
Journal of Computational and Applied Mathematics 191 (2006) 259–268
www.elsevier.com/locate/cam

An adaptive version of a fourth-order iterative method for
quadratic equations

Sergio Amata,∗, Sonia Busquiera, José M. Gutiérrezb

aDepartamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Spain
bDepartamento de Matemáticas y Computación, Universidad de La Rioja, Spain

Received 20 December 2004

Abstract

A fourth-order iterative method for quadratic equations is presented. A semilocal convergence theorem is performed. A multires-
olution transform corresponding to interpolatory technique is used for fast application of the method. In designing this algorithm we
apply data compression to the linear and the bilinear forms that appear on the method. Finally, some numerical results are studied.
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1. Introduction

Determining the zeros of a nonlinear equation is a classical problem. These roots cannot in general be expressed in
closed form. A powerful tool to study these equations is the use of iterative processes [17]. Starting from an initial guess
x0 successive approaches (until some predetermined convergence criterion is satisfied) xi are computed, i = 1, 2, . . . ,
with the help of certain iteration function � : X → X,

xn+1 := �(xn), n = 0, 1, 2 . . . (1)

In general, an iterative method is of pth order if the solution x∗ of F(x) = 0 satisfies x∗ = �(x∗), �′(x∗) = · · · =
�p−1(x∗) = 0 and �p(x∗) �= 0. For such a method, the error ‖x∗ − xn+1‖ is proportional to ‖x∗ − xn‖p as n → ∞.
It can be shown that the number of significant digits is multiplied by the order of convergence (approximately) by
proceeding from xn to xn+1.

Newton’s method and similar second-order methods are the most used [19]. Higher-order methods require more
computational cost than other simpler methods, which makes them disadvantageous to be used in general, but, in some
cases, it pays to be a little more elaborated.

In this paper, we are interested in the solution of quadratic equations

F(x) = 0, (2)
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where F : X → Y, X, Y Banach spaces and F ′′(x)=B is a constant bilinear form. This is an example where third-order
methods are a good alternative to Newton’s type methods. Some particular cases of these type of equations, which
appear in many applications, as control theory, are Riccati’s equations [15].

In [12] the following family of third-order methods was introduced:

xn+1 = xn − (I + 1
2LF (xn)[I − �LF (xn)]−1)F ′(xn)

−1F(xn), (3)

where

LF (xn) = F ′(xn)
−1F ′′(xn)F

′(xn)
−1F(xn), � ∈ [0, 1].

This family includes the classical Chebyshev (� = 0), Halley (� = 1
2 ) and Super-Halley (� = 1) methods.

We refer to [12] and its references for a general convergence analysis of this type of third-order iterative methods. For
the particular case of quadratic equations, we refer to [10], where the authors use the �-theory introduced in [18,20].

In general, third-order methods [1] can be written as

xn+1 = xn − (I + 1
2LF (xn) + O(LF (xn)

2))F ′(xn)
−1F(xn).

In particular, each iteration of a third-order method is between the iterations of two C-methods,

xn+1 = xn − (I + 1
2LF (xn) + CLF (xn)

2)F ′(xn)
−1F(xn). (4)

This class of scheme has been studied in [11,2].
In this paper, we analyze a C-method with fourth order of convergence for quadratic equations. The advantage of

this method is that the matrix of the different associated linear systems in each iteration is the same.
On the other hand, multiresolution representations of data, such as wavelet decompositions, are useful tools for data

compression. Given a finite sequence f L, which represents sampling of weighted-averages of a function f (x) at the
finest resolution level L, multiresolution algorithms connect it with its multiscale representation {f 0, d1, d2, . . . , dL},
where the f 0 corresponds to the sampling at the coarsest resolution level and each sequence dk represents the inter-
mediate details which are necessary to recover f k from f k−1.

We consider the framework of Harten’s multiresolution [13,14]. The greatest advantage of this general framework
lies in its flexibility. For instance, boundary conditions receive a simplified treatment in this framework. Different types
of setting can be considered depending on the linear operator that produces the data, we refer to [5,6] for more details.
For simplicity, in this paper we consider the point value setting. In this setting, interpolation plays a key role. Usually,
the interpolation is performed using polynomials.

One of the applications of multiresolution is matrix compression. If a matrix represents a smooth operator, its
multiresolution representation can be transformed in a sparse matrix. This is called the standard form of a matrix [4,7].
We will need also a standard form for bilinear operators [3]. We use these standard forms to solve faster the linear
system and the products appearing in the method.

The paper is organized as follows: The fourth-order iterative method is described and analyzed in Section 2, where
we study a semilocal convergence theorem. We improve and simplify the hypothesis used in [11]. We recall in Section 3
the discrete pointvalue framework for multiresolution introduced by Harten [13,14] and the standard forms of a matrix
and of a bilinear operator. We derive, using these multiresolution transforms, an adaptive version of the method. Finally,
the algorithm is tested in Section 4 on several examples.

2. A fourth-order iterative method for quadratic equations

In general, for the C-methods (4) �′′′(x∗) �= 0, so the cubic order of convergence cannot be reached. But if we take
C = C(x) = 1

2 (1 − LF ′(x)/3), we can improve the accuracy since in this case

�′′′(x∗) = 0.

For quadratic equations LF ′(x) = 0, and C = C(x) will be the constant C = 1
2 .
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Let us consider now the 1
2 -method

xn+1 = xn − (I + 1
2 LF (xn) + 1

2 LF (xn)
2)F ′(xn)

−1F(xn). (5)

It can be written as follows:

yn = xn − F ′(xn)
−1F(xn),

zn = yn + 1
2LF (xn)(yn − xn),

xn+1 = zn + LF (xn)(zn − yn).

We are interested in quadratic equations. In this case, F ′′(x) is a constant bilinear operator that we denote by B.
Using Taylor expansions,

F(yn) = F(xn) + F ′(xn)(yn − xn) + 1
2F ′′(xn)(yn − xn)

2 = 1
2B(yn − xn)

2. (6)

Thus, F ′(xn)
−1F(yn) = − 1

2 LF (xn)(yn − xn).
Similarly,

F(zn) = F(xn) + F ′(xn)(zn − xn) + 1
2B(zn − xn)

2 = F ′(xn)(zn − yn) + 1
2B(zn − xn)

2.

Then,

F ′(xn)
−1(2F(zn) − 1

2 B(zn − yn)(zn − xn)) = −LF (xn)(zn − yn),

and the method becomes

yn = xn − F ′(xn)
−1F(xn),

zn = yn − F ′(xn)
−1F(yn),

xn+1 = zn − F ′(xn)
−1(2F(zn) − 1

2 B(zn − yn)(zn − xn)),

or equivalently,

F ′(xn)(yn − xn) = −F(xn),

F ′(xn)(zn − yn) = −F(yn),

F ′(xn)(xn+1 − zn) = −2F(zn) + 1
2B(zn − yn)(zn − xn). (7)

Remark 1. Notice that for these equations the classical third-order methods [10] can be written as

yn = xn − F ′(xn)
−1F(xn),

zn = xn + �(yn − xn), 0���1,

xn+1 = yn − F ′(yn)
−1F(yn) (8)

(� = 0 Chebyshev, � = 1
2 Halley and � = 1 Super-Halley).

Then, only for Chebyshev’s method the matrix of these linear systems is the same.

The evaluations of F in the method will be computed as follows:

Lemma 1. Let F be a quadratic operator, xn, yn and zn the sequences defined in (7). Then

F(yn) = 1
2 B(yn − xn)

2, (9)

F(zn) = B(zn − yn)(yn − xn) + 1
2 B(zn − yn)

2, (10)

F(xn+1) = − 1
2 B(zn − yn)(yn − xn) + 1

2 B(xn+1 − zn)
2

+ 1
2 B(zn − xn)(xn+1 − zn) + 1

2 B(zn − yn)(xn+1 − zn). (11)
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Proof. We have proved (see (6)) relation (9). In addition, by using Taylor’s formula

F(zn) = F(yn) + F ′(yn)(zn − yn) + 1
2B(zn − yn)

2 = B(zn − yn)(yn − xn) + 1
2B(zn − yn)

2.

In the same way,

F(xn+1) = F(zn) + F ′(zn)(xn+1 − zn) + 1
2 B(xn+1 − zn)

2

= − 1
2B(zn − yn)(yn − xn) + 1

2 B(xn+1 − zn)
2

+ 1
2 B(zn − xn)(xn+1 − zn) + 1

2 B(zn − yn)(xn+1 − zn). �

Now, we present a semilocal convergence theorem for the introduced method using a punctual condition that improves
the result given in [11].

Theorem 1. Given x0 such that there exists F ′(x0)
−1 and condition

‖F ′(x0)
−1B‖ ‖F ′(x0)

−1F(x0)‖� 1
2 (12)

holds, then the iterative method (7) is well defined and converges to x∗, solution of F(x) = 0.

Proof. Using Eqs. (9)–(12), we obtain

‖F ′(x0)
−1F(y0)‖� 1

2‖F ′(x0)
−1B‖ ‖y0 − x0‖2 � 1

4 ‖F ′(x0)
−1F(x0)‖.

By Eq. (10) it follows

‖F ′(x0)
−1F(z0)‖� 1

2 ‖F ′(x0)
−1B‖ ‖z0 − y0‖2 + ‖F ′(x0)

−1B‖ ‖z0 − y0‖ ‖y0 − x0‖�( 3
8 )2‖F ′(x0)

−1F(x0)‖.

Moreover,

‖I − F ′(x0)
−1F ′(z0)‖ = ‖F ′(x0)

−1B(z0 − x0)‖� 5
8 < 1.

Then by Banach’s lemma F ′(z0)
−1F ′(x0) exists and

‖F ′(z0)
−1F ′(x0)‖� 1

1 − 5/8
.

By Eq. (11), condition (12) and (7),

‖F ′(x0)
−1F(x1)‖�

(
‖LF (x0)

2 + 2LF (x0) − I‖ 1
16 + 1

256

)
× ‖F ′(x0)

−1F(x0)‖ =: c0‖F ′(x0)
−1F(x0)‖.

Furthermore,

‖I − F ′(x0)
−1F ′(x1)‖ = ‖F ′(x0)

−1B(x1 − x0)‖� 1
2 · ‖ 1

2 LF (x0)
2 + 1

2 LF (x0) + I‖ =: d0,

since d0 < 1, by Banach lemma F ′(x1)
−1F ′(x0) exists and

‖F ′(x1)
−1F ′(x0)‖� 1

1 − d0
.

Moreover,(
1

1 − d0

)2

(c0)
1

2
� 1

2
,

and we obtain

‖F ′(x1)
−1B‖ ‖F ′(x1)

−1F(x1)‖� 1
2 . (13)
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By an induction strategy and the same arguments as before, the following estimate holds

‖F ′(xn)
−1B‖ ‖F ′(xn)

−1F(xn)‖� 1
2 , ∀n�0. (14)

On the other hand,

‖F ′(xn)
−1F(xn)‖�‖F ′(xn)

−1F(xn−1)‖ ‖F ′(xn−1)
−1F(xn)‖

� cn−1

(1 − dn−1)
‖F ′(xn−1)

−1F(xn−1)‖
=: K‖F ′(xn−1)

−1F(xn−1)‖.

Therefore,

‖xn+1 − xn‖�‖xn+1 − zn‖ + ‖zn − yn‖ + ‖yn − xn‖
�( 1

8 + 1
4 + 1)‖F ′(xn)

−1F(xn)‖
� 11

8 Kn‖F ′(x0)
−1F(x0)‖,

with K < 1, then xn is Cauchy’s sequence and converges to x∗.
Now, we see that x∗ is a solution of F(x) = 0. Since

‖yn − xn‖�‖F ′(xn)
−1F(xn)‖�Kn‖F ′(x0)

−1F(x0)‖
and

‖zn − yn‖� 1
2 ‖Lf (xn)‖ ‖yn − xn‖� 1

4 ‖yn − xn‖,

we have that yn and zn converge to x∗. Using expression (10)

F(zn) = B(zn − yn)
( 1

2 (zn − yn) + (yn − xn)
)

,

we deduce F(x∗) = 0. �

3. An adaptive version of the scheme

3.1. The interpolatory multiresolution setting on the interval

Let us consider a set of nested grids:

Xk = {xk
j }Jk

j=0, xk
j = jhk, hk = 2−k/J0, Jk = 2kJ0,

where J0 is some fixed integer. Consider the point-value discretization

Dk :
{

C([0, 1]) → V k,

f 	→ f k = (f k
j )

Jk

j=0 = (f (xk
j ))

Jk

j=0,
(15)

where V k is the space of real sequences of length Jk + 1. A reconstruction procedure for this discretization operator is
any operator Rk such that

Rk : V k → C([0, 1]); DkRkf
k = f k , (16)

which means that

(Rkf
k)(xk

j ) = f k
j = f (xk

j ). (17)

In other words, (Rkf
k)(x) is a continuous function that interpolates the data f k on Xk .
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Thus if one writes (Rkf
k)(x) = Ik(x; f k), then, following [5] one can define the so-called direct (18) and inverse

(19) multiresolution transforms as

f L → MfL

⎧⎪⎪⎨
⎪⎪⎩

Do k = L, . . . , 1

f k−1
j = f k

2j , 0�j �Jk−1,

dk
j = f k

2j−1 − Ik−1(x
k
2j−1; f k−1), 1�j �Jk−1,

(18)

and

MfL → M−1MfL

⎧⎪⎪⎨
⎪⎪⎩

Do k = 1, . . . , L

f k
2j−1 = Ik−1(x

k
2j−1; f k−1) + dk

j , 1�j �Jk−1,

f k
2j = f k−1

j , 0�j �Jk−1.

(19)

With these algorithms, a discrete sequence f L is encoded to produce a multi-scale representation of its information
contents, (f 0, d1, d2, . . . , dL); this representation is then processed (if the vector represents a piecewise smooth
function, then the number of significant coefficients, after truncation d̂k

j = tr(dk
j , �k), will be O(log JL)) and the end

result is a modified multi-scale representation (f̂ 0, d̂1, d̂2, . . . , d̂L) which is close to the original one, i.e. such that (in
some norm)

‖f̂ 0 − f 0‖��0, ‖d̂k − dk‖��k, 1�k�L,

where the truncation parameters �0, �1, . . . , �L are chosen according to some criteria specified by the user.After decoding
the processed representation, we obtain a discrete set f̂ L which is expected to be close to the original discrete set f L.
For this to be true, some form of stability is needed, i.e. we must require that

‖f̂ L − f L‖��(�0, �1, . . . , �L),

where �(·, . . . , ·) satisfies

lim
�l→0, 0� l �L

�(�0, �1, . . . , �L) = 0.

The stability analysis for linear multiresolution processes, that is, the interpolation operator does not depend on data,
is carried out using tools coming from wavelet theory, subdivision schemes and functional analysis (see [14,6,5]).

3.2. Deslauriers–Dubuc reconstruction

The most usual interpolatory techniques are polynomials. To obtain accurate reconstruction piecewise polynomial
interpolations are considered.

Let S denote the set

S = S(r, s) = {−s, −s + 1, . . . ,−s + r}, r �s > 0, r �1,

and let {Lm(y)}m∈S denote the Lagrange interpolation polynomials for the stencil of grid points {xk
j+m}m∈S,

Lm(y) =
−s+r∏

l=−s,l �=m

(
y − l

m − l

)
, Lm(j) = �m

j , j ∈ S.

Thus, we can consider

Ik(x, f k) =
−s+r∑
m=−s

f k
j+mLm

(
x − xk

j

hk

)
, x ∈ [xk

j−1, x
k
j ], 1�j �Jk .
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Observe that if f (x) = P(x), where P(x) is a polynomial of degree less than or equal to r, then Ik(x, f k) = f (x)

for x ∈ [xk
j−1, x

k
j ]. It follows that, for smooth functions

Ik(x, f k) = f (x) + O(hk)
r+1.

Therefore, the order of the reconstruction procedure, which characterizes its accuracy, is p = r + 1.
The particular situation r = 2s − 1 corresponds to an interpolatory stencil which is symmetric around the given

interval and was considered, in [8], by Deslauriers and Dubuc (see also [9,16]). For instance, for s =2 (r =3) we obtain
the following multiresolution transform:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Do k = L, . . . , 1

f k−1
j = f k

2j , 0�j �Jk−1,

dk
j = f k

2j−1 −
(−f k−1

j−2 + 9f k−1
j−1 + 9f k−1

j − f k−1
j+1

16

)
, 1�j �Jk−1.

(20)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Do k = 1, . . . , L

f k
2j−1 = dk

j +
(−f k−1

j−2 +9f k−1
j−1 +9f k−1

j −f k−1
j+1

16

)
, 1�j �Jk−1,

f k
2j = f k−1

j , 0�j �Jk−1.

(21)

At the boundary, we choose one-sided stencils, of r + 1 = 2s points, at intervals where the centered-stencil choice
would require function values which are not available. If s = 2

dk
1 = f k

1 −
(

5
16 f k−1

0 + 15
16 f k−1

1 − 5
16 f k−1

2 + 1
16 f k−1

3

)
.

Modifications at the right boundary can be found by symmetry.

3.3. Standard forms of linear and bilinear operators

A generalized standard form for Harten’s multiresolution analysis is obtained in [4]. Given a matrix A, its standard
form, using (18) and (19), is the matrix

As = M A M−1. (22)

In the linear case, where the interpolation operator Ik does not depend on the data, the multiresolution transform is a
matrix M.

Eq. (22) is equivalent to applying algorithm (18) to the columns of A, and the transpose of algorithm (19) to the rows
of the resulting matrix.

The standard form satisfies

M(Af ) = AsM(f ) for every vector f ; (A2)s = AsAs .

Both M and M−1 are continuous transformations. Thus if an N ×N matrix A represents a piecewise smooth operator,
each transformed row in AM−1 represents a piecewise smooth operator. Sparsity is obtained by truncation of each
transformed column in MAM−1. The matrix As will have O(N log N) significant coefficients, O(log N) for each
column. The transformation of the columns leaves the significant coefficients in the typical finger shape.

We refer to [4] for the rest of the details.
Finally, we are interested to obtain a standard form for bilinear operators (see [3] for more details). For simplicity,

we consider

B : R2 × R2 → R2

the extension to dimension N is self-evident.
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Given two vectors x, y ∈ R2, we have

B(x, y) := (x1, x2) ∗
(

B1

B2

)(
y1

y2

)
,

where ∗ denotes the product by blocks,

(x1, x2) ∗
(

B1

B2

)
=
(

b11
1 x1 + b21

1 x2 b12
1 x1 + b22

1 x2

b11
2 x1 + b21

2 x2 b12
2 x1 + b22

2 x2

)
.

Considering

H1 :=
(

b11
1 b21

1

b11
2 b21

2

)
,

H2 :=
(

b12
1 b22

1

b12
2 b22

2

)
,

it is easy to check that

(x1, x2) ∗
(

B1

B2

)
=
(

H1

H2

)
∗
(

x1

x2

)
.

Therefore,

B(x, y) = M

(
(x1, x2)

(
B1

B2

)(
y1
y2

))

= M ∗
(

H1

H2

)
∗ M−1M

(
x1
x2

)
M−1M

(
y1
y2

)
.

Thus to compute MB(x, y) we can do

(a) Bs := M ∗
(

H1

H2

)
M−1.

This equation is equivalent to applying algorithm (18) to the columns of H1 and H2, and the transpose of algorithm
(19) to the rows of the resulting matrix block.

(b) Mx = M

(
x1
x2

)
.

(c) C := (BsMx)M−1.

(d) My = M

(
y1
y2

)
.

(e) C My.

Remark 2. In dimension N, Hi is the matrix formed for the row i of each block-matrix of the bilinear operator BT,
where T denotes the transposed by blocks.

We solve the nonlinear system above adaptively (after truncation the matrix of the system are sparse matrix) using
the standard forms that we have defined,

MF′(xn)M
−1M(yn − xn) = M(−F(xn)),

MF′(xn)M
−1M(zn − yn) = M(−F(yn)),

MF′(xn)M
−1M(xn+1 − zn) = M(−2F(zn) + 1

2 B(zn − yn)(zn − xn)).



S. Amat et al. / Journal of Computational and Applied Mathematics 191 (2006) 259 –268 267

Table 1
x0 such that ‖x∗ − x0‖ = 0.5

Iteration Chebyshev C = 1
2

1 4.06e + 00 6.84e + 00
2 4.77e − 01 1.42e − 01
3 3.54e − 04 1.16e − 07
4 4.79e − 13 0.00e + 00
5 0.00e + 00 —

Table 2
x0 such that ‖x∗ − x0‖ = 0.1

Iteration Chebyshev C = 1
2

1 8.41e − 03 1.21e − 03
2 1.78e − 09 5.44e − 14
3 2.90e − 13 0.00e + 00
4 0.00e + 00 —

To evaluate M(F(xn)), M(F(yn)) and M(F(zn)) the standard forms of the linear and bilinear parts are also used
for fast matrix–vector and matrix–matrix multiplication after truncation.

Using the stability of the multiresolution, bounds of F and its Fréchet derivatives (‖F ′′(x)‖=‖B‖) and the condition
number of the matrix appearing in the original systems, we obtain the following theorem (more details can be found
in [3]).

Theorem 2. Assume that xn is well defined and converges to x∗. Denoting by {x̃n} the sequence of the adaptive version
of the method, if we consider the truncation parameters �k(n) = �(n) sufficiently small, then it will be well defined and
there will exist nTol ∈ N such that

‖x∗ − x̃n‖�Tol, ∀n�nTol.

Remark 3. Tol is a free parameter for the user and it is related with the desired final accuracy.

4. Numerical analysis

In order to check the performance of the above-presented iterative method, various tests on quadratic equation have
been performed.

Let us consider the equation

F(x) = xTBx + Cx + D = 0, (23)

where

B = rand (n ∗ n ∗ n),

C = rand(n ∗ n),

and D is computed in order to obtain x∗
i = 1 as solution.

In Tables 1 and 2 we consider N = 30. The C = 1
2 -method has fourth order of convergence and improves the results

of the Chebyshev method.
We define the ratio R as the number of operations in the C − 1

2 method divided by the number of operations in the
adapted method (Table 3).

Since the number of significant coefficients is O(N log N), the difference between the adapted C-method and the
classical C-method is bigger as N grows.
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Table 3
Operations number

N Ratio R

16 6.42
32 10.46
64 22.34

5. Conclusion

We have analyzed a fourth-order iterative method for quadratic equations. We have studied its convergence and we
have tested its numerical behavior with respect to the classical Chebyshev method. The method seems to work very
well in our numerical experiments.
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