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New index for clustering tendency
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Abstract

A new index for clustering tendency is described. The index is based on the frequency distribution of the lengths of the
edges in the minimum spanning tree connecting the objects, compared with the probability distribution of the lengths of edges
of the minimum spanning tree connecting the same number of objects described by variables extracted from the uniform
distribution. The here suggested index shows some advantages when compared with the Hopkins original index and with its
modification suggested by Fernández Pierna and Massart. It can be used both to detect clusters, to measure the degree of
non-uniformity of a data set (as required in many cases of multivariate calibration and QSAR studies), and to detect outliers.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Both in multivariate calibration and in QSAR, the
quality of the training set used in the calibration phase
is of fundamental importance in that regard the qual-
ity and the performances of the regression model. It
is generally accepted that the training set must have
an uniform distribution, and for this reason a reason-
able number of objects is extracted from the set of
available objects by means of a design made with the
use of space-filling algorithms, as the Kennard–Stone
algorithm. The design is applied to the significant
principal components of the predictors (X-block, fre-
quently spectral variables in multivariate calibration,
molecular descriptors in QSAR). When the value of
the response(s) is available for all the available ob-
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jects, the selection of a suitable training set can be
made on the response(s). Sometimes the available
objects cluster in groups, and in this case separate
calibration models are almost always computed.

Clusters can be identified or by means of visual-
ization techniques or by using one of the well-known
techniques of hierarchical clustering.

A clustering index should be an indicator of the de-
gree of non-uniformity of the distribution of the ob-
jects. It should be used both as an automatic warning
or, better, as a quantitative measure of the quality of
the data set, original or extracted.

Hopkins clustering index [1,2] represents the first
approach to obtain an index with the above qualities.

In the case of a data set withN objects in the
V-dimensional space, it is obtained by means of the
following algorithm:

1. M objects are randomly selected among theN
objects; the Euclidean distances of each of these
objects,m, from its nearest neighbor (one,o, of
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the otherN − 1 real objects) is computed, as

dm =
√√√√ V∑

v=1

(xmv − xov)2 (1)

2. M artificial objects are generated. The Euclidean
distance of each of these artificial objects,a, from
its real nearest neighbor (one,o, of the N real
objects) is computed as

Da =
√√√√ V∑

v=1

(xav − xov)2 (2)

3. Hopkins index is computed as

Hi =
∑M

a=1Da∑M
m=1dm + ∑M

a=1Da

(3)

4. The procedure is repeated many times with dif-
ferent randomization seeds and the mean of the
Hi is the final value of the index. The number of
repetitions necessary to obtain a stable value of
the index depends onM andN.

Each coordinatev of the artificial objects is ex-
tracted from random uniform distributionU(0, Rv),
whereRv is the range of the variablev in the real ob-
jects. So, with reference to Fig. 1, the artificial objects
can fall in one of the subspaces indicated with A, B
and C in the figure.

When, the real objects come also from an uniform
distribution the sum of distancesdand that of distances
D must be about equal, so that,H must approach 0.5.

Fig. 1. Subspaces in Hopkins algorithm. A+ B + C: total space;
B + C: space within the dispersion polygon of Fernández Pierna
and Massart; C: subjective evaluation of the multivariate boundary
of the data set.

When on the contrary theN real objects are separated
in clusters, the distancesd tend to be small compared
with distancesD. In the extreme case, theN objects are
separated in two or more groups of identical objects,
so that all the distancesd are null andH is 1.

The hypothesis that theN objects are homogeneous,
extracted from a uniform distribution, is rejected with
significance<10% whenH > 0.75.

We suggested (as reported in reference [3]) a mod-
ification of Hopkins equation. The modified index is
computed as

H ∗ = lim
M→∞

(∑
MDa/M

) − (∑
Ndn/N

)
(∑

MDa/M
) + (∑

Ndn/N
) (4)

Here,dn is computed for all theN objects (dn is ob-
tained from Eq. (1)). The subscript has been modified
because nown is one of theN objects.M indicates
only the number of artificial objects. The procedure is
performed once, instead of many times as in point 4
of the original algorithm.

The modified index ranges from 0 (no clustering)
to 1 (extreme clustering).

Fig. 2 shows asH∗ is almost stable whenM >

20,000 (few minutes of computer time withN = 100).
WhenM → ∞, it must be

H ∗ = 2H − 1; H = 1
2(H ∗ + 1) (5)

Afterwards we will use only the modified indexH∗
for the Hopkins parameter, and the symbolH will be
used for a characteristic of simulated data.

Fernández Pierna and Massart [3] noticed that the
extraction of artificial objects using the univariate
ranges of the training setRv “leads to selection of

Fig. 2. Modified Hopkins indexH∗ as a function of the number
M of artificial objects. Data set H10G00.
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points outside the multivariate limits of experimental
points”. So, they draw a boundary around the exper-
imental objects, in the form of a polygon, and the
extraction of artificial objects used to compute the
modified Hopkins statistics is limited to points within
the polygon. With reference to Fig. 1, the modification
of Fernández Pierna–Massart eliminates the subspace
A, but the artificial objects can fall within one of the
subspaces B and C. The reason is that it is not possible
to develop a satisfactory algorithm to draw a convex
polygon, as the boundary of subspace C in Fig. 1.
So, the improvement of Fernández Pierna–Massart
reduces only partially the original problem, of the arti-
ficial objects outside the multivariate boundary of the
experimental objects. Moreover, the polygon can be
drawn only in a bidimensional space. The clustering
study is usually made in the inner space, that of the
significant principal components. The outer space, the
space of the noise, is almost empty and must be not
considered in the computation of the clustering index,
as in the case of subspace A in the bidimensional ex-
ample of Fig. 1. The inner space can have more than
two significant components, and its study by means of
all the combinations of two components seems com-
plicated and with results difficult to be interpreted.

For these reasons we developed a completely differ-
ent approach to the problem of finding a suitable clus-
tering index. This index is based on the distribution of
the lengths of the edges in the minimum spanning tree
connecting the objects in the training set, generally
considered in the space of the significant components.

The first results seem to indicate that the suggested
index has some advantages.

2. Theory

A graph is a set of vertices and edges, which connect
them. In our case the vertices are the objects. A path
or treep through a graph is a sequence of connected
objects:p = 〈o0, o1, . . . , ok〉. The length of a path is
the numberk of edges. A graph contains no cycles if
there is no path of non-zero length through the graph,
p = 〈o0, o1, . . . , ok〉 such thato0 = ok. A spanning
tree of a graph,G, is a set ofN −1 edges that connect
all theN objects of the graph.

If a cost, cij , is associated with each edge,eij =
(oi, oj ), then the minimum spanning tree (MST) is the

set of edges such that the sum of the costs over the
N − 1 edges is a minimum.

In our case the cost associated with each edge is the
Euclidean distance between the two connected objects.

Two algorithms are usually used to find the min-
imum spanning tree connectingN objects. The
Prim [4] algorithm begins from whatever object,
that constitutes a zero-length tree, with only one
object connected. Then in each step of the algo-
rithm an object is connected to the tree. The ob-
ject is the object (previously non-connected) with
the minimum distance from one of the connected
objects.

The Kruskal [5] algorithm begins with the connec-
tion of the two nearest objects. In each step the two
nearest objects are connected, provided that they are
not in the same tree (in this case a cycle would be
formed). When both the two objects are not connected
they constituted a new path with non-zero length. So
a number of separated trees, a forest, can be formed.
When the two connected objects are in different trees,
the two trees merge. The algorithm continues until the
complete link in a unique tree.

In this paper the two algorithms were used, with
identical results. Because of the nature of the variables
(continuous) describing the objects, the MST solution
was always unique. So it is unique also the frequency
distribution of the distances between the connected
objects (real sample distribution). Large distances are
probably related with the existence of clusters, and
consequently also of singletons, outliers.

In the case of a sample ofN objects described by
V variables (with rangeRv), extracted from a uni-
form distributionU(0, Rv), MST distances have some
variability and the associated frequency distribution
of the distances. When the extraction of the sample
is repeated many times the frequency distribution ap-
proximates the probability distribution of the edge’s
length. From this approximation of the probability
distribution it is possible to compute confidence limits
at a selected probability level.

The test based on the MST distances distribution
considers the largest distance in the tree obtained with
the N objects in the training set. The null hypothesis
H0, that the objects are a sample extracted from a
uniform distribution, is rejected when the significance
level (unilateral right) of this largest distance is less
than a selected critical value.
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In the definition of the MST clustering index we
used as a critical significance value 5%. Since, in the
study of the real set ofN objects there areN − 1
edges, the critical value of the distancedcrit obtained
from the probability distribution of the distances must
correspond to the 5/(N −1)% right significance of the
probability distribution of the distances.

Alternatively, it is possible to repeat many times
the extraction of a sample ofN objects described by
V variables from an uniform distribution (0, Rv), and
each time to consider only the maximum distance in
MST to obtain an estimate of the probability distribu-
tion of the maximum distances. The 5% right critical
value of this distribution is equal to the 5/(N − 1)%
value of the distribution of the distances.

The MST clustering index is defined as

IndexMST =
∑

d>dcrit

(
d

dcrit
− 1

)
(6)

When, the maximum tree distance is equal to the crit-
ical value, the index is zero: the null hypothesis is ac-
cepted. Non-null values of the index indicate that the
data set is not homogeneous. In the case of extreme
clustering the maximum distance in the tree is the max-
imum possible distance in theV-dimensional space,
DV . It would be possible to take into account this case
to modify Eq. (6) to obtain an index with range 0–1

Indexnormalized
MST =

∑
d>dcrit

(
(d/dcrit) − 1

(DV /dcrit) − 1

)
(7)

However, we think that extreme clustering is a very
rare case, corresponding to a heavy outlier, easily
identifiable and eliminable. The use of Eq. (7) would
give very small values in the case of real non-uniform
data, with an instinctive underestimate of the degree
of clustering.

On the contrary we prefer add to the above index
two auxiliary parameters

Index98
MST =

∑
d>d98

(
d

d98
− 1

)
(8)

Index95
MST =

∑
d>d95

(
d

d95
− 1

)
(9)

The two distancesd98 andd95 are respectively the 98
and the 95% values of the probability distribution of
the distances.

The MST index considers only the largest distance
in the tree of the real data set. It aims to detect a
special type of non-uniformity, a large empty space
between spaces where some objects (the clusters) are
distributed. The lack of uniformity within these clus-
ters does not affect the index, provided that the inter-
point distances are smaller than the critical value. We
will call this non-uniformity “first-type clustering”. A
second-type of clustering is present, when there are
parts of the space with high density of points, and
part with low density, without a sharp boundary.

The comparison between the real sample distribu-
tion and the probability distribution of the distances
can be more detailed.

For example, it is possible to compute the discrep-
ancy between the two distributions.

The discrepancy has been largely used in the tests
of goodness-of-fit, e.g. in the normality test. The test
based on the discrepancy is not very efficient, and at
present it has been substituted by tests of the family of
Kolmogorov–Smirnov test. However, in our case the
discrepancy can be used to study the distribution of
the objects in the data set in some details.

The discrepancy is defined by

D =
A∑

a=1

(fa − ea)
2

ea

(10)

The interval of the distances in the probability distri-
bution, from 0 to∞, is divided inA parts, with about
the same value of the probability,pa . The expected
frequency in the intervala is ea = paN. Herefa is the
frequency in the same interval, obtained from the real
sample distribution.

The terms of the discrepancy are related with the
binomial distribution. When, the expected frequency
in each interval is≥10, so that the binomial distribu-
tion can be approximated by the normal distribution,
the discrepancy tends to the sum ofA−1 independent
Z2 variables, i.e. to a functionχ2.

The study of the terms of the discrepancy can be of
great interest, to evaluate the presence of local abnor-
mal densities of objects, as in second-type clustering.

In this paper we present a very limited study of the
discrepancy, and all the reported examples are based
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on the discrepancy measured withA = 5 intervals,
and on the values of the ratios between frequency and
expected frequency

ra = fa

ea

(11)

3. Data

Several sets of artificial two-dimensional data and
some real data sets were used to evaluate MST clus-
tering index.

All artificial data sets were created to have objects
only in the subspaces B and C (see Fig. 1), since, the
effect of subspace A can be eliminated by using the
procedure of Fernández Pierna–Massart.

SomeU-type data sets are shown in Figs. 3 and 4.
The heightH of U sides ranges from 0 (Fig. 3) to 10.

Experimental points in theU basis and in bothU sides
are drawn from a uniform distribution. InU-types data
with first-type clustering a gapG (as in the example
in Fig. 4) divides the objects in two clusters.G ranges
from 10 to 40. InU-type data the dispersion polygon
of Fernández Pierna–Massart approximately coincides
with the total space, so that it can not take into account
the convexity of the real multivariate boundary. The
B-space shown in Fig. 1 can be very large.

The details in Fig. 5 show that for a family of data
sets with the same nominal gap the real separation
(because of the random generation) can be different.
Fig. 5 refers toU-files with G = 10: the real gap
ranges from 10.5 to 14.8.

U-type data are indicated with names as H20G10,
where the value of the heightH and of the gapG is
reported.

Fig. 6 shows an example of a second-type of sim-
ulated data (V-type data), where there is no B-space.
The data in Fig. 6 are indicated as V2G40 (2 variables,
gap 40).

In V-type data, variable 1 is responsible of clustering
(first-type); the distribution of the other variables is
uniform. The number of objects is 200.

Finally, Fig. 7 shows an example (data set N2) of
second-type clustering. Sixty-four objects are placed
at the nodes of an 8× 8 grid (with a small amount
of noise added), and 16 objects come from a bivari-
ate normal distribution with center in point 25, 50; the

Fig. 3. Variable-by-variable plot of someU-type data sets. (1)
H00G00; (2) H10G00; (3) H40G00. B: empty space considered
in the dispersion polygon (see Fig. 1).

other 16 objects come from a bivariate normal distri-
bution with center in point 75, 50.

IRIS is the data set (150 objects, 4 variables, and 3
categories, three varieties of flowers) used by Fisher
[6] in the presentation of linear discriminant analysis.
WINES [7,8] is a data set of 178 objects (wine sam-
ples) described by 27 variables. Objects are divided
in three categories, three red WINES of Piedmont,
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Fig. 4. Variable-by-variable plot of aU-type broken data set,
H90G20.

Italy. KAL-Y (100 objects, 2 variables) and KAL-X
(100 objects, 701 variables) indicate, respectively the
Y-block (moisture and protein) and the X-block (spec-
tra) of Kalivas data set [9] used also by Fernández
Pierna and Massart.

Fig. 5. Magnified plot (variable 1 from 35 to 65, variable 2 from
0 to 10) of the 11U-type data sets with G10. On the right the
true distance between the two clusters.

Fig. 6. Variable-by-variable plot of data set V2G40.

Fig. 7. Variable-by-variable plot of data set N2.

4. Results and discussion

Some results are reported in Tables 1–3.
Table 1 refers toU-type data sets. No pretreatment

as range scaling was used, to avoid the elimination
of the characteristic of data from uniform distribution
in the multivariate space of the data (subspace C of
Fig. 1).

In the case of data sets of Fig. 1 the generation of ar-
tificial objects used to evaluate the probability distribu-
tion of MST distances was repeated with the constraint
that the artificial points are in the subspace C (see
Fig. 1) with the form ofU where the “experimental”
points were generated.
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Table 1
Results withU-type data sets. Ratio (column 5) is the ratio between the mean MST distance between random objects and the mean MST
distance between real objects

H G H∗ Ratio Total space Only subspace C

Critical
distance

MST
index

MST
98%

MST
95%

Critical
distance

MST
index

MST
98%

MST
95%

1 00 00 0.003 0.985 8.897 0.000 0.298 0.877 8.682 0.000 0.273 0.876
2 10 00 0.327 1.233 9.125 0.000 0.099 0.248 8.731 0.000 0.280 1.117
3 20 00 0.592 1.416 10.540 0.000 0.000 0.000 8.288 0.000 0.084 0.745
4 30 00 0.653 1.459 10.528 0.000 0.000 0.000 8.571 0.000 0.137 0.513
5 40 00 0.712 1.577 11.203 0.000 0.000 0.010 8.948 0.000 0.540 1.336
6 50 00 0.739 1.613 11.368 0.000 0.125 0.284 9.832 0.000 1.586 3.387

50a 00 0.739 1.615 11.637 0.000 0.132 0.293 8.546 0.002 1.634 3.278
50b 00 0.737 1.654 11.698 0.000 0.000 0.000 9.206 0.000 0.161 0.846
50b 00 0.751 1.697 11.857 0.000 0.000 0.123 9.009 0.000 0.997 2.449

7 60 00 0.758 1.637 11.734 0.000 0.000 0.000 8.499 0.000 0.445 2.200
8 70 00 0.751 1.662 12.130 0.000 0.360 0.518 8.962 0.211 1.485 2.570
9 80 00 0.774 1.709 13.017 0.000 0.000 0.000 8.572 0.000 0.556 2.119

10 90 00 0.779 1.782 13.396 0.000 0.187 0.326 9.436 0.016 2.026 3.891
11 100 00 0.787 1.780 12.418 0.000 0.000 0.000 10.047 0.000 1.136 2.664
12 00 10 0.015 0.959 8.564 0.366 1.086 1.898 8.479 0.380 1.131 1.947
13 10 10 0.362 1.243 9.234 0.348 1.123 1.531 8.965 0.389 1.592 2.309
14 20 10 0.560 1.413 9.234 0.326 0.760 0.964 8.940 0.370 1.241 2.086
15 30 10 0.651 1.465 7.412 0.241 0.830 1.115 8.452 0.605 1.795 3.140
16 40 10 0.705 1.605 11.039 0.136 0.657 0.857 9.009 0.392 1.663 2.484
17 50 10 0.730 1.569 11.603 0.028 0.533 0.713 9.230 0.292 1.497 2.678
18 60 10 0.757 1.660 12.658 0.000 0.453 0.610 10.048 0.142 1.178 2.577
19 70 10 0.755 1.710 12.922 0.000 0.290 0.559 9.226 0.133 1.675 3.296
20 80 10 0.777 1.708 13.164 0.000 0.517 0.711 9.118 0.375 1.715 3.199
21 90 10 0.784 1.814 12.956 0.008 0.700 1.031 9.148 0.475 3.170 5.203
22 100 10 0.790 1.809 12.528 0.182 0.775 0.964 9.621 0.539 1.991 3.608
23 00 20 0.158 0.937 9.006 1.380 2.680 3.416 9.759 1.196 2.644 3.386
24 10 20 0.360 1.158 9.443 1.270 2.192 2.672 9.003 1.381 2.702 3.499
25 20 20 0.603 1.379 10.284 1.372 2.611 3.209 8.833 1.762 3.938 5.535
26 30 20 0.663 1.500 12.080 0.761 1.791 2.133 9.228 1.305 2.729 3.727
27 40 20 0.717 1.568 11.369 0.798 1.615 1.923 9.013 1.268 2.669 3.681
28 50 20 0.738 1.593 11.533 1.155 2.125 2.481 9.067 1.742 3.408 4.644
29 100 20 0.788 1.788 12.834 0.800 1.712 2.006 9.864 1.342 3.474 4.727
30 200 20 0.799 1.891 14.274 0.555 1.500 1.786 11.204 0.982 2.913 4.518

a Same data set, different randomization for bothH∗ and MST.
b Different data set, with the sameU structure, data originated by different randomization seed.

Moreover in Table 1, for H50G00, it is shown the
effect of the repetitions on the sameU-files with dif-
ferent randomization for bothH∗ and MST. The re-
sults obtained with other two data sets, with the same
U structure H50G00 but with data originated by dif-
ferent randomization seed, are listed too.

Results in Table 2 refer to real data and to some
other simulated data.

Fig. 8 shows the minimum spanning tree computed
for data set V2G40. For the same data set, Fig. 9 shows
the frequency distribution of the MST distances and

the estimate of the probability distribution for the uni-
form parent population. Table 3 reports the difference
between the frequency and the probability (the prob-
ability distribution was estimated two times, to show
the uncertainty associated with the estimate).

Fig. 10 shows the difference between the probabil-
ity distribution of the edge distances in the trees and of
only the maximum tree distance. The 95% right crit-
ical values (obtained from the data used to draw the
plot) were 38 for distances, 60 for maximum distances
(corresponding to 99.90% critical value for distances).
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Table 2
Results with some simulated data sets and with real data setsa

Data set Data Treatment H∗ Ratio MST index r1 Discrepancy

H00G00 Original 2 variables None 0.003 0.985 0.000 0.91 3
H00G20 Original 2 variables None 0.159 0.937 1.380 1.11 2
H10G00 Original 2 variables None 0.327 1.233 0.000 1.66 19
H10G20 Original 2 variables None 0.360 1.158 1.270 1.50 12
V2G00 Original 2 variables Range scaling −0.008 0.991 0.000 1.13 2
V2G10 Original 2 variables Range scaling 0.020 1.005 0.000 1.16 4
V2G20 Original 2 variables Range scaling 0.118 1.055 0.478 1.24 5
V2G40 Original 2 variables Range scaling 0.400 1.190 1.496 1.39 28
V3G40 Original 2 variables Range scaling 0.142 1.096 0.458 1.27 20
V4G40 Original 2 variables Range scaling 0.071 1.070 0.072 1.20 37
V5G40 Original 2 variables Range scaling 0.021 1.031 0.000 1.05 6
V10G40 Original 2 variables Range scaling −0.002 0.972 0.000 0.87 13
N2 Original 2 variables None −0.261 0.739 0.000 1.28 102

WINES First 3 PCs None 0.436 1.663 0.242 3.54 268
WINES First 2 PCs None 0.463 1.416 0.233 2.41 103
IRIS Original 4 variables Range scaling 0.662 2.493 0.000 4.77 540
IRIS First 2 PCs None 0.551 1.579 0.808 2.79 143
KAL-X First 3 PCs None 0.358 1.399 0.687 2.92 100
KAL-X First 2 PCs None 0.363 1.338 0.743 2.38 63
KAL-X PCs 1 and 3 None 0.325 1.294 0.543 2.38 60
KAL-X PCs 1 and 3 Range scaling 0.540 1.614 0.558 2.73 86
KAL-Y Original 2 variables Range scaling 0.524 1.538 0.556 2.68 82
KAL-Y Original variables, 99 objects Range scaling 0.534 1.540 0.570 2.54 74

a Ratio (column 5) is the ratio between the mean MST distance between random objects and the mean MST distance between real objects.

Table 3
Frequency distribution and parent probability distributiona

Index From To Frequency Probability Difference Probability Difference

1 0 1 0.070 0.029 0.0412 0.030 0.0398
2 1 2 0.126 0.088 0.0376 0.086 0.0398
3 2 3 0.141 0.127 0.0140 0.126 0.0146
4 3 4 0.201 0.152 0.0488 0.153 0.0479
5 4 5 0.176 0.160 0.0162 0.158 0.0182
6 5 6 0.136 0.145 −0.0089 0.144 −0.0082
7 6 7 0.080 0.119 −0.0384 0.122 −0.0417
8 7 8 0.050 0.087 −0.0372 0.088 −0.0377
9 8 9 0.010 0.054 −0.0438 0.053 −0.0427

10 9 10 0.005 0.024 −0.0189 0.024 −0.0189
11 10 11 0.000 0.009 −0.0088 0.009 −0.0092
12 11 12 0.000 0.004 −0.0038 0.004 −0.0043
13 12 13 0.000 0.002 −0.0016 0.001 −0.0013
14 13 14 0.000 0.001 −0.0007 0.001 −0.0007
15 14 15 0.000 0.001 −0.0005 0.000 −0.0003
16 15 16 0.000 0.000 −0.0002 0.000 −0.0001
17 16 17 0.000 0.000 0.0000 0.000 −0.0001
18 17 18 0.000 0.000 0.0000 0.000 0.0000
19 18 19 0.000 0.000 −0.0000 0.000 −0.0000
.
.
.

42 41 42 1.000 0.000 1.0000 0.000 1.0000

a Distances of the histogram classes in columns 2 and 3. Probability distribution estimated two times (columns 5–6 and 7–8) from
frequency in 200 repetitions, i.e. about 40,000 distances. Data set V2G40.
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Fig. 8. Minimum spanning tree for data set V2G40.

4.1. U-type artificial data sets with
uniform distribution

Results in the first 11 rows of Table 1 refer toU-type
data with gap 0, and differentH. The distribution of

Fig. 9. Top: distribution of frequencies for the distances (lengths
of the edges) in the minimum spanning tree of data set V2G40.
Bottom: probability distribution of the distances in minimum span-
ning trees obtained in the two-dimensional space for 200 objects
randomly drawn from uniform distribution (uncorrelated variables,
U(0, 100)). Probability distribution estimated from frequency in
200 repetitions, i.e. about 40,000 distances.

Fig. 10. Distributions of MST distances and maximum distances.
About 50 objects, two-dimensional space. Range (0–100) scaling.
Probability distributions estimated from frequency distributions in
20,000 repetitions (20,000 maximum distances, about 1 million
distances).

the objects in the C subspace (multivariate space of
the data set) is uniform, so that an acceptable cluster-
ing index must be about 0. Because of the generation
of the artificial objects in both subspaces C and B,
Hopkins index cannot be considered a measure of the
clustering tendency, but on the contrary a non-linear
measure of the fraction of the space occupied by the
data (C/(A+B+C) or C/(B+C)) with the correction
of Fernández Pierna–Massart. MST index was always
0, when the objects were generated in the subspaces
B+C. In one only case, the index was >0 with the ob-
jects generated only in subspace C, in agreement with
the dispersion of the maximum tree distance and the
95% confidence level. The generation in the only sub-
space C (not possible with real data sets) was used to
evaluate the effect of the empty space B on the MST in-
dex. The ratio between the mean tree distances with ar-
tificial and real objects increases very much from H00
to H100, from 1 about to 1.78, since, obviously, the
artificial objects are dispersed in a wider space. How-
ever, the increase of the critical distance used in the
evaluation of the MST index in Eq. (6) is not so large.
When the artificial objects are generated in the only
subspace C the ratio between the mean tree distances
with artificial and real objects is always about 1. The
critical distance is almost constant (within the large
dispersion measured by the results with data sets
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H50G00), not less 0.7 times the critical distance mea-
sured with artificial objects generated in subspaces
B + C.

MST 98% and MST 95% should be used as
“warning” when the MST index is zero. Their direct
use as a measure of clustering tendency would over-
estimate the tendency. In rows 1–11, column 9, of
Table 1 the 95% MST index is significantly larger
than 0 in 7 cases (about the 65%). So the evalua-
tion of the critical distancedcrit by the 5/(N − 1)%
right significance of the probability distribution of the
distances, as described in the theoretical part, seems
correct and necessary.

4.2. U-type artificial data sets with clusters

Results in rows 12–30 of Table 1 refer toU-type data
sets with a small gap (10–20) between two clusters,
as shown in Fig. 4.

H∗ is not able to detect the break: its values depend
almost only on the extension of the subspace B.

MST index is able to detect the presence of the two
clusters with the small gap 10 when the empty sub-
space B is not too large. The largest gap 20 is detected
also with very large subspace B, with increasing dif-
ficulty: the index decreases from 1.38 to 0.555 with
H increasing from 0 to 200. Taking into account that
the gap 20 cannot be considered as an unusual break
between two real clusters, and that the extreme values
of H correspond to extent of subspace B surely wider
than those encountered in real problems, the perfor-
mances of the index seems satisfactory.

The ideal, but unreal, cases where artificial points
were generated only in the subspace C would always
detect the presence of the clusters, and the index would
be a good measure of the distance between the clus-
ters, as shown by column 11 in Table 1, in spite
of the large variability due to the random origin of
the data sets (Fig. 5 shows the different distance be-
tween the two clusters in data sets with the same
nominal gap).

4.3. Second-type clustering and discrepancy

Results in Table 2 were obtained without scaling
in the case of the use of principal components and
when (U-type data set) the scaling would destroy the
uniform distribution in the subspace C.

In the case of artificial dataV-type data (as that in
Fig. 6) the ratio between the distances between arti-
ficial data and “real” data is always very close to 1,
since the empty space is always caused by the sepa-
ration between the two clusters. In the case ofU-type
data the ratio is not very large, because only the re-
sults with data sets withH ≤ 10 are reported. So,
the values ofH∗ and MST indexes are both a good
measure of the separation between the clusters. When
the number of variables inV-type data set increases,
the distance between objects in the subspace C, where
their distribution is uniform, increases too. Gradually,
the separation between the clusters becomes less sig-
nificant as compared to the mean distance between
the objects, e.g. in the case of separation G40, when
the number of variables increases from 2 to 3, 4,
5, 10 andH∗ decreases from 0.40 to 0.142, 0.071,
0.021,−0.002 and MST index decreases from 1.496
to 0.458, 0.072, 0.000, 0.000.

In the case of data set V2G40 (Fig. 6) the cluster-
ing is determined by the value of the first variable; the
maximum MST distance is 42, the mean MST distance
is 4, the tree crosses only one time the space between
the two clusters. In the case of data set V10G40 the
distribution is uniform in theV − 1 dimensions other
than the first variable. The mean distance of the edges
is 66, larger than the separation between the two clus-
ters. The maximum distance, 91, was between two ob-
jects in the same cluster, and the space between the two
“clusters” was crossed seven times by the minimum
spanning tree. Consequently, the clusters are not de-
tected because they do not exist in theV-dimensional
space. Only marginal evaluation can easily detect that
data are clustered on one of the variables.

In all these cases (U-type andV-type data sets,
Table 2) the ratior1 between frequency and expected
frequency in the first fifth part of the probability distri-
bution is relatively small, 1–1.7, and the discrepancy
is rarely more than the critical 95% value (about 10)
of the Chi-square distribution with 4 degrees of free-
dom corresponding to the five intervals used to com-
pute the discrepancy.

In the case of data set N2 shown in Fig. 7 the
discrepancy is very large (Table 2). The value ofH∗
is negative, due to the fact that the “real” objects in
N2 are generally placed artificially at the corner of
a square, and artificial points fall within the square
with distance from the “real” points less than the side
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Fig. 11. Data set WINES — projection on the two first PCs (autoscaled data). Index of category reported: (1) Barolo; (2) Grignolino; (3)
Barbera.

Fig. 12. Data set IRIS — projection on the two first PCs (autoscaled data). Categories: S: Iris setosa, E: Iris Versicolor, V: Iris Virginica.
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of the square. For the same reason, the fifth term of
the discrepancy is very large, and the discrepancy is
much larger than the critical value of the Chi-square
distribution. MST index is zero, because there is
not a first-type clustering. Discrepancy detects the
second-type clustering.

More detailed study of the difference between the
frequency and the probability parent distributions, as
that shown in Table 3, can help to understand the struc-
ture of data.

In the case of real data almost always the discrep-
ancy is very large, due to the fact that the objects
in the categories crowd round the center of the cat-
egory spaces. MST index is not so large with the
data set WINES, because the classes are not neatly
separated (Fig. 11). In the other cases, the category
spaces are separated by a significantly large empty
space (MST large) and within the category spaces the
distribution is not uniform, but shows the element of
second-type clustering (large discrepancy). Only with
the data set IRIS with all the 4 variables it seems that
only the second-type clustering can be detected. Re-
ally, the three categories are separated by variable 3
(petal length). Variable 4 improves the separation. The
other two variables have low separation power, so that
the structure is similar to that ofV-type data sets with
many variables. When the first two principal compo-
nents are used MST index is very large, because the
first component uses the synergy of variables 3 and
4 to separate with a large break category 1 from the
other two categories (Fig. 12).

5. Conclusions

MST index is a measure of clustering tendency
with some advantages as compared with Hopkins

clustering index. However, also MST index is sen-
sitive (but less thanH∗) to the empty space outside
the multivariate limits of the cloud of experimental
points. Moreover, both indexes are not able to identify
second-type clustering, very important in many real
cases. The discrepancy between the frequency distri-
bution of the distances in the minimum spanning tree
and the estimated probability distribution of the dis-
tances in the case of the uniform parent distribution
seems offer a way to compute a “density” index, useful
to characterize within the clustering index the quality
of a data set.

Acknowledgements

Study developed with funds from the project
UE STM4-CT98-7521 “European Network for the
Intercomparison of Chemometric Software and
Methods”, from the University of Genova, and from
CNR.

References

[1] B. Hopkins, Ann. Bot. 18 (1954) 213.
[2] R.G. Lawson, P. Jurs, J. Chem. Inf. Comput. Sci. 30 (1990)

137.
[3] J.A. Fernández Pierna, D.L. Massart, Anal. Chim. Acta 408

(2000) 13.
[4] R.C. Prim, Bell Syst. Technol. J. 36 (1957) 1389.
[5] J.B. Kruskal, Proc. Am. Math. Soc. 7 (1956) 48.
[6] R.A. Fisher, Ann. Eugen. Lond. 7 (1936) 179.
[7] M. Forina, S. Lanteri, Data analysis in food chemistry, in: B.R.

Kowalski (Ed.), Chemometrics: Mathematics and Statistics
in Chemistry, NATO ASI Series, Ser.C, Vol. 138, Reidel,
Dordrecht, 1984, p. 439.

[8] M. Forina, C. Armanino, M. Castino, M. Ubigli, Vitis 25
(1986) 189.

[9] J. Kalivas, Chemom. Intell. Lab. Syst. 37 (1977) 255.


