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The most important kinetic models developed for acetic fermentation were evaluated
to study their ability to explain the behavior of the industrial process of acetification.
Each model was introduced into a simulation environment capable of replicating the
conditions of the industrial plant. In this paper, it is proven that these models are not
suitable to predict the evolution of the industrial fermentation by the comparison of
the simulation results with an average sequence calculated from the industrial data.
Therefore, a new kinetic model for the industrial acetic fermentation was developed.
The kinetic parameters of the model were optimized by a specifically designed genetic
algorithm. Only the representative sequence of industrial concentrations of acetic acid
was required. The main novelty of the algorithm is the four-composed desirability
function that works properly as the response to maximize. The new model developed
is capable of explaining the behavior of the industrial process. The predictive ability
of the model has been compared with that of the other models studied.

Introduction
The main goal in the optimization and automatic

control of a bioprocess, such as the acetic fermentation,
is large-scale production. Working with a predictive
simulation environment is an invaluable tool to develop
a bioprocess. The advantages of the process simulation
have been performed for a long time now (Cooney et al.,
1988; Petrides, 1994), and it is possible to find recent
examples of applications of modeling and simulation to
the performance and optimization (Cooney et al., 1999;
Crundwell, 2001) and predictive control (Hodge and
Karim, 2002) of a bioprocess. The basic section in the
simulation environment is the process model. This model
must be simple in order to explain the whole process with
a high predictive ability.

Any bioprocess model has two main parts. One is the
reactor model, built with known and very common reactor
equations and mass balances, easily found in general
books on chemical engineering and bioengineering, such
as Perry and Green (1997) and Bailey and Ollis (1986).
The other one is the cell growth model and the relation-
ship with the kinetic of substrates and products (Bailey
and Ollis, 1986).

In this paper, six kinetic models for acetic fermentation
taken from the literature, developed by Bar et al. (1987),
Ito et al. (1991), Kruppa and Vortmeyer (1999), Nanba
et al. (1984), Park et al. (1991), and Romero et al. (1994),
are studied. The kinetic expressions are integrated into
a computer environment designed to simulate the be-
havior of a batch process working with the temperature
and oxygen conditions of the industrial process. Compar-
ing the simulation results with an average sequence of
acetic acid concentrations calculated from fermentators

in the industrial plant of the most important vinegar
company in Spain, VINAGRERı́AS RIOJANAS S.A., is
the method used to test the prediction ability of the
models evaluated.

The next step in this work involves the proposal of a
new kinetic model specifically designed for the industrial
process and the optimization of the kinetic parameters
by a genetic algorithm developed for this goal. Genetic
algorithms are tools with high potential of optimization
that have been successfully applied to solve different
problems since Holland published his first works in 1975.
Massart et al. (1997) divided the scope of applications of
genetic algorithms into three main categories: numerical
problems (Reijmers et al., 1999), sequencing problems
(Huang, 1997), and subset selection problems (Pizarro
et al., 1998). Several tutorials have also been published,
such as those by Lucasius and Kateman (1993, 1994) and
Wehrens and Buydens (1998).

It is also possible to find works where genetic algo-
rithms have been successfully applied to the empirical
modeling of fermentation processes (Potocnik and Grabec,
1999). In this work, the genetic algorithm is developed
to optimize the parameters of the new mechanistic model
proposed for the industrial acetification. The basic algo-
rithm (Lucasius and Kateman, 1993; Lucasius and Kate-
man, 1994) has been adapted to this particular problem.
The set of kinetic parameters that provide the best
prediction ability for the model proposed is selected by
the compliance of the simulation with the average
sequence obtained from industrial fermentators. One of
the most relevant innovations introduced by the algo-
rithm is the desirability function that works successfully
as the evaluation function.

Modeling Aspects: Kinetic Models Evaluated
Mechanistic Models: Models with Two Kinds of

Biomass. (A) Cell Growth Kinetic. Some approxima-
tions are usually applied to the fermentation models
(Bailey and Ollis, 1986). These approximations are very
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necessary and have been used for a long time to obtain
simple and predictive models:

• Average cell approximation: The cell-to-cell hetero-
geneity does not influence the model, and the average
cellular properties are considered. The model is unseg-
regated.

• Balance growth approximation: The representation
of the cell is a single component, and the biomass is
considered as a component in solution, Xt. From this point
of view, the model is unstructured.

Figure 1 shows the diagram for the reaction mecha-
nisms in fermentation processes proposed by Sinclair and
Kristiansen (1987) that is usually assumed. The symbols
are reported in the Notation section. The general scheme
shows the bacteria divided into viable and nonviable. The
viable cells grow with rate rg and consume the substrate
with overall rate rS. The substrate is used for growing,
rS-X, maintenance, rS-m, and product formation, rS-P. As
a result of this process, the cells excrete products with
rate rP. On the other hand, the viable cells have a vital
cycle and pass to nonviable cells with death rate rd. The
cell death kinetic and the kinetic of products are ex-
plained in subsections (B) and (C), respectively. Other
mechanisms reported in Figure 1 are the cell lysis, rl,
and the endogenous respiration, re. By cell lysis, the
nonviable cells are descomposed, and some compounds
excreted can be used by the viable cells as substrates.
By endogeneous respiration, the cell provides itself the
energy for maintenance by the oxidation or degradation
of some of the cell mass itself.

In the models proposed by Nanba et al. (1984), Romero
et al. (1994), and Bar et al. (1986) and in the model
developed in this work, the bacterial mass is considered
to be made up of viable Xv and dead Xd cells (Sinclair
and Topiwala, 1970). Considering the mechanisms in
Figure 1 related only to the cell growth and underesti-
mating the contributions due to cell lysis and endoge-
neous respiration, the next expressions are inferred, as
are applied in the work of Romero et al. (1994), for
example:

The specific rates are defined by the overall rates and
the viable biomass concentration:

Nanba et al. (1984) proposed the following expression
for the overall specific growth rate showing synergistic
effects between the ethanol and acetic acid concentra-
tions:

where:

The experimental data for the parameters fitting were
obtained at 28 °C from fermentations in a steady state
with different combinations of ethanol [5-75 g/L] and
acetic acid [0-50 g/L] concentration prepared with a
synthetic medium under nonlimiting oxygen conditions.
The calculated values of the parameters are reported in
Table 1. The kinetic parameter Ki is the inhibition
constant related to the ethanol concentration. The other
parameters reflect the synergistic effects between the
ethanol and the acetic acid.

Bar et al. (1987) proposed an empiric expression for
the specific growth rate that shows a strong cell inhibi-
tion by the acetic acid:

Figure 1. Sinclair’s general model for fermentation processes.
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The data were taken from fermentators thermostated
at 30 °C under low aeration conditions. No more than
36.5 g/L of acetic acid were obtained with a synthetic
medium.

Romero et al. (1994) proposed an expression that takes
into account the ethanol, acetic acid, and oxygen concen-
trations:

In this expression, there are two kind of parameters.
Parameters as KSE, KSA, and KSO correspond to saturation
constants for ethanol, acetic acid, and oxygen, respec-
tively, and reflect the metabolic affinity of the microor-
ganism for them. Parameters as KIE, KIA, and KIO are the
inhibitory parameters for ethanol, acetic acid, and oxy-
gen, respectively, and quantify the inhibiting effect of
these compounds over the specific growth rate. High
values of the saturation constant reflect a low microor-
ganism-compound affinity, whereas high values of the
inhibition constant reflect a low level of substrate inhibi-
tion.

The data were obtained in batch fermentations at 26
°C, and the concentration ranges studied were 10-70 g/L
for ethanol and 10-80 g/L for acetic acid, using as
medium sterilized wine from the region of Jerez.

In a subsequent work, Ory et al. (1998) calculated the
parameters of the expression proposed by Sinclair and
Topiwala (1970) for µm, using eq 17 to obtain the values
of µm:

The values for the kinetic parameters of eqs 17 and
18 are reported in Table 1.

(B) Cell Death Kinetic. Generally, the kinetics of
growth and death are modeled separately because of the
different effects of the variables in each case. In their
work, Mesa et al. (1994) proposed the following expres-
sion for the specific death rate under conditions of
complete absence of oxygen:

The values for the parameters were KM ) 0.11 L/g‚h
and KN ) 3.54 × 103 (g/L)3. Later, Caro et al. (1996)
recalculated the values to apply the expression under
nonanoxic conditions: KM ) 0.42 L/g‚h and KN ) 2.50 ×
107 (g/L)3.

(C) Substrates and Products Kinetic. Applying
Sinclair’s general model to the substrates and the prod-
ucts, the following expressions are obtained:

It is reasonable to consider that, in acetic fermentation,
the energy requirements of the cells are basically due to
the multiplication process, and thus other consumptions
are worthless and the mean contribution is the assimila-
tive way. The lacks due to ethyl acetate production are
not significant since they account for less than 3% of the
total ethanol consumption. Therefore, these expressions
can be simplified:

It is very usual to link the product formation and the
substrate consumption with the cell growth. These
substrates and products kinetics are usually called
growth-associated (Bailey and Ollis, 1986):

The most important yield factor is Y ′X/E. Different
values for the biomass/ethanol yield factor can be found

Table 1. Kinetic Parameters of the Models Evaluated

model

Nanba et al. Romero et al. Park et al. Ito et al. Kruppa and Vortmeyer

parameter value parameter value parameter value parameter value parameter value

µm 0.31 h-1 µm 0.22 ( 0.02 h-1 µm 0.25 h-1 c 3.5 × 10-5 µm 0.1565 h-1

Ki 91 g/L µm
29.°C 0.088 h-1 Am 45 g/L n ) m 2 Cµ 105.9 g/L

K1 7.170 × 10-2 KSE 21.1 ( 6.7 g/L n ) m 1.766 qAm 20 h-1 rm 0.35 mol/(g‚h)
K2 2.228 × 10-3 KIE 2.83 ( 0.2 g/L µcm 0.05 h-1 Aqm 90 g/L Cr 93.8 g/L
K3 2.822 × 10-5 KSA 12.6 ( 2.5 g/L Acm ) Aqm 95.1 g/L γ 0.03 h-1 ar 0.0219 mol‚L/(g2‚h)
K ′1 1.0480 × 10-4 KIA 17.9 ( 1.2 g/L a 0.2 h-1 br 0.060 mol/(g‚h)
K ′2 7.041 × 10-6 KSO 0.372 ( 0.05 ppm b 0.037
K ′3 7.873 × 10-8 KIO 1.958 ( 0.21 ppm qAm 33.3 h-1

A 0.5 h-1

B 8.97 × 10-7 h-1

Eb 5.974 kJ/mol
Ea 417.2 J/mol
Km 0.42 L/g‚h
KN 2.50 × 107 (g/L)3

µg ) 0.119 × e(-0.068‚A) (16)
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)
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)
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in the literature, depending mainly on the operation
conditions and the ethanol losses by evaporation.

In their work, Bar et al. (1987) established a growth-
associated acetic acid kinetic and a stoichiometric rela-
tionship between ethanol and acetic acid. On the basis
of Romero et al.’s growth model (1994), Gómez and
Cantero (1998) proposed a growth-associated model for
the kinetics of ethanol, oxygen, and acetic acid:

The values of the stoichiometric coefficients YA/E and
YE/O are 1.30 and 1.44, respectively, and the biomass/
oxygen yield factor can be easily calculated:

Mechanistic Models: Models with Three Kinds
of Biomass. Ito et al. (1991) and Park et al. (1991)
proposed more complex kinetic models from a mechanis-
tic point of view, with three classes of biomass: viable,
nonviable, and dead and without a relationship between
the cell growth and the kinetics of the substrates and
the product. The general scheme of these two models is:

Taking into account eq 30, viable cells are converted
via nonviable cells into dead cells when the acetic acid
concentration is higher than a critical concentration,
which will depend on the kinetic parameters calculated
for the specific growth rates µ, k, and γ, but the ethanol
and the oxygen are not depleted. Both viable and nonvi-
able cells can oxidize the ethanol, but nonviable cells
cannot multiply. In this way, in eq 31, the rate of ethanol
consuming depends on the specific rate qA and on the
concentrations of viable and nonviable biomass, Xv and
Xnv, respectively. In eq 32 is shown that, in this model,
oxygen is consumed not only to oxidize the ethanol to
acetic acid (qA/YA/O) but also for the cell respiration
(µ/Y ′X/O).

From this pattern, the following differential equations
are inferred:

In their work, Park et al. (1991) proposed the following
expressions for the specific rates:

In these equations, kinetic parameters Am, Acm, and
Aqm are inhibition parameters related to the acetic acid
concentrations in the specific growth rates µ and µg and
the acetic growth rate qAm, respectively. Acm in eq 41 and
Aqm in eq 44 mean the maximum concentration at which
all the biological activities of the cells are lost. The
constants n and m are experimental exponents and
indicative of how strongly the inhibition terms affect µ
and qA, respectively. The parameters a and bare experi-
mental constants which express the effect of acetic acid
on cell death.

The data were obtained from a batch fermentator
thermostated at 30 °C, under no-limiting oxygen condi-
tions in a synthetic medium. The concentration of ethanol
was kept between 20 and 30 g/L by a feed flow of 500
g/L ethanol. The maximum concentration of acetic that
this system could reach was 85 g/L. Table 1 reports the
values calculated by Park et al. for the kinetic param-
eters.

One of the main obstacles of the model is that viable
and nonviable biomass are considered to have the same
energy requirements, whereas nonviable biomass is
unable to multiply. Another is caused by the negative
values taken by the specific rate k when the concentration
of acetic acid is under 10 g/L.

Ito et al. (1991) developed a model based on Park et
al.’s model but introducing some changes in the specific
rates µg, k, and γ. The main innovation is that they take
the expression of Nanba et al.’s model for µg with the
same values for the kinetic parameters:

The experimental data were obtained in a fermentator
working under conditions similar to those of Park et al.’s,

Y ′X/E ) (7.2 ( 0.8) × 10-3 g biomass/g ethanol
(Gómez and Cantero, 1998)

Y ′X/E ) 6 × 10-3 g biomass/g ethanol
(Bar et al., 1987)

Y ′X/O ) YE/O‚Y ′X/E (29)
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but with a constant ethanol concentration of 10 g/L. The
maximum acetic acid concentration reached was 90 g/L.
The values calculated for the parameters are reported
in Table 1.

The model solves the problems of Park et al.’s model,
but more empiric expressions without mechanistic sig-
nificant are introduced.

Empiric Model: Kruppa and Vortmeyer’s Model.
In their work, Kruppa and Vortmeyer (1999) proposed
an empirical model for the rates of cell growth and acetic
acid production without any relationship between them,
i.e., they did not establish any relationship between the
cell growth and the kinetics of the substrates and the
product:

As a result of the empirical nature of the model, there
is no classification of biomass in terms of viability. Table
1 reports the values of the kinetic parameters calculated
in the work. The data were obtained from a continuous
fermentator, thermostated at 30 °C and under nonlim-
iting oxygen conditions; therefore there is no expression
for the oxygen. In each steady state an acetic concentra-
tion within the range of 50-100 g/L and the correspond-
ing concentration of ethanol were obtained, taking into
account that the feed flow was an artificial medium with
concentrations of 77.3 g/L for ethanol and 1 g/L for acetic
acid.

New Model for Industrial Acetification
Analysis of Industrial Data Set. The acetic concen-

trations taken from the industrial fermentators in the
industrial plant, obtained by near-infrared spectroscopy,
NIR, (Osborne et al., 1993) were studied. The data were
collected for four months without changes in the indus-
trial parameters of the process, i.e., oxygenation condi-
tions and temperature. The average temperature was
29.5 °C and the oxygenation conditions were enough to
satisfy the oxygen demand, and thus the oxygen was a
nonlimiting substrate. The total biomass was measured
by filtration, drying, and weighing of the sample.

Nowadays, fermentators in the industrial plant work
discontinuously with charges. The batch bioreactors
studied were always fed with white wine of the same
origin. The process time was about 30-31 h, and 218
complete sequences were obtained.

An average concentration sequence was calculated by
analyzing the data. This sequence is representative of
the process to be modeled. The variability in the concen-
trations among the sequences is due to analytical errors
and to factors that cannot be controlled in an industrial
process, i.e., differences in ethanol concentration of wine
among the batch processes. Therefore, the model obtained
with this sequence does not model this variance. Figure
2 shows the average concentrations sequence.

Structure of the New Kinetic Model. The model
proposed assumes the general pattern of Sinclair and

Kristiansen (1987) reported in Figure 1 for the cell
growth, despising the contributions due to cell lysis and
endogeneous respiration. The average cell and the bal-
ance growth approximations are applied to the cell model,
i.e., the model developed is unsegregated and unstruc-
tured:

The specific rates are defined by the overall rates and
the viable biomass concentration, as has been explained
before:

A growth-associated kinetic for the acetic acid produc-
tion and the oxygen and ethanol consumption is proposed,
according to the pattern of substrates and products
kinetic reported for the models studied in the section
Mechanistic Models: Models with Two Kinds of
Biomass:

rg ) µm‚(1 - A
Cµ

)‚Xt (49)

rE ) MEtOH‚[rm - 1
2

‚((ar
2‚(A - Cr)

2 + br
2)1/2 +

ar‚(A - Cr))]‚Xt (50)

rA ) MHAc‚[rm - 1
2

‚((ar
2‚(A - Cr)

2 + br
2)1/2 +

ar‚(A - Cr))]‚Xt (51)

Figure 2. Representative data sequence calculated from the
industrial concentrations.

Xv 98
rg

Xv 98
rd

Xd (52)

Xt ) Xv + Xd (53)

rg )
dXt

dt
(54)

rd )
dXd

dt
(55)

r ) rg - rd )
dXv

dt
(56)

µg ) 1
Xv

‚(dXt

dt ) (57)

µd ) 1
Xv

‚(dXd

dt ) (58)

µ ) 1
Xv

‚
dXv

dt
(59)

µ ) µg - µd (60)

dE
dt

) (- 1
Y ′X/E

)‚µg‚Xv (61)

dO
dt

) (- 1
Y ′X/O

)‚µg‚Xv (62)

dA
dt

) YA/E‚ 1
Y ′X/E

µg‚Xv (63)

Biotechnol. Prog., 2003, Vol. 19, No. 2 603



The main statement of the model proposed is based
on the fact that the viable cells oxidize the ethanol to
acetic acid to obtain the energy that they need for
multiplication. The structure of the model is based on
the existence of two kinds of biomass as in the models of
Bar et al. (1987), Nanba et al. (1984), and Romero et al.
(1994). The existence of a third class of biomass, proposed
in the models of Park et al. (1991) and Ito et al. (1991) is
only theoretical, since there are no measures of this kind
of biomass. The supposed behavior of the nonviable cells
is not justified considering the fact that the nonviable
biomass is not capable of multiplying but it is considered
to have the same energy requirements of the viable cells.
On the other hand, Park et al.’s model has another
important drawback due to the existence of nonviable
cells, considering the negative values taken by the
specific rate k in eq 42 when the concentration of acetic
acid is under 10 g/L. The work of Ito et al. (1991)
corrected these wrong estimations by introducing in the
model new empirical equations without mechanistic
fundament.

All in all, the introduction of the third class of biomass
adds a grade complexity to the models without an
improvement on the explanation of the acetic fermenta-
tion, compared with the models with two kinds of
biomass.

Assuming that the industrial data show a decrease in
the acetic production only due to the ethanol consump-
tion, a function for µg based exclusively on the ethanol
concentration is proposed, because no inhibition due to
acetic acid is observed in the industry. Indeed, in
fermentation processes with alcoholic substrates of ag-
ricultural origin are obtained acetic concentrations of
about 150 g/L and less than 4 g/L for the residual ethanol.
There is no oxygen concentration factor since in the
industrial fermentation processes the oxygen demand is
always satisfied by a constant aeration and agitation, and
thus oxygen is a nonlimiting condition:

In this model, µd is considered to be constant, since it
is logical to evaluate an average life cycle from the
average cell approximation applied to the model.

The initial viable biomass, Xvi, influences very much
the rate of the process. No measures of biomass viability
were available in the industrial plant, and thus the initial
concentration must be optimized together with the
kinetic parameters. In this model with two kinds of
biomass, the initial total biomass does not influence the
evolution of the fermentation, and therefore it takes the
value of the initial viable biomass in the optimization
algorithm. In this way, the initial viable biomass is not
constrained by the value of the total biomass and can
take any value within the range externally imposed.

All in all, the problem to be solved was the optimization
of five parameters of the model: K1, K2, n, µd, and Xvi.

Computational Methods
Simulation Method. The simulation algorithm was

programmed in Matlab 6.1.0.450 (The MathWorks, Inc.).
The critical points of the algorithm were

(1) The kinetic model: a differential equations system
solved by the fourth order Runge-Kutta algorithm.

(2) The kinetic parameters: the parameters calculated
by the authors in the original works were used.

(3) The mass balance for the fermentator: a batch
process was simulated.

(4) The fermentator parameters: (a) the volume was
constant: 30 000 L; (b) there was an oxygen control in
the simulation, because in the industrial process the
oxygenation conditions were enough to satisfy the oxygen
demand.

(5) Initial values of the variables: the initial concen-
trations of ethanol, acetic acid, and total biomass were
those of the representative sequence, 40.14 g/L of ethanol,
82.73 g/L of acetic acid, and 0.35 g/L of total biomass.
No measures of initial viable biomass were available in
the industry. Therefore, it was considered to be 20% over
the initial total biomass, a standard value used in other
works of computer simulation of fermentation processes,
such as Caro et al. (1996) and Macı́as et al. (1997) for a
started fermentation.

(6) Evaporation losses of ethanol and acetic acid were
not considered. In this way, the simulated reactor was a
closed system.

(7) The simulation algorithm had two important stop-
page conditions: (a) the simulation was stopped when
not real positive values for one concentration were
obtained; (b) the simulation was stopped when the
process time in the simulation reached the final process
time of the representative sequence.

Genetic Algorithms Applied to Kinetic Modeling.
Genetic algorithms are numerical optimization methods
that try to simulate the biological evolution, i.e., the
process of optimization of the characteristics of the
individuals to improve their adjustment to the environ-
ment. Those that adjust the best to the environment have
more chances of surviving and reproducing.

Applied to biological modeling, the use of genetic
algorithms implies many advantages over the use of the
traditional gradient-search and graphical methods. Those
methods often provide solutions at local minima and
convergence problems have been noted when gradient-
based methods have been applied to biological models
(Pinchuk et al., 1999). The genetic algorithm optimization
does not rely on the mathematical form of the kinetic
model, simplifying the optimization process and allowing
test different models without modifying the algorithm.
Other classic methods of optimization exist that do not
use the gradient of the objective function, like the
Simplex or the Powell methods. The main disadvantages
of these methods are that they need a starting point, they
do not work well with badly behaved statistic surfaces,
and there is no guarantee they will find the global
optimum, a problem long known specially with the
Simplex method. The Simplex has also important con-
vergence problems. The genetic algorithm allows a better
exploration of the experimental domain, avoiding con-
vergence to a relative optimum due mainly to

(1) An initial estimate of the parameters is not re-
quired, but rather a range of possible values. With
Simplex or Powell method the solution depends heavily
on the chosen starting point.

(2) The mutation operator allows the algorithm to
escape from an area of chromosomes closed to a local
maximum to another areas in the allowed range, pre-
venting the premature convergence to a suboptimal
solution.

(3) The crossover operator allows the exchange of
information between promising solutions. The use of the
uniform crossover instead of the crossover points limited
to locations between genes increases the genetic diversity
of the offsprings and the exploration of new areas of the
domain.

µg ) K1‚ 1

K2 + (1E)n
(64)
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(4) The solution provided by the genetic algorithm is
not unique; a series of almost equivalent results is
obtained and the user can select the best.

All in all, the use of genetic algorithms allows finding
the optimized parameters even for poorly behaved func-
tions. At every moment, every point of the experimental
domain can be explored.

The algorithm designed in this work is an evolution of
the basic genetic algorithm (Lucasius and Kateman,
1993; Lucasius and Kateman, 1994), adapted to find the
best set of parameters for the new kinetic model pro-
posed. Each chromosome represents a possible combina-
tion of values of the five parameters to optimize, in binary
code. There is an allowed range of values for each
parameter to adopt as many values as allowed by the
binary codification and the amount of significant figures.
The evaluation program decodes the values of the pa-
rameters for each chromosome and then uses them to
simulate a batch process with each set of parameters.
Uniform crossover and mutation operators are used to
form new generations of chromosomes. The elitism, i.e.,
a number of chromosomes that passed unchanged to the
following generation, is introduced to avoid the loss of
highly informative solutions. Filters are introduced into
the algorithm to avoid twins and out-of-range param-
eters. A final run with the best chromosomes found in
several runs is made as refinement of the best solutions
found and, therefore, to increase the exploitation ability
of the method. In conclusion, the uniform crossover, the
mutation, the elitism, the filters, and the final run
contribute to the exploration and the exploitation ability
of the algorithm.

The same simulation program and conditions as those
used with the models evaluated before were applied, but
the value for the initial viable biomass was that of the
parameters of the chromosome. The main technical
features of the algorithm are reported in Table 2.

The most important innovation of the algorithm de-
veloped in this work is the desirability function that
works as the evaluation function to maximize. The
evaluation function of the genetic algorithm must be
capable of selecting the best set of kinetic parameters,
those that provide the highest predictive ability to the
model, obtaining simulated acetic concentration se-
quences similar to the industrial ones.

The root-mean-square of the differences between mea-
sured and predicted data or other similar functions based
only on the errors have been extensively used in the
performance of artificial neural networks, as the work

of Shimizu et al. (1998), or as the evaluation function of
the genetic algorithm, as Pinchuk et al. (1999). However,
the root-mean-square is not enough in this work to
compare the concentration sequences since it does not
provide information on the differences in the shape of
the data sequence, the final concentration reached, and
the process time.

To solve the problem, a four-composed desirability
function has been applied as the response to maximize.
The desirability functions are one of the methods for
Multicriteria Decision Making (MCDM) (Harrington,
1965; Hendriks et al., 1992; Keller et al., 1991; Massart
et al., 1997). It is possible to find recent works where
desirability functions are used for multiresponse optimi-
zation, such as Berget and Naes (2002).

A desirability function has to be defined for each
criterion considered. Each function can adopt different
mathematical structures such as linear, exponential, or
logarithmic ones, but the response must always range
between 0 (unacceptable) and 1 (maximum desirability).
The global desirability function for the n sample is then
defined as the geometric mean of the individual desir-
ability functions:

The mathematical form of the desirability function
developed in this work is

The main advantages of working with the desirability
function instead of using only the root-mean-square are:

• The global function is very restrictive because if only
one single function gives a zero value, the global value
is zero. This behavior has been useful to penalise seri-
ously the sets of parameters providing simulations with

Table 2. Description of Genetic Algorithm

parameter description

coding Binary. Each chromosome is a different set of the kinetic parameters to optimize. The number of bits of
the chromosome depends on the range allowed for the parameters and the amount of significant
figures, fixed previously.

initiation of population Random. Out-of-range chromosomes are not generated.
population 30 chromosomes. The population is constant.
response Four-composed desirability function.
select-copy The probability of a chromosome of being selected for crossover is prob(i) ) (response(i)/sum(responses)).

An interval of random number is associated to each genome, with upper limit the cumulative sum of
probabilities of the chromosomes with inferior probability of being selected. Then, the algorithm
generates random numbers (0-1). When the number is within the interval associated to a chromosome,
this is selected for crossover.

crossover Uniform crossover. Crossover probability 50%.
mutation 1.5%
elitism The six best chromosomes of each generation pass unchanged to the following generation.
filters Out-of-range parameters and twins are not allowed.
stoppage condition Five generations without changes higher than 5% in the mean response of the elitist chromosomes.
heats and final The algorithm is completed five times each time the programmed algorithm is run. A final run where the

initial population is composed of the best chromosomes found in each of the previous runs is performed.
software Matlab 6.1.0.450. (The MathWorks, Inc.).

dcn ) fc(ycn); 0 e dcn e 1 (65)

Dn ) (∏
c

dcn)1/c (66)
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concentrations lacking any analytical significance, such
as negative values, since they are stopped without
reaching the final process time and the final acetic
concentration of the representative sequence. With these
sequences values close to zero are obtained for the
functions 2 and 3 of eq 67, although RMS values are not
so bad due to the limited points to compare. The sets of
parameters that provide extremely fast simulated pro-
cesses are also penalized because the final process time
is very low compared to the final process time of the
representative sequence, so the value of function 2 in eq
67 is close to zero. The sets of parameters providing very
slow simulated processes are penalized since the simula-
tion is always stopped when the final process time of the
representative sequence is reached, and thus the RMS
is very high and the acetic concentration reached is very
low, and thus the values of functions 1 and 3 in eq 67
are very low. All in all, the sets of kinetic parameters
providing extremely long or short process times in the
simulation and/or reaching a final acetic concentration
far from the real sequence have been seriously penalized.

• On the other hand, all the single functions must give
maximum values to obtain a maximum global value,
conferring a more selective power on the evaluation
function, particularly in simulated sequences with a
similar low value for the RMS and with a final process
time and a final acetic acid concentration similar to those
of the representative sequence but with very different
shapes. In this case, the sets of kinetic parameters
providing a sequence data with a linear segment in the
simulation similar to the data with a linear behavior in
the real data sequence are rewarded, because a value
very close to 1 is reached for the function 4 in eq 67.

• The desirability function is scaled between 0 and 1,
allowing for an objective comparison of the adjustment
of each simulation to the representative sequence.

In short, the desirability function provides better
discrimination abilities for the algorithm than the RMS
method.

Results and Discussion

Predictive Ability of the Kinetic Models Evalu-
ated. Some specific considerations were applied to the
simulations:

• Nanba et al. do not propose any specific relationship
between their expression for µg and the kinetic for the
product and the substrates, but a growth-associated
kinetic (eqs 26-28) was assumed to be the most suitable
one.

• Nanba et al. and Bar et al. did not model the death
rate, and thus the expression proposed by Mesa et al.
(1994) was applied with the parameters recalculated by
Caro et al. (1996).

• The value for the coefficient Y ′X/E was that calculated
by Gómez and Cantero (1998), since it provides with a
good estimation in a closed system without evaporation
losses. The value for Y′X/O was calculated from eq 29,
taking a value 1.04 × 10-2. With Park et al. and Ito et
al.’s models, the value calculated by Park, 1.32 × 10-2,
was used.

• The initial nonviable biomass in simulations with
Park et al. and Ito et al.’s models was considered to be
zero. According to these models, the nonviable biomass
appears only when a particular level of acetic acid is
reached.

• With Romero et al.’s model, the value of µm was
calculated with eq 18 to simulate the process at 29.5 °C,
the average temperature for industrial fermentation. In

the other simulations, the experimental data to adjust
the parameters of each model were taken with temper-
atures very close to 29.5 °C, i.e., 30 and 28 °C (Nanba et
al.’s model).

• Oxygen conditions in the simulation with Romero et
al.’s model (1994) were controlled to keep the oxygen
concentration constant at 1.6 ppm, the optimum value
calculated in their work. In the other simulations, the
oxygen concentration did not have any impact at the
specific rates and therefore the oxygen control kept the
concentration constant at 0 ppm, simulating the indus-
trial process, where the oxygen required is contributed
to the cell.

• In their work, Park et al. did not provide the value
of the kinetic parameter m. For the simulation, it was
considered that it takes the same value as n (1.766), as
it had been considered in the work by Ito et al.

To sum up, six simulations were developed. The acetic
acid concentrations provided by the simulations are
reported and compared in Figure 3. It is shown that the
simulations stopped between approximately 83 and 100
g/L, depending on the model. The acetification rates were
very low in five of the models, less than 0.5 g/(L‚h), but
with the Kruppa-Vortmeyer model, a high rate was
calculated, although the simulation finished with less
than 110 g/L of acetic acid. Despite that, with this model
the simulation best adjusted to the real sequence was
obtained. A high concentration of residual ethanol was
unoxidized, according to these models.

The main reason for this bad predictive capability is
the inhibition by the acetic acid accumulation proposed
in each model. The industrial process does not exhibit
such an inhibition; indeed, the fermentation processes
of alcoholic substrate different from wine reach acetic
concentrations of about 150 g/L. Therefore, the decrease
in the rate of acetification can only be related to a
decrease in the cell growth due to ethanol consumption.

On the other hand, the data for most of the works were
taken in laboratory systems under conditions very dif-
ferent from the real ones in an industrial plant and in
highly idealized mediums in most of the cases, when the
bacteria are actually able to adjust their life cycle to hard
mediums as the industrial ones, without sterilization,
nutrients, or ideal pH conditions. Furthermore, in some
cases such as the work by Bar et al. (1987), a limitation
in the experimental conditions (it was only possible to
obtain 40 g/L because of the initial ethanol concentration)
makes the model detect a false inhibition of the cell
growth with concentrations of acetic acid higher than 40
g/L, when this is actually due to the depletion of ethanol.

To conclude, these models with the original calculation
of the kinetic parameters are unable to explain the
behavior of the industrial acetification. Therefore, a new
kinetic model is required to model the fermentation and
to develop a proper simulation tool in order to optimize
the process and propose new fermentation systems.

Parameters Optimization of New Model by Ge-
netic Algorithm Developed. The genetic algorithm is
stochastic, and thus after running the program several
times, an optimized set of parameters was obtained. The
ranges allowed for n, µd, and Xvi were the logical ones
from the point of view of the biological knowledge of the
model proposed. The ranges for K1 and K2 were very large
in the first runs to explore the whole experimental
domain and find the areas with the best predictive
ability. Then, these areas were studied to find the best
zone and gradually the allowed range was shortened until
the range with which the last runs were performed was
obtained.
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This methodology cannot be applied with an ordinary
nonlinear regression technique, where an initial estimate
of the values of the parameters is required.

The optimized set of parameters is reported in Table
3. Figure 4 shows the output of the simulation for the
batch process with the optimized new model. The high
ability of the model to simulate the evolution of the
concentrations in industrial fermentators is shown in the
comparison with the representative sequence of the
industrial process (dotted line) and even more in the
graphic that represents the predicted acetic acid concen-
trations versus the measured acetic acid concentrations.
A very low value for the RMS is obtained (0.0023), the
values of the final process time and the final acetic acid
concentration simulated are almost the same as in the
representative sequence, and the linear segment of the
simulation data is very close to the linear segment of the
representative sequence, so a high value for the response
of the genetic algorithm, 0.92, is provided.

In Figure 5 the values for the RMS and the response
multiplied by a factor of 1000 obtained in simulation with
the classic models and the new model are compared. The
values for the RMS with the other models evaluated are
very high if they are compared to the low value obtained
with the new model, and therefore it is not possible to
discriminate this value in the scale. Figure 5 also shows
the radical differences between the very low values for
the responses obtained with the models studied and the
high value obtained by the new model optimized. Both
figures show definitely the extensive capability of the new

model to simulate the evolution of an industrial fermen-
tation process compared to the poor predictive capability
of the other models.

The value obtained for Xvi, 0.104 g/L, is 30% over the
initial total biomass measured, 0.35 g/L, a value not so
far from 20%, the standard value used by Caro et al.
(1996) and Macı́as et al. (1997), and it has been also used
in this work with the simulations to test the other
models. It should be considered that the value obtained
was calculated without any limitation due to the initial
total biomass, and thus the algorithm was free to explore
higher or lower values of initial viability. The higher
viability found in the optimization of the parameters
compared to the value of Caro et al. (1996) and Macı́as
et al. (1997) seems logical if one takes into account that
the bacteria is able to adjust their life cycle to the
industrial conditions.

In conclusion, it has been proved that the model
proposed is capable of explaining the industrial process
of acetic fermentation. Since it only depends on the
ethanol concentration, it can simulate properly processes
with different initial concentrations of ethanol and acetic

Figure 3. Acetic acid concentrations obtained in simulation with the models evaluated.

Table 3. Optimized Parameters of New Model

kinetic parameter optimized value

K1 7.845e-005 h-1

K2 7.844e-04 (g/L)n

n 3.631
µd 9.71e-02 h-1

Xvi 0.104 g/L
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acid, whereas the temperature and aeration conditions
are the same. Indeed, the model can be applied to
different configurations of the reactors, with the same
temperature and aeration conditions.

Response Surface Generated by the Desirability
Function. In Figures 6 and 7 are drawn different
projections of the desirability function over two of the
parameters. In each graph, the other three parameters
have been maintained constant and equal to the opti-
mized values obtained by the algorithm, that have been
reported in Table 3. The values for the desirability
function have been obtained by simulations with the
correspondent set of kinetic parameters and the same
simulation environment applied in the genetic algorithm.
The surfaces have been build with Matlab 6.1.0.450 (The
MathWorks, Inc.), using the surf function.

Figure 6 shows the projection of the desirability
function over a large range of values for K1 and K2. The
surface is extremely badly behaved, with several local
maximums. It is evident that gradient techniques and
classical nongradient techniques as the Simplex or the
Powell methods would have problems with this surface.

Such nongradient techniques would find a local maxi-
mum that it would depend on the start point. On the
other hand, an alternative to these methods is the
performing of a grid search spanning the whole space of
the parameters. However, because of the complexity of
the surface, this method would have required a very thick
grid to do the search along with guarantees of finding a
good solution. Therefore, this method would become very
time-consuming. The genetic algorithm method simplifies
and improves this search. The advantages of using
genetic algorithms applied to kinetic modeling have been
reported in the Computational Methods section and the
bad behavior of the response surface justifies further the
applying of this technique.

Although the matrix of responses projected in this
figure is very thick, the lowest values of the range are
not represented enough, due to the extremely large range
studied and the bad behavior of the response surface. The
range of low values for K1 and K2 provides the simula-

Figure 4. Simulation output of the new model with the optimized parameters.

Figure 5. Comparison of values obtained in simulation for the
RMS and the Response with all the models.

Figure 6. Response surface of the desirability function over
K1 and K2. The rest of the parameters are maintained constant
and equal to the optimized values of Table 3.
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tions with the best values for the desirability function,
so the values of the response in Figure 6 are low.

In Figure 7 are drawn four projections of values of the
desirability function over four couples of kinetic param-
eters. The ranges are narrower than in Figure 6 and more
closed to the final optimized values reported in Table 3.
Therefore, the values for the desirability function are
better than in Figure 6. In any way, the surfaces are very
badly behaved, with several local maximums and the
same conclusions that those inferred from Figure 6 can
be applied to these figures. The global maximum found
by the genetic algorithm is not shown in the graphs
because of the amount of local maximums that can be
found. Indeed, it would be necessary to obtain an
extremely thick matrix of responses to show all the
possible maximums that the function can reach. As has
been explained before, it would be almost impossible to
find the best set of parameters applying gradient search
techniques, classic nongradient methods, or a full grid
search.

Finally, an interesting conclusion about the values of
K1 and K2 is inferred from Figure 6 and Figure 7a. The
best results for the desirability function are obtained
when K1 and K2 are very similar and they are within a

low range of values, as has been reported before. In this
way, in Figure 6 the surface adopts the form of chains of
“mountains” that cross through the range. Each chain
of maximums corresponds to similar values of K1 and K2

within a different range. Indeed, in Figure 7a is shown
the chain of maximums that corresponds to similar
values of K1 and K2 in a range closed to the optimized
values.

Conclusions

The six models studied cannot explain the behavior of
an industrial fermentation process. According to these
models, the maximum acetic concentration that can be
obtained is within the range of 83-100 g/L. These models
propose some inhibitory effects of the acetic acid that
cannot be inferred from an industrial point of view.

The new kinetic model proposed solves this problem,
and the genetic algorithm can successfully optimize the
kinetic parameters. Only a representative sequence of the
acetic acid concentrations from the industrial fermenta-
tors is needed. The desirability function used as the
evaluation function can select the best set of parameters
for the model. The simulated acetic acid sequence ob-

Figure 7. Response surface of the desirability function over (a) K1 and K2; (b) µd and n; (c) Xvi and n; (d) µd and Xvi. The rest of the
parameters are maintained constant and equal to the optimized values of Table 3.
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tained with the model is perfectly adjusted to the
representative sequence of industrial concentrations.

The projections of the desirability function over differ-
ent couples of kinetic parameters show extremely com-
plex and badly behaved surfaces, with several local
maximums, making very difficult the search of the best
set of parameters by classic gradient and nongradient
techniques and by a full grid search.

Given the good results obtained with the model, it is
currently being used to develop new industrial fermenta-
tion systems. Provided that the desirability function is
adapted, the algorithm might be used to optimize the
process in terms of economies.
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Notation
A acetic acid concentration (g/L)
Ar final acetic acid concentration reached in the real

sequence (g/L)
As final acetic acid concentration reached in the

simulation (g/L)
Br slope of data with a linear behavior in the real

sequence (0-20 h)
Bs slope of data in the simulated sequence with a

process time range of 0-20 hours
dcn value of the single desirability function for the

ycn response
Dn value of the global desirability function for the

n sample
DW dry weight
E ethanol concentration (g/L)
fc kind of single desirability function chosen for the

selected criterion c
k specific death rate for the conversion of viable

cells into nonviable cells (h-1)
MEtOH molar mass of ethanol (g/mol)
MHAc molar mass of acetic acid (g/mol)
O oxygen concentration (g/L)
qA specific rate of acetic acid production (h-1)
qAm maximum specific rate of acetic acid production

(h-1)
r observed cell growth rate (gDW/L‚h)
rA overall acetic acid production rate (g/L‚h)
rA-AcEt acetic acid consumption rate by ethyl acetate

formation (g/L‚h)
rA-X rate of acetic acid excreted by biomass (g/L‚h)
rd overall cell death rate (gDW/L‚h)
re rate of consumption of organic cell matter in

endogenous respiration (gDW/L‚h)
rE overall rate of ethanol consumption (g/L‚h)
rE-AcEt ethanol consumption rate by ethyl acetate for-

mation (g/L‚h)
rE-m ethanol consumption rate for the production of

maintenance energy (g/L‚h)
rE-P ethanol consumption rate for the formation of

products (g/L‚h)
rE-X ethanol consumption rate for the production of

biomass (g/L‚h)
rg overall cell growth rate (gDW/L‚h)
rl cell lysis rate (gDW/L‚h)

RMS root-mean-square of the differences in the acetic
acid concentrations between the simulated and
the representative sequence

rO overall rate of oxygen consumption (g/L‚h)
rO-m oxygen consumption rate for the production of

maintenance energy (g/L‚h)
rO-P oxygen consumption rate for the formation of

products (g/L‚h)
rO-X oxygen consumption rate for the production of

biomass (g/L‚h)
rP overall product formation rate (g/L‚h)
rS overall rate of substrate consumption (g/L‚h)
rS-m substrate consumption rate for the production of

maintenance energy (g/L‚h)
rS-P substrate consumption rate for the formation of

products (g/L‚h)
rS-X substrate consumption rate for the production of

biomass (g/L‚h)
tr process time in the real sequence (h)
ts process time in the simulation (h)
Xd death biomass concentration (gDW/L)
Xnv nonviable biomass concentration (gDW/L)
Xt total biomass concentration (gDW/L)
Xv viable biomass concentration (gDW/L)
Xvi initial viable biomass concentration (gDW/L)
YA/E acetic acid/ethanol stoichiometric coefficient
YA/O acetic acid/oxygen stoichiometric coefficient
ycn response of the n sample for the c criterion
YE/O ethanol/oxygen stoichiometric coefficient
Y ′X/E biomass/ethanol yield factor
Y ′X/O biomass/oxygen yield factor

Greek Symbols

µ observed specific growth rate (h-1)
µd overall specific death rate (h-1)
µg overall specific growth rate (h-1)
µm maximum specific growth rate (h-1)
γ specific death rate for the conversion of nonviable

cells into dead cells (h-1)
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