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Abstract

Two procedures are suggested to select a representative subset from a large data set. The first is based on the use of the
estimate of the multivariate probability density distribution by means of the potential functions technique. The first object
selected for the subset is that for which the probability density is larger. Then, the distribution is corrected, by subtraction of
the contribution of the selected object multiplied by a selection factor. The second procedure uses genetic algorithms to indi-
viduate the subset that reproduces the variance–covariance matrix with the minimum error. Both methods meet the require-
ment to obtain a representative subset, but the results obtained with the method based on potential functions are generally
more satisfactory in the case when the original set is not a random sample from an infinite population, but is the finite popu-
lation itself. Several examples show how the extraction of a representative subset from a large data set can give some advan-

Ž .tages in the use of representation techniques i.e., eigenvector projection, non-linear maps, Kohonen maps and in class mod-
elling techniques. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Often in clinical, environmental, food chemistry
and in quality control many samples are analysed,

Žfrequently with the objective of identification clas-
.sification and class modelling . The selection of sam-

ples to be analysed among a lot of candidate samples
is generally a difficult task. The visual representa-
tion, elaboration and sometimes storage of the huge

) Corresponding author. Fax: q39-10-3532684; e-mail:
forina@anchem.unige.it.

amounts of data collected on analysed samples can
give some drawbacks. Visual representation, where
the objective is to obtain a global information about
the data set, and specially about the discriminating
ability of the chemical information, can be less effi-
cient when many hundreds of objects are repre-
sented. Moreover, it may happen that the statistical
sample has not the same size for all the categories in
the problem, so that the plots are unbalanced.

In these cases it is necessary to extract a subsam-
ple from the statistical sample or from a part of the

Ž .statistical sample e.g., from a category . In the case
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of a completely random sample this is a, generally,
bad representation of the population; the common
procedure of obtaining a subset by random extraction
from it can therefore be considered acceptable. Fre-
quently the original sample can not be considered as
a random sample: some known or unknown factors
may have selected levels, and only a small part of the
dispersion in the objects is a consequence of random
errors. The most important part of dispersion is the
consequence of the level of the above factors. This is
the case of the selection of samples for analysis
among candidate samples, e.g., in a real population of

Ža wine, the producers described by parameters as
geographical co-ordinates, exposition of the vine-
yard, age of vines, percentage of the cultivars in the

.wine, PPP are an example of a factor at some fixed
levels. The dispersion in the original sample gives
information about the producers. So, in the case of
real samples, the subsample must represent at best the
original sample; this means that the multivariate
probability distribution estimated from the subsam-

Žple or the parameters describing it moments: means,
.variances, covariances must be as close as possible

to those estimated from the original sample. The ex-
traction of a subset for this kind of real problems
Žwhere each chemical sample in the subset must be
analysed to obtain the required chemical informa-

.tion is the main objective of this work.
Two techniques have been developed here. The

first one is based on the fit between distributions es-
timated using the potential functions method from the
original sample and the subsample; the second one
applies the genetic algorithms with the goal of ob-
taining a subset whose variance–covariance matrix is
as similar as possible to the variance–covariance ma-
trix of the original sample.

Several techniques for the selection of samples are
already available, but none of them has the goal of
obtaining a subset whose distribution is as close as
possible to the original distribution. When the objec-
tive is to obtain a subset for calibration the selected
samples in the subset must span the whole data do-
main. In this case algorithms as those used to obtain

w xa D-optimal subset 1 or the Kennard–Stone algo-
w xrithm 2 can be applied. When the goal is to select

one object in each of the ‘interesting regions’ of the
w xdata space, techniques based on clustering 3–6 can

be applied.

2. Theory

2.1. Potential functions

Ž .Potential functions PF were born in the early
1950s as a classification method under the name of
kernel density estimators. The best-known method for
PF in analytical chemistry was written by Coomans

w xand Broeckaert 7 . PF have been also transformed to
w xobtain a class-modelling technique 8 and they are

w xthe basis for the CLUPOT clustering procedure 9 .
PF evaluate the probability density function by us-

ing the local density of the objects instead of param-
eters such as the mean and standard deviation. The
probability function is calculated as the sum of the
individual contribution of the objects in the training
set.

In fixed-potential PF the shape of the individual
contributions is the same for all the objects in the
class. In variable-potential PF the shape of the con-
tribution depends on the local density of the objects.
In this work fixed-potential PF were used.

The individual contribution can have different
shapes. The one commonly used has the form of the
Gaussian function. In the univariate case it is given
by the following expression:

1 1 2yŽ1 r2.wŽ xyx .r uxif x , x s e 1Ž . Ž .i 'I u 2p

Ž .where f x, x is the contribution of object i to thei

probability density evaluated in the point x; x is thei

value of the variable X for the object i; I is the
number of objects used to obtain the estimate of the

Ž .probability density function training set ; u is the
smoothing parameter; it is analogous to the standard
deviation in the normal distribution and determines
how broad the individual contribution is.

The probability distribution function in a point x
is the sum of the individual contributions

I

f x s f x , x 2Ž . Ž . Ž .Ý i
is1

The selection of the smoothing parameter is per-
Žformed by a cross-optimisation procedure e.g.,

. Ž .) Ž .leave-one-out . Let be f x sÝ f x , x thej i/ j j i

probability density computed in x , when object j isj

left out, by the contribution of the Iy1 objects in the
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training set. The first value of the smoothing parame-
ter is the standard deviation of the variable. Then, it
decreases.

The optimum smoothing parameter is that for
I Ž .)which the product of the densities PsŁ f xjs1 j

computed for the objects in the evaluation set is
maximum.

In the case of multivariate data, the individual po-
tential must take into account the V variables, and the
probability distribution function in a point x is

I

f x s f x , xŽ . Ž .Ý i
is1

I V1 1 2yŽ1 r2.wŽ x yx .rŽk s .xÕ iÕ Õs eÝ Łž /'I ks 2pÕs1 Õis1

3Ž .
Ž .where f x is the probability density or cumulative

Ž .potential in the point of co-ordinates x; f x, x isi

the individual contribution of object x in the pointi

x, k is the smoothing coefficient; s is the standardÕ

deviation of the variable Õ.
Ž .In Eq. 3 the individual contribution is obtained

as the product of the marginal contributions of the V
variables, so that it has the appearance of a multi-
variate normal distribution of non-correlated vari-
ables. However, in spite of the non-correlated indi-
vidual contribution, the resulting density distribution
obtains the correlation between variables as the re-
sult of the position of the objects in the space.

Ž .The smoothing parameter in Eq. 1 is substituted
Ž .in the multivariate case of Eq. 3 by the product of

the smoothing factor for the standard deviation of the
variable, so that only one parameter, k, is optimised,
instead of as many smoothing parameters as there are
variables.

When more categories are studied, the number of
objects I, the smoothing factor k, the standard devia-
tions s are generally computed for each category.Õ

2.2. Potential functions applied to object selection

The selection of a subset of M objects from a
sample of I)M objects is performed as follows:

Ž . Ž .a The cumulative potential f x j
I

f x s f x , x 4Ž . Ž . Ž .Ýj j i
is1

is computed for each object j.

Ž .b The object with the highest cumulative poten-
tial is selected.

Ž .c The potential in each point is recalculated after
subtraction of the individual contribution of the se-
lected object k multiplied by a selection factor r; r
usually is

rs IrM 5Ž .
i.e., the total number of objects I divided by the
number of objects M to be selected. So:

I
new

f x s f x , x yrf x , x 6Ž . Ž . Ž . Ž .Ý i k
is1

or generally with LFM selected objects:
I L

new
f x s f x , x yr f x , x 7Ž . Ž . Ž . Ž .Ý Ýi kŽ l .

is1 ls1

Ž .where l is the order of selection and k l is the in-
dex of the selected object.

Ž .In the new step b the object with the highest new
potential is then selected as the second of the subset.

Ž . Ž .Steps b and c are repeated till the predeter-
mined number M of objects has been selected.

When M objects have been selected:
I M

finalf x s f x , x yr f x , xŽ . Ž . Ž .Ý Ýi kŽ l .
is1 ls1

MIoriginals f x yŽ . Ý
M ls1

=
V1 1 2yŽ1 r2.wŽ x yx .r k s xÕ k Ž l . ,Õ ÕeŁž /'I ks 2pÕs1 Õ

original selections f x y f x 8Ž . Ž . Ž .
This equation justifies the choice of the value of the

Ž .selection factor r in Eq. 5 ; the residual density
Ž . fin a l Ž . o rig in a lf x would be null when f x s
Ž .selectionf x .

However, the suitable smoothing coefficient for
the subset must be evaluated after the selection. The
value of k for the subset differs from that obtained

Ž .subsetwith the original sample, so that f x is not
Ž .selectionequal to f x .

So r has not the constraint that the sum of indi-
vidual contribution of the selected objects indicated as
Ž .selectionf x gives a probability function with area 1.

The value of r chosen for the selection step can be
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larger than IrM when it is advisable to favour the
representation of low-density parts of the original
distribution; it can be smaller than IrM when ob-
jects in low-density space are considered non-repre-
sentative or outliers. A large value of r favours neg-

Ž .new Ž .finalative values in f x and especially in f x , but
Ž .subset Ž . Ž .originalf x is computed from Eq. 3 as f x ,

with M instead of I and with a different value of k,
so that it is always non-negative.

Ž .subset Ž .originalThe degree of fit between f x and f x
is the measure of the goodness of the selected subset.
The possibility to choose a value of r different from
IrM introduces some subjectivity in the evaluation
of the degree of fit.

Ž . Ž .new Ž Ž .. Ž . Ž .selection Ž Ž .. Ž .Fig. 1. Evolution with the extraction of objects for the subsample in an univariate case: a f x Eq. 6 , b f x Eq. 8 , c
Ž .true Ž .original Ž .subset Ž . Ž .original Ž .true Ž .subset Ž .truef x , f x , f x , d f x y f x , f x y f x .
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Fig. 1a shows how the density of probability func-
Ž .newtion f x is modified by selecting the objects and

Ž .original Ž .selectionFig. 1b how f x is reconstructed as f x
from the selected subset. Only the parts of the proba-
bility functions modified by the selection are marked
in Fig. 1.

In this case a subset of 10 objects was selected
Žfrom a sample of 100 objects data set FIRST, see

.below extracted from a population with probability
Ž . truedensity f x . The reconstruction has been ob-

tained with the individual contributions of the se-
lected objects in the original sample multiplied by r

Ž .s10 IrMs100r10 . Smoothing coefficient was
0.4, obtained by leave-one-out procedure.

Ž .true Ž .original Ž .finalFig. 1c shows f x , f x and f x ;
Fig. 1d shows on a magnified scale the difference be-
tween the two estimates of the probability density and
Ž .truef x .

2.3. Genetic algorithms

Ž .Genetic algorithms GA are inspired by evolution
theory, according to which the evolution of a species
is mainly ruled by the ‘struggle for life’. Under this

Žprinciple the ‘best’ individuals i.e., those beings
whose genetic material is the best for the environ-

.mental conditions in which they live have both the
greatest probabilities of surviving and the greatest
probabilities of winning the battles engaged for re-
production, thereby propagating their genome. Fur-
thermore, when two good individuals mate, the com-
bination of their genomes can generate offspring with
even better genetic material. As a result, from this
particular point of view a population evolves in such
a way that its average fitness to the environment af-
ter generation iq1 is usually higher than after gen-
eration i.

Another source of variation is given by mutations.
They are irregular changes with a low probability of
occurrence and they affect a ‘letter’ of the coding
gene. They generally result in a pathological condi-
tion, but sometimes they can produce a better indi-
vidual.

Ž .GA have four basic steps: 1 coding of variables;
Ž . Ž .2 initiation of population; 3 evaluation of the re-

Ž .sponses; 4 creation of population iq1 from popu-
Ž .lation i select-copy, cross-over, mutation . Steps 3

and 4 alternate until a termination criterion is reached;

this criterion can be based on a lack of improvement
in the response or simply on a maximum number of
generations or on the time allowed for the elabora-
tion.

The basic GA can nowadays be easily found in
w xliterature 10,11 . It has anyway to be said that the

‘optimal’ configuration of the algorithm changes very
much according to the very specific problem to which
it is applied. In Section 2.4 the peculiarities of the GA
for subset selection will be described.

2.4. Genetic algorithms applied to subset selection

GA has been applied to the problem of selecting
the experimental conditions to obtain a D-optimal

w xdesign 12 . In this case, the candidate points can be
considered as objects, and there too the problem is to
select a subset of them which has to be as informa-
tive as possible from the experimental design point of
view, i.e., spanning as much as possible the experi-
mental domain. GA has also been applied to the se-

w xlection of variables 13 . This problem is very similar
to the selection of representative subsets; in the for-
mer, the GA works on the columns of the data ma-
trix, while in the latter it works on the rows.

2.4.1. Coding
In a data set with K objects, each chromosome is

Žformed by K genes coded by a single bit 0sabsent,
.1spresent .

2.4.2. Response
One of the most critical steps in GA is the defini-

tion of the response to be maximised. While in some
Žcases its identification is straightforward e.g., when

trying to find the maximum of a mathematical func-
.tion , in some other cases it is not so easy.

What we want to obtain is the selection of a sub-
set of objects being as representative as possible of
the original data set.

Two similar subsets drawn from the same popula-
Žtion have the same variance–covariance matrix from

a ‘geometrical’ point of view, one can say that the
variances describe the dimension of the swarm of

.points, while the covariances describe its orientation .
Goal of the procedure is therefore to obtain a subset

Ž .whose variance–covariance matrix C is as similars
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Table 1
Ž w x wRatio of the estimate of the standard deviation obtained from the PF-subset 10 objects and the estimate obtained from the original set 100
x. Ž . Ž .objects and difference between the two estimates of the mean , as a function of the selection factor r ks0.4

Ž .A Data set FIRST

Ž .r rr IrM ratio diff.

5 0.50 0.5584 0.1452
6 0.60 0.5601 0.1762
7 0.70 0.6887 0.2140
8 0.80 0.7884 0.1329
9 0.90 0.9448 0.1348

10 1.00 0.9724 0.1893
11 1.10 1.0706 y0.1758
12 1.20 1.2088 y0.1995
13 1.30 1.1398 y0.1854
14 1.40 1.2884 y0.2289
15 1.50 1.5678 0.1439

Ž .B Data sets UNIMODAL, UNIMODAL1, PPP

r UNIMODAL UNIMODAL1 UNIMODAL2 UNIMODAL3

ratio diff. ratio diff. ratio diff. ratio diff.

5 0.617 0.140 0.636 0.150 0.739 0.010 0.429 y0.096
6 0.800 y0.100 0.744 0.127 0.740 y0.006 0.538 y0.123
7 0.761 y0.018 0.723 0.149 0.795 y0.016 0.697 y0.125
8 0.872 0.066 0.787 0.100 0.832 y0.020 0.796 y0.129
9 0.953 0.041 0.896 0.042 0.871 y0.007 0.964 y0.140

10 1.030 y0.131 0.862 y0.091 0.862 0.033 1.006 y0.102
11 1.077 y0.137 0.931 y0.075 0.924 0.066 1.157 y0.122
12 1.048 0.178 0.977 y0.025 0.976 0.098 1.224 y0.115
13 1.058 0.111 0.981 y0.049 1.367 y0.319 1.216 y0.064
14 1.100 0.091 1.536 y0.400 1.459 y0.219 1.482 y0.282
15 1.182 0.144 1.618 y0.393 1.461 y0.237 1.610 y0.214

as possible to the variance–covariance matrix of the
Ž .original data set C . The similarity is computed asx

the inverse of the sum of the squared elements of the
difference matrix D:

DsC yC 9Ž .x s

For a data set with V variables,

V V
2similaritys1 d 10Ž .Ý Ý i j

is1 js1

A penalty function related to the number of selected
object has also been added, so that in case of two
subsets with the same similarity the one with less ob-
jects is favoured. Since this penalty function must be
very mild, not to be too much influent in the search
of the solution, the decimal logarithm of the number

Ž .of objects in the subset n has been used.

The response to be maximised by the GA is there-
fore:

similarity
responses 11Ž .

log mŽ .

2.4.3. Initiation of population
According to the original algorithm, the value of

each bit is determined by the ‘toss of a coin’. Under

Table 2
Ž 4 – 1.Fractional factorial design 2 for the influential parameters in

GA

Variables y q

No. initial obj. 10 30
No. chromosomes 20 50
%Elitism 25 50
%Mutation 1 2
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Ž Ž .subset.Fig. 2. Probability density function estimated from the UNIMODAL set and from the subsets f x obtained by PF method and by 3
repetitions of GA method.

this hypothesis an average of 50% of the objects
would be selected in every initial chromosome. This
can lead to a subset with a very high number of ob-
jects.

An initial probability of selection has thus been
added so that the average number of objects present
in the initial population can be selected.

The maximum number of objects present in each
combination is asked for. This constraint will be re-

tained also in the subsequent steps. If the number of
objects in a chromosome is higher than this number
its response will be zero.

2.4.4. Select-copy
The probability for a chromosome of being se-

lected and copied into the following population is:

prob i s response i rsum responses 12Ž . Ž . Ž . Ž .
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2.4.5. Cross-oÕer
ŽThe uniform cross-over has been used for each

gene a random number determines if it will undergo
.cross-over .

2.4.6. Elitism
To avoid the loss of highly informative solutions

the e bests chromosomes of each generation are
passed unchanged to the following generation. This
means that at the end of the run the e best chromo-
somes are the e best solutions found till then.

2.4.7. Control of replicates
The presence of ‘twins’ is not allowed; if two

identical chromosomes are present in the same popu-
lation, one gene of one of them is randomly selected

Ž .and swapped from 0 to 1, or vice versa .

2.4.8. Stop condition
The GA stops after a predetermined number of

generations took place without any ‘new entry’
among the e elitist chromosomes.

2.4.9. ‘Heats’ and ‘ final’
To better exploit the results obtained in several

runs a new run is performed in which the initial pop-
ulation is composed by the best chromosomes found
in each of the previous runs. This final run can be
seen a refinement of the already good solutions found.
In it, exploitation prevails on exploration. With the
objects corresponding to the best chromosome
Ž .finalf x is computed by the use of the potential func-

tions.

2.5. Software

The programs for both procedures have been writ-
Ž .ten in Matlab 4.2c.1 The Math Works, Natick, MA .

3. Data

The two selection techniques were applied to sev-
eral real and simulated data sets; in this paper the re-
sults obtained on some simulated data sets and on
three real data sets are reported.

3.1. Simulated data set FIRST

This set has been used for Fig. 1. 100 objects were
extracted from an univariate distribution obtained by
the sum of two normal distributions with a small dif-

Ž . Ž .ference 0.1 between locations a1 and standard de-
viations 1.3 and 1.7.

3.2. Simulated data set UNIMODAL

The data set UNIMODAL consists of 100 objects
Ž .described by one variable distributed as N 0, 1 .

Ž .Some results Table 1 obtained with other data sets
of 100 objects extracted from the same population are
also reported. These data sets are referred as UNI-
MODAL1, UNIMODAL2, PPP .

3.3. Simulated data set BIMODAL

The set BIMODAL has been generated with two
unimodal distributions similar to the previous one.
The number of objects is 165.

3.4. Data set IRIS

It is the well known data set used by Fisher in his
fundamental paper introducing linear discriminant
analysis. 150 objects, 50 in each of the 3 categories,
are described by 4 variables.

3.5. Data set WINES

The data set WINES consists of 178 samples of
Ž .three types of Italian wine; Barolo 59 objects , Gri-

Table 3
Means and standard deviations for data sets UNIMODAL and BI-
MODAL and for the subsets

Set Mean Standard deviation

Unimodal original 0.0551 0.9365
Unimodal PF 0.2437 0.8388
Unimodal GA subset 1 y0.0053 0.9368
Unimodal GA subset 2 y0.0409 0.9367
Unimodal GA subset 3 0.3490 0.9365
Bimodal original 1.2328 1.7350
Bimodal PF 1.2518 1.9495
Bimodal GA subset 1 1.6525 1.7350
Bimodal GA subset 2 1.9192 1.7346
Bimodal GA subset 3 1.3371 1.7189
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Ž . Ž .gnolino 71 and Barbera 48 . Every sample is de-
w xscribed by 27 chemical variables 14 .

3.6. Data set GRIGNOLINO

It is class 2 of data set WINES.

3.7. Data set ITAOIL

The data set ITAOIL consists of 547 samples of
Žolive oil, from different Italian regions 1: North-

Apulia; 2: Calabria; 3: South-Apulia; 4: Sicily; 5: In-
land-Sardinia; 6: Coast-Sardinia; 7: East-Liguria; 8:

.West-Liguria; 9: Umbria . Every sample is described
by 8 fatty acids. The number of samples of each cat-
egory is given in Table 5.

3.8. Data set APULIA

It is class 3 of data set ITAOIL.

Ž Ž .subset.Fig. 3. Probability density function of the BIMODAL set and of the subsets f x obtained by PF method and by 3 repetitions of GA
method.
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4. Results and discussion

4.1. Influence of the method parameters

In the PF-method the influential parameters are the
smoothing coefficient, k, and the selection factor, r.
A systematic study was made on the univariate data
sets FIRST, UNIMODAL, UNIMODAL1, PPP , by
studying the mean and the standard deviation of the
subset as a function of k and r. Both parameters have
no systematic effect on the estimate of the mean,
whose values are irregularly distributed around the
value of the original set. The effect of the smoothing
coefficient k on the estimate of the standard devia-
tion is irregular. In contrast, the parameter r has, as
expected, a strong influence on the standard devia-

Žtion. Small values of r below the value suggested by
Ž ..Eq. 5 favour the selection of objects near to the

maximum of the probability distribution, so that the
standard deviation of the subset is smaller than that

Ž .of the original data set see Table 1 ; large values of
r favour the selection of some objects corresponding
to low values of the probability density, so that the
standard deviation of the subset is large. There is no
interaction effect between the two parameters.

The results described below were obtained with
the value of the smoothing coefficient k obtained by
the usual leave-one-out procedure and the value IrM

Ž .of Eq. 5 for the selection factor r.
ŽIn the GA-method four parameters population

size, number of elitist chromosomes, probability of
.initial selection and probability of mutation have to

be defined. It is therefore important to know if and
how they affect the final results. To study this prob-

Ž 4 – 1.lem a fractional factorial design 2 has been per-
Ž .formed see Table 2 with the data set IRIS. The

elaboration was stopped when 100 consecutive chro-
mosomes were evaluated without a ‘new entry’

Žamong the elitist chromosomes due to the different
population size, a stop criterion based on the number
of generations would have favoured the experiments

.with the largest population size . In this case none of
the parameters is significant. This is very important,
since it means that the structure of the GA is rather
robust and therefore the proposed parameters can be
used without having to perform a set-up for each data
set.

4.2. Results on simulated and real data sets

The parameters utilised for the GA in all the ex-
amples were: 20 chromosomes, 10 elitist chromo-
somes, probability mutation 1%; the stop criterion
was 3 generations without modification in the elitist
chromosomes and 5 ‘heats’; the top 4 chromosomes
of each heat passed to the final run, in which the stop
criterion was 6 generations without modification. The
results reported in the examples are those corre-

Žsponding to the best chromosome. In some cases sets

ŽFig. 4. Data set WINES 1, 2, 3: selected samples represented with
.their category index; ), a, q: unselected samples in the space of

first two eigenvectors of the original data. PF method.

ŽFig. 5. Data set WINES 1, 2, 3: selected samples represented with
.their category index; ), a, q: unselected samples in the space of

first two eigenvectors of the original data. GA method.
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.UNIMODAL and BIMODAL three results are re-
ported, corresponding to the best chromosome ob-
tained in repeated GA procedures, with different
starting randomisation.

4.2.1. Data set UNIMODAL
The representative subset was composed by 10%

Ž .as maximum of the original objects. In Fig. 2, the
probability density functions of the original data set
and of the selected subsets are shown. In Table 3 the
mean and the standard deviation of the original data
set and of the subsets are reported.

The subset obtained by PF is the one better recon-
structing the original distribution, in spite of the no-
ticeable difference in the variance, due to the fact that
the subset has no objects representative of the more
negative values on the left of the distribution. GA-
method produces subsets with an excellent reproduc-
tion of the variance, but with a form of the estimated
probability distribution very different from that ob-
tained with the original data set. The three subsets
obtained from GA have about the same variance and
different mean; the fit with the original distribution
does not depend on the reproduction of the mean: Fig.
2 shows that the GA subset 1 with the best reproduc-
tion of the mean is that with the worse fit with the
original distribution.

4.2.2. Data set BIMODAL
The representative subset was composed by 20

Ž .objects as maximum . Fig. 3 shows the original and

reconstructed probability density functions. In Table
3 the mean and the standard deviation of the original
data set and of the subsets are reported.

Also in this case PF-method produces a subset
with a bad reproduction of the variance, in this case
with a positive error. The mean is reproduced fairly
well. The probability density distribution estimated
from the subset fits well that estimated from the orig-
inal data set.

GA-method subsets reproduce generally very well
the variance; they are able to detect the bimodal
character of the distribution and the approximate lo-
cation of the probability maxima, but the shape of the
distribution is rather different from the original one.

4.2.3. Data set WINES
The number of the samples in the subsets was 44

Ž .25% , and the selection was made on the whole data
set, without taking into account the subdivision in
categories. Figs. 4 and 5 show the complete data set
and the subsets selected by the two methods in the
space of the two first principal components of the
original data set. Table 4 shows the details of the
principal component analysis of the original data set
and of the two subsets. There is no significant differ-
ence in the eigenvalues of the two subsets. In con-
trast, the within-category dispersions are very differ-

Ž .ent, especially in the case of category 2 Grignolino
where the square root of the determinant of the vari-
ance–covariance matrix, as used in the expression of

Table 4
Results with data set WINES

Original Potential Functions Genetic Algorithm

Objects in Class 1 Barolo 59 18 16
Objects in Class 2 Grignolino 71 12 16
Objects in Class 3 Barbera 48 14 12

Principal component analysis — autoscaled variables, cumulate % explained variance
With 1 component 25.30 28.16 28.93
With 2 components 41.05 47.00 46.90
With 3 components 50.41 57.65 58.75
With 4 components 57.74 64.29 65.67
With 5 components 62.90 69.96 70.44

Ž .Determinant of covariance matrix 5 components
Class 1 0.628 0.536 0.189
Class 2 25.742 3.139 31.150
Class 3 2.603 2.995 0.881
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the multivariate normal probability distribution, cor-
responding to the standard deviation in the univariate
case, is 5.1 for the original data, 1.8 for the PF sub-
set, 5.6 for the GA subset. In the case of the other two
classes PF subset has dispersion characteristics very
similar to those of the original subset.

The structure of the original data set can be de-
fined by means of the 351 correlation coefficients
between the variables. For each correlation coeffi-
cient the 95% confidence interval was computed.

In the case of PF subset, 3 correlation coefficients
are very different from the original correlation coef-

Žficients difference from the nearest limit of the con-
.fidence interval greater than 0.2 ; 29 correlation co-

efficients are rather different from the original corre-
Žlation coefficients difference from the nearest limit

.of the confidence interval between 0.05 and 0.2 ; 47
Žcorrelation coefficients are a little different less than

.0.05 ; the other 272 correlation coefficients are within
the confidence interval.

In the case of GA subset, 3 correlation coeffi-
cients are very different, 38 rather different, 51 a lit-
tle different, 259 within the confidence interval. So,
it seems that PF subset preserves better the original
structure. However, when looking to the single cate-
gories, the opposite result can be obtained. In the case
of the category Grignolino, where PF subset retains
only 12 objects, 4 less than the Grignolino objects in
the GA subset, the PF subset shows 36 very differ-
ent, 77 rather different, 25 a little different correla-
tion coefficients, with only 213 correlation coeffi-
cients within the 95% confidence interval around the
original correlation coefficients. In the case of GA
subset, the number of heavy errors is one half, 18; the
number of medium errors is the same, 77; the num-
ber of light errors is 33, and 223 correlation coeffi-
cients are within the confidence interval. These re-
sults confirm that in the case of categorised data the
selection made on the whole data set can produce
worse results in one or more categories.

ŽFigs. 6–8 show the model of class 2 data set
.GRIGNOLINO , computed by means of potential

w xfunctions used as a class-modelling technique 8 by
using as modelling variables the scores in the space
of the two principal components of the original data
of the modelled class. The class model has a bound-
ary which corresponds to a critical value of the prob-

Ž .Class Boundaryability density, f x , and the iso-lines in

Fig. 6. Data set GRIGNOLINO. Class model obtained with the
original data set. Iso lines represent constant values of the function

Ž . Ž .class boundarylog f x r f x .10

Fig. 7. Data set GRIGNOLINO. Class model obtained with the
subset from PF-method.

Fig. 8. Data set GRIGNOLINO. Class model obtained with the
subset from GA-method.
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Figs. 6–8 correspond to constant values of the func-
tion

f xŽ .
log 13Ž .10 class boundaryž /f xŽ .

PF method selects too many objects in the central part
of the class space, and the class model becomes too
small; GA method selects too many objects far from
the class centroid; so, due also to a larger value of the

Žsmoothing coefficient computed by means of cross
.validation the class model is too large, especially in

the upper part, outside the figure.
In spite of the poor representation of the single

class obtained with the selection performed on the
whole data set, the model obtained with the PF sub-
set seems better than the model obtained with the GA
subset.

The selection was repeated on the single class
GRIGNOLINO. GA method was used three times, so
that three subsets were obtained. Because of the con-
straint of maximum 25% of selected objects in the
subset, the PF subset had 18 objects, as two GA sub-
sets, whereas the other GA subset had 17 objects.

Potential function class models were obtained with
the scores of the two first principal components of the
class. PF-subset model is just slightly larger than that
in Fig. 7, so that the performance is very similar to
that of the model computed with the 71 original data.
One of the GA-subset models can be considered sat-
isfactory. The other two GA-subset models are a bad
representation of the original class model. Taking into
account also the result in Fig. 8, three GA-subset
models out of four retain one or two objects outside
the class boundary, so surely not representative of the
typical objects of the class.

4.2.4. Data set ITAOIL
In this case the subsets were obtained by working

on each category separately, with the objective to ob-
tain a set with balanced number of objects in each
category. In the case of the category with the small-

Ž .est number of objects North-Apulia no selection was
made.

ŽThe subsets contain 25 objects maximum in the
.case of GA method for each class. Figs. 9 and 10

show the selected objects in the space of the two first

principal components of the whole data set. Figs.
11–13 show the score plots of the two first principal
components for the original data set and that of the
two selections. In Table 5 some details are reported,
i.e., the variance explained by the first components,
and the measure of the within-class dispersion ob-
tained by the determinant of the class covariance ma-
trix in the space of the first five components.

The principal components of the data set with 25
Ž .maximum objects in each categories show approxi-

ŽFig. 9. Data set ITAOIL 1, 2, . . . , 9: objects selected by PF method
.represented by their category index; ): unselected samples in the

space of the two first components of the original data set.

ŽFig. 10. Data set ITAOIL 1, 2, . . . , 9: objects selected by GA
method represented by their category index; ): unselected sam-

.ples in the space of the two first components of the original data
set.
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Table 5
Results with data set ITAOIL

Original Potential functions Genetic algorithm

Objects in class 1 25 25 25
Objects in class 2 56 25 22
Objects in class 3 206 25 23
Objects in class 4 36 25 22
Objects in class 5 65 25 25
Objects in class 6 33 25 22
Objects in class 7 50 25 23
Objects in class 8 50 25 21
Objects in class 9 51 25 23

Principal component analysis — autoscaled variables, cumulate % explained variance
With 1 component 46.75 39.02 39.99
With 2 components 68.71 65.57 66.91
With 3 components 81.38 78.54 80.44
With 4 components 91.32 89.90 90.87
With 5 components 95.40 95.11 95.00

Ž . Ž .Determinant of covariance matrix 5 components multiplied by 10000
Class 1 3.189 3.253 2.841
Class 2 6.746 8.062 1.715
Class 3 33.383 1.982 8.716
Class 4 194.473 299.730 108.053
Class 5 0.00405 0.00230 0.00149
Class 6 0.00162 0.00370 0.00080
Class 7 3.993 4.610 1.347
Class 8 1.011 1.528 0.294
Class 9 0.00052 0.00046 0.00017

mately the same structure as those of the original data
Ž .Figs. 11–13 , at least on the significant components
Ž .2, according with double-cross validation , with a
very small difference in the loadings.

Table 6 shows the correlation coefficients be-
tween the 8 variables for the data set APULIA, the
lower and upper limits of the 95% confidence inter-
vals, and the correlation coefficients in the PF and GA
subsets. In the case of PF subset there are 1 heavy
error, 8 medium errors, 3 light errors; the other 16
correlation coefficients are within the confidence in-
tervals. In the case of GA subset there are 2 heavy
errors, 9 medium errors, 8 light errors, and only 9

correlation coefficients are within the confidence in-
terval. So, again the PF method seems to preserve
better the structure of the original space of the infor-
mation.

Figs. 14–16 show the class model of South-Apulia
Ž .data set APULIA computed by means of potential

w xfunctions used as a class-modelling technique 8 by
using the scores in the space of the two principal
components of the original data as variables.

The samples selected by PF are more concen-
Žtrated near the barycentre of the category where the

.potential value is higher , and the direction of the
cluster in the upper left part of the plot is ignored. The

Fig. 11. Data set ITAOIL. Biplot of original data.

Fig. 12. Data set ITAOIL. Biplot of the subset selected by PF method.

Fig. 13. Data set ITAOIL. Biplot of the subset selected by GA method.
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Table 6
Correlation coefficients in data set ITAOIL — class 3

Ž .a Correlation coefficients in the original data set
1.000 0.722 0.065 y0.812 0.229 0.025 0.198 0.154

1.000 0.046 y0.695 0.253 y0.049 0.021 0.077
1.000 y0.207 y0.031 0.091 0.151 0.215

1.000 y0.704 y0.110 y0.202 y0.109
1.000 0.071 y0.056 y0.193

1.000 0.431 0.300
1.000 0.510

1.000

Ž .b Lower limit of 95% confidence intervals
1.000 0.649 y0.073 y0.855 0.095 y0.113 0.062 0.017

1.000 y0.092 y0.760 0.120 y0.185 y0.117 y0.061
1.000 y0.335 y0.168 y0.047 0.014 0.080

1.000 y0.767 y0.244 y0.330 y0.243
1.000 y0.067 y0.192 y0.322

1.000 0.312 0.169
1.000 0.400

1.000

Ž .c Upper limit of 95% confidence intervals
1.000 0.782 0.201 y0.760 0.355 0.162 0.327 0.286

1.000 0.183 y0.616 0.377 0.089 0.158 0.212
1.000 y0.071 0.107 0.225 0.283 0.342

1.000 y0.627 0.028 y0.066 0.029
1.000 0.207 0.082 y0.057

1.000 0.536 0.420
1.000 0.605

1.000

Ž .d Correlation coefficients in the subset from potential functions
1.000 0.728 0.395 y0.769 0.009 0.022 0.128 0.373

1.000 0.304 y0.694 0.102 y0.050 0.067 0.125
1.000 y0.508 y0.015 0.144 0.264 0.383

1.000 y0.567 0.129 y0.103 y0.133
1.000 y0.359 y0.228 y0.477

1.000 0.382 0.348
1.000 0.561

1.000

Ž . Že Deviations from the correlation coefficients of the original data set —: within the 95% confidence interval; q: outside the confidence
interval, less than 0.05; qq: outside the confidence interval, more than 0.05, less than 0.20; qqq: outside the confidence interval, more

.than 0.20

— — qq — qq — — qq
— qq — q — — —

— qq — — — q
— qq qq — —

— qqq q qq
— — —

— —
—
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Ž .Table 6 continued

Ž .f Correlation coefficients in the subset from genetic algorithms
1.000 0.688 0.504 y0.752 0.007 0.205 0.089 0.101

1.000 0.410 y0.835 0.463 0.036 y0.294 y0.261
1.000 y0.488 y0.068 y0.067 0.053 0.392

1.000 y0.624 y0.389 y0.025 y0.028
1.000 0.330 y0.213 y0.285

1.000 0.569 0.279
1.000 0.667

1.000

Ž . Žg Deviations from the correlation coefficients of the original data set —: within the 95% confidence interval; q: outside the confidence
interval, less than 0.05; qq: outside the confidence interval, more than 0.05, less than 0.20; qqq: outside the confidence interval, more

.than 0.20

— — qqq q qq q — —
— qqq qq qq — qq qq

— qq — q — q
— q qq q —

— qq q —
— q —

— qq
—

samples selected by GA are more spread throughout
the space of the category, with a variance–covari-
ance matrix more similar to the original one. When
used for modelling purposes, the subsample obtained
by PF, being more compact, would have a higher

Žspecificity less objects of the other categories ac-
.cepted , while the subsample obtained by GA would

Žhave a higher sensitivity less objects of the same
.category rejected and a lower specificity.

Data set APULIA is characterised by a nucleus of
about 150 objects with similar characteristics. The
other objects are far from the class centroid and rather
dissimilar. In these cases when potential functions are
used for classification purposes or to obtain a class
model it is generally useful to use the variable-poten-
tial techniques, where the individual contribution of
an object of the training set to the probability density
function depends on the local density of the objects,
measured by the distance between the object and the
nearest objects. The application of variable-potential
PF to the subset selection is under study.

Data set ITAOIL has also been used to study as
the extraction of a representative subset from an un-
balanced original set can change the performances of
other techniques.

Fig. 17 shows the 7=7 two-dimensional Koho-
w xnen maps 15 obtained with the original set and with

the PF-method subset. Maps in Fig. 17 report the
capital letter corresponding to the category index.
Each unit is characterised by the letter of the cate-
gory with the majority within the objects mapped in
the unit. Blank units have not a winner class. Be-
cause of the very large number of objects in category
3, South-Apulia, the number of units assigned to it
Ž . Ž .C is very high 15 out of 49 . The minimum num-

Ž .ber of units, 1, is assigned to class F Coast Sardinia .
With the subset with 25 objects in each class the
number of units assigned to the nine categories ranges
from 2 to 9.

Subset extraction was applied also to non-linear
Ž .mapping NLM and to simplified non-linear map-

w x Ž .ping 16 SNLM . The direct representation by NLM
in a two-dimensional representation plane of data set
ITAOIL requires the optimisation of 1091 parame-

Žters 2 co-ordinates for each object, less 3 co-
.ordinates fixed to avoid rotation and translation ; the

NLM co-ordinates must be selected so that the
149 331 distances in the representation plane are as
close as possible to the corresponding distances in the

Ž .space of the original autoscaled or range-scaled
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Fig. 14. Data set APULIA. Class model obtained with the original
data set. Iso lines represent constant values of the function

Ž . Ž .class boundarylog f x r f x10

Fig. 15. Data set APULIA. Class model obtained with the subset
from PF-method.

Fig. 16. Data set APULIA. Class model obtained with the subset
from GA-method.

Fig. 17. Data set APULIA. Kohonen maps obtained with the origi-
Ž . Ž .nal data set left and with the subset from PF method right .

variables. When the number of the objects is very
large results of NLM are not satisfactory. So, from the
set ITAOIL a subset was selected by means of the
PF-method, with 3 objects in each category. On the
27 objects of the subset NLM has only 51 co-
ordinates to optimise; repeated trials with different
starting co-ordinates are performed, and the final re-
sult, shown in Fig. 18, refers to the trial with the
minimum representation error. Class 4, Sicily, is
characterised by a large dispersion of its 3 samples,
corresponding to the recognised high dispersion of the
class. Then, SNLM was performed; here each object
in the set ITAOIL is placed in the plot so that the
distance from the objects and the 27 objects selected
for NLM is as close as possible to the corresponding
distance in the space of the original information. Only
2 co-ordinates are optimised for each object. The fi-
nal plot is shown in Fig. 19, with the dispersion
polygons for the 9 categories.

Fig. 18. Data set ITAOIL. Representation on non-linear-mapping
co-ordinates of a subset with 3 representative objects for each class,
selected by PF-method.
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Fig. 19. Data set ITAOIL. Representation of the whole data set on
the co-ordinates of simplified NLM, using as reference objects
those selected for Fig. 18. Each class shown by means of his dis-
persion polygon.

The advantage of using a small representative
subset is that a class with a multimodal distribution
or with different clusters of objects can not be well
represented only by its centroid, as was done previ-

w xously 16 when the 9 centroids were used in the NLM
step.

5. Conclusions

The extraction of a representative subset from a
large data set has the obvious advantage of a reduced
experimental cost in the case of real problems as that
presented in the introduction; moreover it can give
some advantages in the use of representation and class
modelling techniques. The two methods presented
here meet the requirement to obtain a representative
subset. The reproduction of the dispersion character-
istics, as evaluated from the fit to the probability
function estimated from the original data set, shows
that, in the case of simulated data, with very regular
probability distribution, PF-method performs better
than GA-method. When used on real data, with com-
plex distributions, PF method selects generally a too
high percentage of objects in the centre of a class, so
that the class model is too small; on the contrary GA
method selects too many objects near to the class
boundary, so that the class model is too large. Ac-
cording to the purposes for which a class model is
computed one of the two methods can be more ap-

propriate. PF-method can be, in principle, forced to
select more objects far from the class centroid, by in-
creasing the selection factor r; however this proce-
dure must be used cautiously, and always the class
model obtained with the subset must be compared
with that obtained with the original subset.

Both methods can be improved. PF could use
variable potentials, with possible advantages when
the objects of the original sample are distributed with
very different density in the space of variables. GA
can be improved by introducing a variable power in
the equation of the similarity. These possibilities will
be tested in future.
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