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SUMMARY

A new method for the elimination of useless predictors in multivariate regression problems is proposed. The
method is based on the cyclic repetition of PLS regression. In each cycle the predictor importance (product of the
absolute value of the regression coefficient and the standard deviation of the predictor) is computed, and in the
next cycle the predictors are multiplied by their importance. The algorithm converges after 10–20 cycles. A
reduced number of relevant predictors is retained in the final model, whose predictive ability is acceptable,
frequently better than that of the model built with all the predictors. Results obtained on many real and simulated
data are presented, and compared with those obtained from other techniques. Copyright 1999 John Wiley &
Sons, Ltd.
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INTRODUCTION

Regression techniques are widely utilized in chemistry, mainly in analytical chemistry for
multivariate calibration and in medicinal chemistry for QSAR problems. In both cases a regression
technique searches for a mathematical model which gives the value of a response variable as a
function of a number of predictors. Frequently many predictors are useless (only noise), and many
useless predictors cause a worsening of the predictive ability of the regression model. For this reason
many techniques have been developed to build the regression model only with relevant predictors.

These techniques can be classified in three categories.

(a) Subset selection.A number of regression models are built by different subsets of the predictors;
the performance of the models is evaluated, and it is used to search for other subsets. The most
important example of this class is selection by means of genetic algorithms (GAs).1 GAs have
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the advantage of exploring fairly well the space of all possible subsets in a large but reasonable
time, much less than that required by the study of all possible subsets. Moreover, GAs offer the
choice between a number of possible optimal or near-optimal subsets. The model performance
is evaluated in predictive optimization, so that it is necessary to use an external set to evaluate
the true predictive ability of the selected subsets, with a heavy increase in computing time.2

(b) Dimension-wise selection.A biased regression technique is built progressively, or by addition
of predictors, as in stepwise ordinary least squares (SOLS) regression, or by addition of ‘latent
variables’, the principal components of principal component regression (PCR) or partial least
squares (PLS) regression. Dimension-wise techniques work on a single dimension. Martens
and Naes3 suggested replacing with zero the small PLS weights in each latent variable, so that
the corresponding predictors are cancelled from the latent variable, but can be used in one or
more of the following. Frank4 improved this procedure in the technique called intermediate
least squares (ILS). Different strategies, all working on the PLS weights, were used by
Kettaneh-Woldet al.,5 Lindgrenet al.6 (interactive variable selection—IVS) and Forinaet al.7

(automatic variable selection—AVS)
(c) Model-wise elimination.The regression model is developed with all the predictors. Then

useless predictors are eliminated on the basis of the value of their regression coefficientb in the
regression model

y� b0� b1x1� . . .� bvxv � . . .� bVxV �1�
(c) The elimination of predictors with small regression coefficients (provided that the regression

model has been computed with autoscaled predictors) was suggested.8 This procedure will be
indicated by BAUT.

ISE (iterative stepwise elimination)9 is based on the importance of the predictors, defined as

zv � jbvjsvPV
v�1
jbvjsv

�2�

wheresv is the standard deviation of the predictorv. In each elimination cycle the predictor with the
minimum importance is eliminated, and the model computed again with the remaining predictors.
The final model is that with the maximum predictive ability.

UVE-PLS (uninformative variable elimination PLS)10 adds to the original predictors an equal
number of random predictors with very small value (range of about 10710), so that their influence on
the regression coefficients of the original predictors is negligible. The standard deviation of the
regression coefficients,sbv

, is obtained from the variation of the coefficientsb by leave-one-out jack-
knifing. The reliability of each predictorv, cv, is obtained by

cv � bv

sbv

�3�

The maximum of the absolute value of the coefficientcv for the added artificial predictors is the cut-
off value for the elimination of non-informative original predictors. In UVE-� the cut-off value is the
�% value of the distribution of the absolute values ofcv, so that more original variables and some
uninformative predictors are retained.

Stepwise OLS (below simply SOLS) is based on the use of anF-test. Here SOLS was modified to
made the selection predictively. Objects are divided into the cancellation groups of cross-validation.
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For each cancellation group, SOLS selects a number of predictors, and for each SOLS step the
prediction error is evaluated on the left-out objects. Finally the prediction variance is obtained as a
function of the number of entered predictors, and its minimum indicates the suitable number. The
corresponding predictors are selected in a final run with all the objects in the training set.

In this paper a new procedure for model-wise elimination of useless predictors is presented. This
procedure is based on the cyclic repetition of the PLS algorithm, each time multiplying the predictors
by their importance computed in the previous cycle (unity in the first cycle). The performances of this
procedure (IPW-PLS—iterative predictor weighting PLS) are shown on several artificial and real data
sets, and compared with results obtained by UVE-PLS, ISE-PLS and SOLS.

THEORY

IPW algorithm

The PLS-1 (one response variable) algorithm is based on the marginal regression (straight line
through the origin, generally after centring) of each predictor on the response. The vector of slopesw
(wT = yT X/yT y) is normalized (wnew= wold/kwoldk), so that its elements (the PLS weights) become
direction cosines, which identify the first PLS latent variable. The weight of a given predictor depends
on its correlation coefficient with the response and on its magnitude, so that it is a function of the pre-
treatment. A useless predictor always has a correlation coefficient slightly different from zero, so that
it influences the latent variables and has a small regression coefficient in the regression equation (1).
By reducing its magnitude, by multiplication by its small importance, its contribution to the model
decreases. This procedure is repeated many times in IPW, which modifies the PLS algorithm as
follows (Z is the diagonal matrix of importances from equation (2)).

[a] SetZ = I (identity matrix).
[b] SetX: original matrix of predictors,y: original vector of response.
[c] Scale predictors and response.
[d] Multiply the matrix of predictors by the diagonal matrix of importances:X ) XZ .
[e] wT = yTX/yTy.
[f] wnew= wold/kwoldk.
[g] t = X w.
[h] c = tTy/tTt.
[i] pT = tTX/tTt.
[j] X ) X 7 t pT.
[k] y) y 7 c t. Go to step [e] to compute the next PLS latent variable. The complexity of the

model is obtained by predictive optimization.
[l] ComputeZ with the significant number of PLS components (the regression coefficientsb are

referred to the original predictors).
[m] If required, delete predictors with importance less then a cut-off value. RecomputeZ. Go to

step [b] for the next IPW cycle.

Full validation

Presently it seems well recognized that the predictive ability of a regression technique must be
evaluated on objects that have never been used in the development of the regression model, from the
pre-treatment (e.g. centring) to the evaluation of the model complexity. This requirement was not
very clear when PLS was introduced in chemistry, so that in the first commercial package, cross-
validation was used to evaluate the complexity of the model, but the centroid for centring was
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computed with all the objects.
Full validation (FV)11 is based on the subdivision of objects into three sets: training set, predictive

optimization set and evaluation or external set. The training set is used to compute the model
parameters. The optimization set, built according to the cancellation groups of cross-validation or
with the leave-one-out procedure, is used to evaluate the optimum complexity of the model, and, in
the case of the elimination of predictors, also to select the predictors. The evaluation set is used to
evaluate the predictive performance of the regression model.

The evaluation set can be a unique ‘external’ set. In this case it must be constituted by a large
number of objects to be representative; an external evaluation set is frequently used in the case of
simulated data, as here for data set CRESOLS described below. We will indicate this case simply as
that of the external set.

Alternatively, the evaluation set can be built according to cancellation groups. WithN objects we
can haveE� N cancellation groups for evaluation. For each evaluation group,M objects are used to
develop the regression model (M = N 7 N/E; in the case whereM is not an integer, the number of
objects in the cancellation groups is int(M) or int(M)�1). P internal cancellation groups are used for
the optimisation, so that each training set containsT = M - M/P objects.

The predictive parameters are indicated as FV–SEP (standard error of prediction or residual
standard deviation of prediction), FV explained variance, etc. In the case of the use of the external set
the word ‘external’ is added to the FV parameter.

The estimate of the predictive ability obtained without the evaluation set, only on the basis of the
explained variance on the optimization set, is indicated by means of CV–SEP, CV explained
variance, etc.

EXPERIMENTAL

Many simulated and real data sets, with number of objects from ten to 100 and number of variables
(predictors) from 19 to 601, have been used. No detailed study of the effect of pre-treatments has been
made. Generally, data were column centred. In the case of data set CRESOLS, some results with
autoscaled data are also reported, to show the performance of IPW in the case of a wrong pre-
treatment. In the case of data set ANALOGUES, where the predictors are of a different nature and
magnitude, data have been autoscaled.

Computations were made in FORTRAN (Microsoft FORTRAN Powerstation) and Matlab,
Version 5⋅1 (The Math Works, Inc.).

SIMUIN

These simulated data are similar to those used in the paper introducing UVEPLS,10 with the
difference that many data matrices were used, with different seeds from random number generation.
The naming of matrices below is that used in Reference 10.

A matrix S1 (N� 100), withN = 10, 25 or 100 (25 in Reference 10), was generated with random
numbers from a uniform distribution (0,1). Principal component analysis (PCA) ofS1(after column
centring) produces the matrices of scoresS and loadingsL . The first five scores were multiplied by
the first five loadings, giving a simulated pure data matrixSIM with complexityA = 5:

SIMN;100� SN;5 L5;100

The vector of response variabley was obtained from the first five scores as
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yN;1 � S100;5

5
4
3
2
1

266664
377775

A matrix of uninformative predictorsUI (N� 100) was obtained with random numbers from a
uniform distribution (0,1). The matrixSIMUI (N� 200) incorporates the noise-free data matrices
SIM andUI :

SIMUI � �SIM UI �
A noise matrixNO (N� 200) was obtained with random numbers from a uniform distribution

(0,0⋅005), with small (compared with those (0–1) inSIMUI ) elements. The final matrix of predictors
SIMUIN (N� 200) is the sum ofSIMUI andNO:

SIMUIN � SIMUI � NO

It is indicated below with the number of objects and with the seed of generating randomization, e.g.
as SIMUIN-25-1

In Reference 10, PCA ofSIM yielded relative (%) eigenvalues 23⋅02, 21⋅28, 19⋅50, 18⋅74 and
17⋅46. We obtained for the three different generations ofSIM (25� 100):

SIMUIN-25-1: 22⋅61, 21⋅52, 19⋅38, 18⋅61, 17⋅88
SIMUIN-25-2: 23⋅88, 20⋅82, 19⋅79, 18⋅87, 16⋅64
SIMUIN-25-3: 22⋅20, 21⋅00, 19⋅82, 19⋅13, 17⋅85.

The difference between the first and the fifth eigenvalue diminishes with increasingN.Because of the
generation procedure, the objects in these matrices can be considered as being distributed in a five-
dimensional hypersphere in the space of the 100 predictors.

CRESOLS

This semi-simulated data set was studied to compare our results with those obtained by Carney and
Sanford12 in 1953 with the use of classical multicomponent analysis on mixtures of the three cresols.
The spectra of the three pure cresols at a concentration of about 0⋅04 g 171 were recorded in the range
240–300 nm, at 0⋅1 nm intervals, and were corrected for differences in concentration. These spectraL
(3� 601) are shown in Figure 1. A matrix of concentrations (responses)Y (350� 3) was obtained by
random extraction from a uniform distribution (0,1). Each row was normalized to have sum unity. A
noise-free matrix (350� 601) of predictors was obtained asX = YL . Gaussian noise with standard
deviation 0⋅0002 (about 0⋅03% of the respective maximum absorbance) was added to this matrix to
obtain the final matrix of predictors. The first 50 objects were used to develop the regression model,
the other 300 as an external evaluation set.

SOY

This data set consists of 60 samples of soy flour, with spectra measured with a spectrophotometer
from 1072 to 2472 nm (176 wavelengths retained from the original 701) (SOY-1) or with a filter
instrument with 19 filters (SOY-2). The response variables are moisture, protein and oil. The details
are reported in the original paper.13

ITERATIVE PREDICTOR WEIGHTING PLS 169

Copyright  1999 John Wiley & Sons, Ltd. J. Chemometrics, 13, 165–184 (1999)



ANALOGUES

Ninety-five conformers of 42 molecules (38 milrinone analogues; two lead compounds, amrinone and
milrinone; and two commercial products) were studied9 with 30 theoretical descriptors (MW, Dmx,
DMy, DMz, DM, Hf, IP, EL, qC1, qC2, qC3, qC4, qN5, qH6, qC7, qO8, qH9, Mia, Mib, Mic, VdWA,
SA, V, Vand10_1, Vor10_1, Vnot10_1, Vand11_1, Vor11_1, Vnot11_1, cLOGP). The response,
ICdt10E-3, is the positive inotropic activity at 1073 M, evaluated using a homogeneous experimental
model (the spontaneously beating and electrically driven left atrium from reserpine-treated guinea
pigs). In the original paper, four strategies are described for the elimination of conformers and useless
predictors. Here this data set was used as in strategy A, step 1, described in the original paper,9 where
all conformers are retained and the descriptors are progressively eliminated by means of ISE-PLS.
The final model obtained9 was with seven descriptors (DMy, Hf, Mia, VdWA, Vor10_1, Vor11_1,
cLOGP), two latent variables, 77⋅9 CV explained variance (20 cancellation groups), 20⋅80 CV-SEP
and 17⋅2 CV, mean prediction error.

RESULTS AND DISCUSSION

Taking into account the number of predictor matrices and of the response variables, 19 response–
predictor combinationsy–X have been studied. Results are presented as follows:

Set(s) Responses Objects Predictors Figures Tables

SIMUI 1 10, 25, 100 200 2–7 1–4
CRESOLS 3 50� 300 601 8, 9 5, 6
SOY 3 60 176 – 7, 8
ANALOGUES 1 95 30 10 9

Only a limited number of combinations of the number of FV cancellation groups, of the CV
internal groups, of the number of IPW cycles and of pre-treatments were studied. The effect of the
cut-off value (point [m] of IPW algorithm) was not studied, and always here IPW was applied without
this cut-off. Only a part of the results are reported, with the objective to present the performances of
IPW in a wide number of conditions, and to compare the results with those of other elimination
techniques (UVE, ISE, SOLS). Also, these techniques were applied without exploration of all the
possible settings.

Data sets SIMUI were used to show the fundamental behaviour of the IPW algorithm, because of
their special nature (possibly useful and surely useless predictors) and their use in the development of

Figure 1. UV spectra of three cresols used for data set CRESOLS
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the UVE algorithm.10 In the case of data set CRESOLS the knowledge of the spectra of pure
compounds permits the easy interpretation of the retained predictors. A further characteristic is that
the predictors with small range are associated with noise, so that the correct scaling procedure is
centring.

The other data sets are examples of real data, and they were used because of their different nature or
because of the very different number of predictors and objects.

Data sets SIMUI

Convergence

IPW always converges to a steady state. The convergence is obtained after 10–20 cycles, and only a
fraction of the predictors are retained. Sometimes the system oscillates between two almost
equivalent states, with the same retained predictors but with a very small difference in their
importance. Usually this difference regards only two predictors. Figure 2 shows a typical trend. In the
first cycle the predictors (here the 200 predictors of data set SIMUIN-25-1) have importances
between about 0⋅01 and 0⋅0001. With the iterations the predictors with very low importance rapidly
disappeared.

All the predictors are retained in the first cycles. Then the number of retained predictors diminishes
rapidly, and finally it becomes constant. Frequently the complexity of the PLS model decreases.

The CV residual standard deviation generally (not always) decreases from the first cycle with the
unweighted predictors. It becomes almost constant in the steady state. Sometimes CV-SEP shows a
minimum at an intermediate number of cycles, but the following increase is very small. The effect on
CV-SEP is usually large in the first cycle, as shown in Figure 3.

At the end of each IPW cycle the PLS algorithm retainsA significant latent variables (complexity
of the regression model) and (withV predictors andN objects) produces a matrix of weightsW
(A� V) and a matrix of scoresT (N� A). The estimate of theN responses is obtained by

y � Tc � XWc �4�

wherec is the vector of theA regression coefficients computed in step [h] of the algorithm. For a

Figure 2. Logarithmic plot of importance of predictors (SIMUIN-25-1, ten internal cancellation groups). The
index of the retained and of the last cancelled predictor is indicated
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generic objectx (used or not to build the model),

y � tTc� xTwc �5�
Equation (5) was used to compute, as suggested by Marengo and Todeschini,14 the regression

coefficientsb. A pseudo-objectx = 0 introduced in (5) gives the value of the interceptb0. Others
pseudo-objects, such asxT = [0 0 0 … 1 … 0 0 0], give the sumsv = b0� bv, wherev is the
index of the predictor corresponding to the single ‘1’ in the pseudo-object. Finally the regression
coefficient of the predictorv is obtained from

bv � sv ÿ b0 �6�
The example in Table 1 shows that for a predictor with small importance, graduallysv and b0

become very similar, untilbv becomes zero because of the limited number of digits in double-
precision variables.

Predictors retained

In the case of data sets SIMUIN the first 100 predictors (those in matricesSIM ) are the possibly
useful predictors. The second 100 predictors, from 101 to 200, are the useless predictors from
matricesUI . Table 2, shows that IPW retains some useful predictors and also some useless predictors.
The importance of the retained useless predictors is generally very small. When the number of objects
is small, as in SIMUIN-10-1, many useless predictors can be retained in the final model. In the case of
few objects there is the possibility of chance correlation of a useless predictor or of its residuals with
the response. For example, for SIMUIN-10-1 the correlation coefficient of predictor 83 (the only
useful predictor retained by the final model) was 0⋅848; the correlation coefficient of predictor 153
(useless predictor retained with large importance from the final model) was 0⋅841, about the same. As
the number of objects increases, the number of useless predictors retained diminishes and their
importance becomes very small, so that their total contribution to the response becomes smaller than
the residual standard deviation.

When the final model retains some useless predictors with great importance, as for SIMUIN-10-1,
the CV residual variance is relatively large, but always with an improvement in comparison with the

Figure 3.CV standard error of prediction as a function of number of PLS latent variables. Data set SIMUIN-25-1: 1,
first IPW cycle (Z = I ); 2, second IPW cycle; 3, third IPW cycle; 4, final (after 15 IPW cycles)
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original model with all the predictors. Table 3 shows that the largest residual variances were obtained
in the case of data sets SIMUI-10-1 and SIMUI-10-3, where three useless predictors in the first case
and one in the second case have importance larger than 0⋅1. In the case of SIMUI-10-2 only one
useless predictor is retained by the final model. Its importance is less than 0⋅001; the residual variance
of the IPW model is very small.

Comparison with other techniques (ISE, UVE, SOLS)

Results with SIMUI allow doing a first comparison with the other elimination techniques.
The final IPW model retains a very small number of predictors, only comparable with that of SOLS

(Table 3). ISE retains a medium number of predictors. UVE is the most conservative technique.
When the number of objects is not too small, UVE and ISE have the best CV performance. SOLS

has in general the worst performance.
With a small number of objects UVE can give anomalous results, as in the case of SIMUI-10-3

(residual variance of 43⋅51%). In effect, UVE reliability of the additional predictor 324 is very large
(Figure 4), so that only one good predictor (93) is retained. In these cases UVE-� can be used instead,
but that obliges one to search for a suitable value of�. In the case of SIMUI-10-3 a satisfactory result
was obtained with UVE-� with � = 0⋅95.

UVE cannot retain useless predictors. UVE-� in the only case studied here retains four useless
predictors and 21 useful predictors, with a CV performance worse that that of IPW with one useless
predictor and five informative predictors.

Among the predictors retained by ISE there are very few useless predictors. Generally they have
very low importance.

Both IPW and ISE frequently allow the elimination of other predictors at the expense of a

Table 1. Numerical results during IPW iterations for most important predictor (84) and for one of less important
predictors (196). Data set SIMUI–25–1

IPW cycle Predictor 84 Predictor 196

Initial standard deviation 2⋅048875133131352E7 001 2⋅564897139548127E7 001
1 Weight (component 1) 71⋅960799873196674E7 001 78⋅451312763778680E7 003

sv 71⋅265042918223083 71⋅966486533995359E7 002
b0 71⋅414618803343700E7 002 71⋅414618803343700E7 002
bv 71⋅250896730189646 75⋅518677306516595E7 003
Importance 1⋅682111045239174E7 002 9⋅290148738760088E7 005

2 Weight (component 1) 72⋅619498974962820E7 001 76⋅235584109844592E7 005
sv 73⋅357588856779203 2⋅827773927035849E7 003
b0 2⋅815084113723183E7 003 2⋅815084113723183E7 003
bv 73⋅360403940892926 1⋅268981331266567E7 005
Importance 5⋅832545986514270E7 002 2⋅757251495745004E7 007

3 Weight (component 1) 74⋅792827561989897E7 001 79⋅765644655992529E7 008
sv 78⋅677369029608308 2⋅647770913795973E7 002
b0 2⋅647770925971893E7 002 2⋅647770925971893E7 002
bv 78⋅703846738868027 71⋅217591964752796E7 010
Importance 1⋅956028269473243E7 001 3⋅425469674289356E7 012

4 Weight (component 1) 77⋅754983736763804E7 001 75⋅853515805955138E7 013
sv 716⋅638775154196670 4⋅182441408902891E7 002
b0 4⋅182441408902891E7 002 4⋅182441408902891E7 002
bv 716⋅680599568285690 0⋅000000000000000E� 000
Importance 4⋅576462954430134E7 001 0⋅000000000000000E� 000
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negligible increase in CV-SEP.
ISE gives the possibility to observe CV-SEP or CV mean error as a function of the number of

eliminated predictors, as shown in Figure 5. In the case of SIMUIN-25-1 after the minimum residual
variance, reached with 23 predictors (three useless), the increase in variance is very small. Many other
predictors can be eliminated (the first are the three useless predictors) without a significant worsening
of performance. With only six predictors the CV residual variance is only 0⋅0009, one-half that
obtained from IPW with ten predictors (five useless). The stepwise elimination of the predictors with

Table 2. Data sets SIMUIN. Importance of predictors retained by IPW (30 IPW cycles, ten CV cancellation
groups). Effect of number of objects and of randomization. Useless predictors underlined

SIMUIN-10-1 SIMUIN-10-2 SIMUIN-10-3

v Importance v Importance v Importance

83 0⋅4395 24 0⋅5303 30 0⋅2657
115 0⋅1080 57 0⋅0459 39 0⋅1225
153 0⋅2715 60 0⋅3906 93 0⋅1032
162 0⋅1809 62 0⋅0156 94 0⋅2709

71 0⋅0166 144 0⋅0996
142 0⋅0010 185 0⋅1380

SIMUIN-25-1 SIMUIN-25-2 SIMUIN-25-3

v Importance v Importance v Importance

3 0⋅2118 35 0⋅4422 15 0⋅1552
8 0⋅0335 45 0⋅0707 24 0⋅1830

21 0⋅1037 50 0⋅0530 48 0⋅1174
78 0⋅0748 51 0⋅0598 55 0⋅3270
84 0⋅5660 77 0⋅3712 92 0⋅2088

107 0⋅0028 150 0⋅0030 110 0⋅0023
131 0⋅0018 168 0⋅0014
160 0⋅0025 187 0⋅0018
183 0⋅0018 194 0⋅0014
188 0⋅0015 195 0⋅0018

SIMUIN-100-1 SIMUIN-100-2 SIMUIN-100-3

v Importance v Importance v Importance

5 0⋅0657 22 0⋅0569 11 0⋅1623
17 0⋅0967 24 0⋅1053 18 0⋅1171
30 0⋅1238 27 0⋅1152 34 0⋅0340
34 0⋅1075 66 0⋅1849 54 0⋅0877
36 0⋅0717 68 0⋅0935 60 0⋅1047
37 0⋅2002 69 0⋅1128 69 0⋅1207
38 0⋅1002 71 0⋅0611 77 0⋅1606
50 0⋅0772 83 0⋅0639 78 0⋅1684
53 0⋅0775 90 0⋅0409 87 0⋅0336
63 0⋅0785 95 0⋅1259 96 0⋅0108

143 0⋅0006 98 0⋅0383
183 0⋅0004 116 0⋅0005

159 0⋅0010
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smallest importance from the final IPW selection gives a model with five useful predictors and CV
residual variance of 0⋅0033.

Full validation

Figure 6 shows that the decrease with the IPW cycles in the number of predictors depends on the
composition of the training–optimization set, in spite of the small perturbation produced by the
cancellation of one or two objects. For example, in the case of SIMUI-25-1 the cancellation group 12
(two objects in the prediction set) retains only predictors 3, 8, 21, 78 and 84, i.e. only the good
predictors of the final model (see Table 2). The five useless predictors are not retained in this group.
Also the quality of the retained predictors can change, more frequently in the case of useless
predictors.

In Table 4 the IPW result of full validation is compared with the CV residual standard deviation.
FV-SEP is shown also in Figure 7. The first cycle, with all the unweighted predictors, corresponds to
the usual PLS. Here the difference between FV-SEP and CV-SEP is due to the fact that the optimum
complexity of the partial models computed during the external cancellation cycles can be different
from that computed with all the objects in the training–optimization set. This difference, negligible in
the example in Table 4 (about 1%), is usually small, not more than 20% in our experience. In the case
of data sets SIMUI both CV-SEP and FV-SEP decrease with the iterations and reach an almost stable
value, but the FV standard deviation is much larger (100%–300%) than that obtained during the
optimization. Thus the evaluation of predictive performances from CV-SEP is for IPW too optimistic.
Moreover, the trend shown in Figure 7 is not general, as seen below in the case of data set CRESOLS.

Data set CRESOLS

Because of the small but realistic noise added to the predictors, almost all predictors give useful

Table 3. Data sets SIMUI. For each elimination technique are reported the number of retained predictors and the
CV residual variance. Ten internal cancellation groups

Objects
10 25 100

Randomization 1 2 3 1 2 3 1 2 3

None 200 200 200 200 200 200 200 200 200
% Res. var. 47⋅10 51⋅02 68⋅13 11⋅46 13⋅86 21⋅63 1⋅87 1⋅70 1⋅81

IPW 4 6 6 10 6 10 12 13 10
% Res. var. 5⋅1162 0⋅0003 1⋅5579 0⋅0018 0⋅0020 0⋅0026 0⋅0018 0⋅0019 0⋅0024

UVE 17 17 25a 63 67 30 89 90 94
% Res. var. 0⋅9596 0⋅0006 0⋅1613 0⋅0003 0⋅0005 0⋅0005 0⋅0007 0⋅0008 0⋅0009

ISE 6 9 6 23 33 26 89 87 79
% Res. var. 0⋅0018 0⋅0014 0⋅0079 0⋅0003 0⋅0004 0⋅0002 0⋅0006 0⋅0007 0⋅0008

SOLS 3 3 4 4 7 5 9 6 30
% Res. var. 0⋅0068 0⋅0052 0⋅0164 0⋅0065 0⋅0137 0⋅0068 0⋅0070 0⋅0148 0⋅0023

a This result refers to UVE-� with � = 0⋅95.
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information. Thus UVE retains almost all predictors (Table 5, results with centred data), without
improvement in the prediction. ISE eliminates 60% of the predictors in the case ofo-cresol andm-
cresol with very overlapped spectra, and 93% in the case ofp-cresol, whose spectrum is more
differentiated. The noticeable reduction of predictors is obtained with a very small increase in the
prediction error.

Figure 4. UVE reliability (top, SIMUIN-25-1: bottom, SIMUI-10-3) with indication of uninformative predictors
and of predictors added by UVE

Figure 5. CV mean error in ISE elimination cycles (SIMUIN-25-1, ten internal cancellation groups)
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IPW retains only ten predictors, at the expense of an increase in both the CV prediction error and
the FV error, as evaluated on the external set of 300 objects (Figure 8). The increase in CV-SEP
during the IPW cycles can be considered anomalous, characteristic of a rare (with real data) situation,
with almost all the predictors useful and with very little noise. SOLS retains generally more predictors
than IPW, and the prediction error is larger.

Autoscaling increases the effect of useless predictors with small range. Thus the performance of
standard PLS with autoscaled data was very bad, with residual standard deviation about ten times that
obtained with centred data, as shown in Table 5. Also UVE is very sensitive to the pre-treatment, with
a considerable worsening of performance. Both ISE and IPW are relatively insensitive to the pre-
treatment, with a moderate worsening of performance. The complexity of the regression model is

Figure 6. Number of retained predictors as a function of IPW cycle (SIMUIN-25-1, ten internal cancellation
groups). Squares refer to the 20 external cancellation groups. Triangles refer to the final cycle without objects in

the evaluation set

Table 4. Data set SIMUI-25-1. Standard errors of prediction in IPW cycles. Twenty external and ten internal
cancellation groups

IPW cycle CV-SEP FV-SEP

1 2⋅0158 2⋅0441
2 0⋅8898 2⋅3003
3 0⋅4713 1⋅8541
4 0⋅0934 1⋅1368
5 0⋅0354 0⋅6074
6 0⋅0238 0⋅1021
7 0⋅0220 0⋅0528
8 0⋅0221 0⋅0497
9 0⋅0220 0⋅0501

10 0⋅0218 0⋅0500
11 0⋅0220 0⋅0507
12 0⋅0221 0⋅0507
13 0⋅0221 0⋅0506
14 0⋅0222 0⋅0508
15 0⋅0222 0⋅0508
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high for all the techniques, about ten latent variables compared with two or three latent variables for
the models obtained with centred data.

Comparison with techniques based on original PLS regression coefficients

Data set CRESOLS with responseo-cresol is used also to show how the selected predictors are related
to the original regression vector with all variables. In this case IPW retains only ten predictors.

Table 6, shows the ten predictors with the larger value of the absolute regression coefficient in the
original PLS model, the ten predictors with the larger UVE relevance, the ten predictors with the
larger importance and the ten predictors with the larger value of the absolute regression coefficient
obtained with autoscaled data, procedure BAUT.8

Figure 7. FV standard error of prediction as a function of IPW cycle (SIMUIN-25-1, 20 external and ten internal
cancellation groups)

Table 5. Data set CRESOLS. Effect of elimination technique on number of retained predictors and on
corresponding CV-SEP

Centred Autoscaled

Elim. Predictors 106 CV-SEP 106 FV-SEP (ext.) Predictors 106 CV-SEP 106 FV-SEP (ext.)

o-Cresol None 601 87 95 601 726 587
IPW 10 330 447 9 311 511
UVE 594 87 95 540 680 595
ISE 241 85 100 81 137 171
SOLS 16 721 533

m-Cresol None 601 90 98 601 1285 832
IPW 10 245 320 17 133 274
UVE 601 90 98 592 1191 836
ISE 251 86 105 349 110 485
SOLS 16 430 514

p-Cresol None 601 39 49 601 667 514
IPW 10 93 107 9 96 128
UVE 587 39 49 475 478 377
ISE 44 20 78 38 23 101
SOLS 6 165 146
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Figure 8. CV-SEP and FV-SEP (external evaluation set) as a function of IPW cycle (CRESOLS, response
p-cresol, ten CV cancellation groups)

Table 6. Details about selection with different techniques. Data set CRESOLS, response o-cresol. Data are
reported only for the first ten predictors ordered according to the order of selection

(a) Regression coefficients, importance and relevance as obtained after standard PLS. Column 4 refers to
regression coefficients obtained with autoscaled predictors

Wavelength Abs(b) Wavelength
Abs(b)

(autosc.) Wavelength
UVE

relevance Wavelength Importance

277⋅5 0⋅04581 298⋅6 0⋅8746 270⋅4 14179 277⋅4 0⋅00880
277⋅6 0⋅04569 299⋅3 0⋅8169 269⋅5 12929 277⋅3 0⋅00877
277⋅4 0⋅04569 296⋅7 0⋅7352 270⋅2 12039 277⋅5 0⋅00874
277⋅7 0⋅04533 295⋅9 0⋅6937 268⋅8 11792 277⋅2 0⋅00869
277⋅3 0⋅04529 298⋅0 0⋅6545 277⋅2 11658 277⋅6 0⋅00862
277⋅2 0⋅04470 298⋅9 0⋅6431 271⋅0 11621 277⋅1 0⋅00853
277⋅8 0⋅04469 299⋅7 0⋅5574 270⋅9 11556 277⋅7 0⋅00843
277⋅1 0⋅04389 298⋅1 0⋅4602 277⋅4 11511 277⋅0 0⋅00828
277⋅9 0⋅04366 299⋅9 0⋅4590 277⋅7 11303 277⋅8 0⋅00816
277⋅0 0⋅04277 295⋅8 0⋅4311 276⋅4 10853 276⋅9 0⋅00795

(b) Predictors selected by IPW, last ten predictors eliminated by ISE and first ten predictors selected by
SOLS. For each technique the third column reports the order of the predictor according to the value of abs(b)

IPW-PLS ISE SOLS

Wavelength
IPW final

importance
Order
Abs(b) Wavelength

ISE CV
mean error

Order
Abs(b) Wavelength

SOLS
F-to-enter

Order
Abs(b)

286⋅2 0⋅1451 252 277⋅4 0⋅0191843 3 267⋅1 997259 71
285⋅8 0⋅1279 245 286⋅0 0⋅0001084 241 267⋅5 70⋅1 66
286⋅5 0⋅1246 270 277⋅5 0⋅0000830 1 267⋅0 35⋅5 74
277⋅4 0⋅1201 3 285⋅8 0⋅0000670 245 267⋅6 19⋅0 63
277⋅2 0⋅1147 6 277⋅3 0⋅0000613 5 267⋅4 8⋅1 67
276⋅8 0⋅1071 14 285⋅9 0⋅0000614 242 271⋅5 8⋅7 44
277⋅8 0⋅0889 7 277⋅6 0⋅0000613 2 267⋅8 13⋅7 60
278⋅0 0⋅0881 11 286⋅1 0⋅0000563 246 299⋅9 9⋅9 524
285⋅9 0⋅0835 242 277⋅2 0⋅0000497 6 299⋅6 5⋅4 543
285⋅0 0⋅0000027 50 285⋅7 0⋅0000490 250 248⋅8 6⋅08 374
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The first ten predictors in the BAUT order are uninformative predictors, selected because of the
small difference in the spectrum baseline in the interval 296–300 nm where the three cresols
practically do not absorb. PLS with these ten predictors gives the CV-SEP value 23186� 1076.

Abs(b) and importance values in Table 6 show that the first wavelengths are in the same part of the
spectrum, between 277 and 278 nm, where the difference between the absorbances of the three cresols
is rather large. PLS with the first ten predictors (abs(b) scale) gives the CV-SEP value 5330� 1076.
PLS with the first ten predictors (abs(b) scale) gives the CV-SEP value 5330� 1076. PLS with the
first ten predictors (importance scale) gives the CV-SEP value 4503� 1076.

UVE relevance is large for some wavelengths in the same interval between 277 and 278 nm and for
some wavelengths around 270 nm, where the differences betweeno-cresol andp-cresol and between
o-cresol andm-cresol are rather large. PLS with the first ten predictors (relevance scale) gives the CV-
SEP value 638� 1076. The identification of the two most important wavelength intervals explains
this rather good result.

In all cases the choice of a reduced number of predictors based on the position according to abs(b),
importance or relevance has a univariate character, because the correlations and synergism between
predictors are not considered.

The importance of the predictors selected by IPW and UVE is shown in Figure 9, where one can

Figure 9. Importance of predictors retained by IPW and UVE for three cresols. The three predictors selected by
Carney and Sanford are reported. At the bottom the differences between the spectra (ortho–para, ortho–meta,

meta–para) are shown

180 M. FORINA, C. CASOLINO AND C. PIZARRO MILLAN

Copyright  1999 John Wiley & Sons, Ltd. J. Chemometrics, 13, 165–184 (1999)



compare the three spectra and the differencesortho–meta, ortho–paraandmeta–para.Both UVE and
IPW give great importance to the predictors for which the differences in spectra are large. IPW
sacrifices to economy the information in the first part of the spectra, whereo-cresol is fairly well
separated from the other two components.

The choice of Carney and Sanford (in 1953),12 compared with the choice of IPW and UVE shows
that chemometrics with multivariate calibration changed the analysis of multicomponent systems.
The choice made in old multicomponent analysis requires the knowledge of the absorptivities of all
the components, and it was made on the basis of the spectra of five mixtures of the three cresols. Only
the wavelengths corresponding to the most important maxima of individual absorbances were the
candidate predictors (six wavelengths). A simple system of three equations was used, with the
comparison of the result (fitting ability) for the possible combinations of three among the six
candidate predictors. Because in the case of this data set CRESOLS the sum of concentrations is
unity, only two equations, i.e. only two wavelengths, are really necessary. The three equations
selected two excellent predictors, close to the wavelengths where UVE shows the maxima of
importance, and a bad predictor, at a wavelength where the absorbance ofm-cresol andp-cresol is
about the same. Obviously this predictor uses the noise to improve the fitting ability.

Data sets SOY

Data set SOY-1 has 176 predictors extracted from the original 701 produced from an NIR
spectrophotometer. Some results are reported in Table 7. Full validation was performed only in the
case of IPW. With all the predictors FV-SEP is 1⋅000 for moisture, 1⋅449 for protein and 1⋅170 for oil.
The final IPW FV-SEP was 0⋅932, 1⋅469 and 1⋅285 respectively. Thus the three cases of FV-SEP
diminution, constancy and increase with the IPW cycles are represented here. As usual, UVE retains
many predictors but with excellent prediction. ISE retains some predictors more than IPW, with better
prediction. SOLS retains the minimum number of predictors but with the worse predictive
performance.

Results with data set SOY-2, with only 19 predictors, are reported in Table 8. With two responses,
moisture and oil, SOLS behaves fairly well. In the same cases the performances of the elimination

Table 7. Data set SOY-1. Effect of elimination technique on number of retained predictors and on corresponding
CV-SEP

Response Elimination Predictors CV-SEP

Moisture None 176 0⋅875
IPW 6 0⋅762
UVE 27 0⋅803
ISE 11 0⋅723
SOLS 3 1⋅073

Protein None 176 1⋅332
IPW 7 1⋅289
UVE 72 1⋅312
ISE 13 1⋅024
SOLS 5 1⋅638

Oil None 176 1⋅152
IPW 7 1⋅040
UVE 41 1⋅043
ISE 8 1⋅013
SOLS 3 1⋅257
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techniques are almost equivalent. In the case of protein, UVE retained too many predictors, and the
predictive ability of SOLS is not as good as that of the other techniques.

Data set ANALOGUES

This data set is characterized by the large experimental error on the response (the biological activity).
Moreover, in this case the elimination of the predictors has the main objective of helping in the
interpretation. The agreement between the choice of the elimination techniques is acceptable (Figure
10). UVE retains too many predictors (Table 9; two predictors, qH6 and Mic, have such small
importance that the corresponding bar is not visible in Figure 10). IPW show the best performance
with the minimum number of predictors. The detailed study,9 where ISE-PLS was used to eliminate
the useless predictors, demonstrated that the activity of this family of molecules depends practically
only on volume parameters, so that the presence of charge descriptors (Mullikan charges qC2, qC4,
qN5 and qH6 are retained by UVE) hinders the interpretation. In this case ISE and IPW seem almost
equivalent, because also the two predictors more retained by ISE (the residual volume referred to a
reference molecule, and a component of the moment of inertia) are volume parameters.

CONCLUSIONS

The results presented here demonstrate that IPW can be added to the known tools for elimination of

Table 8. Data set SOY-2. Effect of elimination technique on number of retained predictors and on corresponding
CV-SEP

Response Elimination Predictors CV-SEP

Moisture None 19 1⋅302
IPW 2 1⋅220
UVE 5 1⋅239
ISE 4 1⋅209
SOLS 2 1⋅220

Protein None 19 1⋅801
IPW 4 1⋅750
UVE 15 1⋅809
ISE 7 1⋅771
SOLS 3 2⋅008

Oil None 19 1⋅258
IPW 4 1⋅128
UVE 4 1⋅228
ISE 6 1⋅094
SOLS 5 1⋅121

Table 9. Data set ANALOGUES. Effect of elimination technique on number of retained predictors and on
corresponding CV-SEP. Twenty cancellation groups

Elimination Predictors CV-SEP

None 30 22⋅06
IPW 5 20⋅19
UVE 16 23⋅25
ISE 7 20⋅80
SOLS 4 21⋅49
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useless or redundant predictors in PLS regression, because of its special characteristics to produce
acceptable regression models with a very small number of predictors and to be robust against pre-
treatment. When the predictors in the original data are very noisy, the IPW model has better
predictive performance than the original model. The computation time is not very large, so that it is
possible to perform full validation and thus to obtain a correct measure of the predictive ability. In
some cases the reduced number of relevant predictors can help in the interpretation of the regression
model.

The performances of the technique depend on the data set, its dimension, the noise in predictors and
in the response. The joint use of UVE, ISE and IPW can probably satisfy the requirements of many
real problems.

Probably the IPW algorithm can be further improved and also its speed can be increased, e.g. by the
use of a cut-off value of the importance in the elimination of predictors. Work is in progress towards
these objectives.
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