explained variance. Taking into ac-
count also the larger computing time it is in this case
less efficient.

– The results with GOLPE are disappointing, for all the
three levels of selection.

– The MAXCOR eliminates many useless predictors,
but is not able to detect the utility of predictors in the
fifth group, E. The reason is the very small correlation
coefficients of the predictors in group E with the re-
sponse, shown in Fig. 16. MAXCOR can be regarded
as the conservative equivalent of IPW: the two noisy

predictors selected compensate for the use of the
synergism in the 40 good predictors.

– During the IPW cycles, especially in the second and
third cycles where all the predictors are used but with
very different weights, the CV standard deviation
reaches a minimum, 138, less than with all the other
techniques (Fig. 17) (The minimum corresponds to
five components, but in this case the Osten [21]
threshold 5% concludes for four significant compo-
nents and CV SEP 148.6.)

This intermediate situation of minimum SEP after
two to three IPW cycles has been observed frequently
(with data sets other than those used here), so demon-
strating that weighting the predictors can improve the
performance of PLS. In contrast, with the predictors
selected after the final IPW cycle the weights are not so
important: in this case the percentage explained variance
was the same.

Fig. 15 Data set Artificial—F ratio of the entered predictors. Below
magnified view: a all the predictors; b SOLS performed with only
the noisy predictors (group F)

Fig. 16 Correlation coefficient of the predictors with the response
and MAXCOR cut-off from the 99% critical value of r2

Fig. 17 Data set Artificial—plots of CV SEP as a function of the
number of latent variables. a First IPW cycle (usual PLS); b second
IPW cycle (all predictors retained, but weighted by the importance
obtained in the first cycle); c final cycle, with only four predictors

416



Data set Artificial—combined techniques

Tables 1S and 2S and Figs. 1S and 2S in the Electronic
Supplementary Material show the results obtained with
the combined techniques (MUT and GOLPE combined
with SOLS or IPW).

The results of MUT–IPW are exactly the same as
obtained with the original 300 predictors.

All the levels of pre-selection of GOLPE have only a
negligible (but negative) effect on performances of the
final model obtained by IPW.

The evolution (Fig. 1S) from the original model (the
usual PLS model with all the predictors) to the final
model is different. The intermediate situation where all
the predictors are retained but with different weights is
more (GOLPE I) or less (GOLPE II and III) evident
with GOLPE–IPW. In the case of MUT–IPW the
intermediate situation was not observed and SEP in-
creases almost regularly from the excellent value of
MUT to the value observed with IPW using all the
predictors. Evidently some predictors with positive effect
in the intermediate state are not selected by the pre-
selection techniques.

When SOLS is used with the limit 20 for the entered
predictors MUT, GOLPE II, and GOLPE III have in
this order an increasing positive effect (3–5% on the
external evaluation set). When the F-plot (Fig. 2S) is
used to stop the selection the results are the same as than
those obtained by SOLS(5).

GOLPE III, with its drastic reduction of the number
of predictors, creates a situation where the value 4 of
F-to-enter behaves very well. The performance is slightly
worse than that of SOLS(5) with all the predictors.

The general conclusion about the combined tech-
niques is that they seem almost useless.

Conclusions

– The selection techniques can be divided into conser-
vative techniques (MUT, UVE, GOLPE I, GOLPE II,
MAXCOR) that try to retain all the informative,
useful predictors, and parsimonious techniques
(SOLS, IPW, GA–SOLS). GOLPE III, ISE, and
LASSO are intermediate.

– Among the conservative techniques, MUT, used in
Unscrambler [29], and UVE, developed by Massart
et al. [23], seem the most efficient techniques. However
both behave better with simulated data than with real
data.

– ISE is irregular, both in the number of selected pre-
dictors and in the quality of the predictive perfor-
mance.

– SOLS, with the classic strategy of the critical F-values,
accepts too many predictors with consequent overfit-
ting.

– SOLS can be improved to become the most efficient
parsimonious technique, by means of the use of plots
of the F-statistics value of the entered predictors and

comparison with the parallel results obtained with a
data matrix with random data. This procedure indi-
cates correctly how many predictors can be accepted
and decreases very much the possibility of overfitting.
The use of complete validation supplies a reliable
measure of the predictive ability.

– A possible alternative to the modified SOLS is IPW
that automatically selects a minimum set of informa-
tive predictors.

– GA-based techniques generally overestimate the pre-
diction ability and select non-informative predictors
in an effort to maximize the prediction. The use of an
external evaluation set, with objects never used in the
elimination of predictors, or of the ‘‘complete vali-
dation’’ is suggested for obtaining a reliable estimate
of the efficiency. In the case of GA–PLS a rigid con-
straint on the maximum number of retained predic-
tors can help to obtain reasonable solutions.

– MAXCOR has two weak points: the use of the test of
the significance of the correlation coefficient that does
not take into account the correlation between pre-
dictors; and frequently, after a first selection of pre-
dictors, what is important is the correlation with the
residuals.

– Combined techniques do not seem particularly useful,
at least in connection with SOLS or IPW.

– LASSO in the unique case studied behaves rather well.
It seems useful to collect more information about the
performance of this technique.

– Parsimonious techniques lose the benefit of the syn-
ergism of good correlate predictors. The results with
Artificial show that this loss is not important. This is
the case (frequent in multivariate calibration) where
the main source of error is the determination of the
response with a reference technique. In other cases,
where the error on the predictors is large compared
with that of the response, the use of synergism can be
very useful.

– Flexibility and computer time are other elements that
here have not been studied in detail. The probability
level can noticeably modify the number of predictors
selected by UVE, MUT, and GOLPE. This quality has
a positive and a negative side. The positive side is the
obvious possibility of an optimum probability level.
The negative is that usually the chemist has no time to
spend in the optimization of a chemometric procedure,
with the risk of overestimating performances.

– Computer time is very large for GA-based techniques,
for ISE (when only one predictor is eliminated in each
cycle) and for GOLPE. With MUT, UVE, and
MAXCOR it is almost equivalent. SOLS, with a limit
(e.g., ten) in the selectable predictors and IPW (with
10–12 cycles, generally sufficient) can be regarded as
the methods that require less computer time.

– Finally, we think that for real problems it is important
to have at least two different techniques available, to
use a software ‘‘transparent’’ both in the description
of the method applied and in the computing details.
Care in the refinement of the calibration model can be
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a very important element to define the quality of the
overall analytical procedure.
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