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Abstract The problem of the attitude dynamics of a triaxial gyrostat under no external
torques and one constant internal rotor, is a three degrees-of-freedom system, although thanks
to the existence of integrals of motion it can be reduced to only one degree-of-freedom prob-
lem. We introduce coordinates to represent the orbits of constant angular momentum as a
flow on a sphere. This representation shows that the problem is equivalent to a quadratic
Hamiltonian depending on two parameters. We find the exact solution of the orbits in terms
of elliptic functions. By making use of properties of elliptic functions we find the solution at
each region of the parametric partition from the solution of one region. We also prove that
heteroclinic orbits are planar curves.

Keywords Attitude motion · Gyrostat · Elliptic functions

1 Introduction

A gyrostat G is a mechanical system made of a rigid body P called the platform and other
bodies R called the rotors, connected to the platform and in such a way that the motion of the
rotors does not modify the distribution of mass of the gyrostat G. Due to this double spinning,
the platform on the one hand and the rotors on the other, the gyrostat is also known with the
name of dual-spin body.

Among the first applications of this problem, we may quote the work of Volterra (1899)
to study the rotation of the earth. Later on, the problem has been studied mainly from a
theoretical interest and a wide list of references may be found in Leimanis’ textbook (1965).
In recent years, the gyrostat model has attracted the attention of aerospace engineers and it
is used for controlling the attitude dynamics of spacecraft and for stabilizing their rotations
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50 A. Elipe, V. Lanchares

(see, for instance, Cochran et al. 1982; Hall 1995a; Hall and Rand 1994; Elipe and Lanchares
1997b; Lanchares et al. 1998; Iñarrea and Lanchares 2000; Vera and Vigueras 2006 and also
Hughes 1986 for further references).

In this paper we deal with a particular case of gyrostat; it consists of a rigid body and
a symmetrical rotor whose axis of symmetry is aligned along one of the principal axes of
inertia of the body. Moreover, we assume that the angular momentum of the rotor about its
axis of symmetry is constant. This is one of the two cases of practical interest of a gyrostat
(Hughes 1986, p. 158) named Kelvin gyrostat. The other case, the apparent gyrostat, has
been considered by other authors (Hall 1995a,b; Hall and Rand 1994; Koiller 1983; Holmes
and Marsden 1983). However, after an appropriate conversion of the parameters involved
(Hall 1995b; Hughes 1986), the differential equations describing both cases are the same.
The attitude motion of the gyrostat is described by a system of three differential equations
that determine the position of the angular velocity with respect to the body frame (Euler’s
equations), a single equation to describe the motion of the rotor relative to the platform, and
another system of equations to describe the attitude of the platform with respect to the inertial
frame.

Usually the unknowns in Euler’s equations are taken to be the components of the angular
velocity ω, but they lead to complicated visualizations as in the model of Poinsot (1851).
We prefer to operate with the components of G in the body frame, because the phase flow
determined occurs on a sphere of constant radius (Hughes 1986, p. 113).

It is proved (Elipe and Lanchares 1997b) that the Hamiltonian of the gyrostat here
considered is equivalent to a two-parameter quadratic Hamiltonian and that the symplectic
structure is that of the rigid body. For such kind of problems, Lanchares and Elipe (1995a,b)
and Lanchares et al. (1995) made a complete classification of the bifurcations by continuous
variation of the parameters involved, showing that the phase flow evolves through several
bifurcations. In those papers, the phase portrait was obtained graphically by plotting the
contour levels of the Hamiltonian (a quadratic form) on the unit sphere, although more
sophisticated methods, like the “painting Hamiltonians” technique (Coffey et al. 1990) may
be used. However, and since the system can be reduced to a one degree of freedom sys-
tem (hence integrable), it still remains to find the exact analytical expressions of the orbits
described by the angular momentum on the unit sphere. A first attempt in a more general
context was made in Lanchares’ Ph.D. dissertation (1993), although Cochran et al. also con-
sidered the exact solutions for a particular case (Cochran et al. 1982). In this note we complete
this work and give the solution in terms of elliptic functions for every region of the parametric
plane. We show that knowing the solution in one region, it is possible to have the solution
everywhere by using appropriate properties of elliptic functions.

The interest of having the exact expression of the orbits is twofold. On the one hand
because it has an intrinsic interest as a mathematical problem. On the other hand, the torque
free motion may be considered as a perturbed problem when other torques, such as grav-
itational or magnetic torques act on it; in such a case, the closer the unperturbed problem
to the actual problem, the more accurate the approximate solution obtained by perturbation
theory will be. Albeit dealing with elliptic functions in the context of Lie transformations is
an awkward task, some solutions have been proposed. One solution proposed by Howland
(1989) and developed by Henrard and Wauthier (1989) has been fruitfully applied to sev-
eral non-linear problems (Miller and Coppola 1993). Another solution consists of expanding
elliptic functions and integrals in power series of their nome q = exp(−πK ′/K ) (see Abad
et al. 1994 for details) and it has been successfully employed in several problems (Abad et al.
1997; Abad et al. 1998; Elipe and Vallejo 2001).
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Exact solution of a triaxial gyrostat with one rotor 51

The structure of the paper is the following. In Sect. 2 we present the Hamiltonian in terms
of components of the angular momentum, and show that the problem is equivalent to a gen-
eral quadratic Hamiltonian depending on several parameters. Bifurcations are also described.
Although much of this section is already known, we present here a short description for the
sake of making the most self-contained the problem we are addressing. In Sect. 3 it is shown
that the equations of motion are equivalent to solving a quadrature, whose solution is an ellip-
tic function. In Sect. 4 some fundamental solutions for a specific flow regime are found; it is
shown that by using appropriate properties of elliptic functions (namely, Landen, reciprocal
modulus and imaginary modulus transformations) these fundamental solutions recover the
solution of other flow regimes.

2 Hamiltonian of the gyrostat and parametric classification

Let us assume that the gyrostat has a fixed point O , that we will identify with the center of
mass of the gyrostat and centered on it there are two orthonormal reference frames:

– S, the space frame Os1s2s3, fixed in inertial space.
– B, the body frame Ob1b2b3, fixed in the platform.

Since, by definition, the motion of the rotors does not alter the distribution of mass of the
gyrostat, there is a constant inertia tensor associated to G and we may assume that the body
frame is precisely the frame of principal axes of inertia of the gyrostat. The attitude of B in
S results in three rotations by means of the Euler angles.

Let

G = G1s1 + G2s2 + G3s3 = g1b1 + g2b2 + g3b3,

be the expression of the angular momentum in both reference frames. Thus, proceeding as
in Deprit and Elipe (1993), it was proved (Elipe and Lanchares 1997a) that

Theorem 1 The symplectic structure of the gyrostat is the one of the rigid body, that is,
Poisson brackets satisfy the identities

{g1; g2} = −g3, {g2; g3} = −g1, {g3; g1} = −g2,

{G1; G2} = G3, {G2; G3} = G1, {G3; G1} = G2.
(1)

Now, we proceed to compute the kinetic energy of the gyrostat. Let ω = ω1b1 + ω2b2 +
ω3b3 be the angular velocity in the body frame, and let x = x1b1 + x2b2 + x3b3 be the
position vector of a particle P of the gyrostat with mass d m; its absolute velocity is dx/dt =
v+ω× x, where v = ẋ1b1 + ẋ2b2 + ẋ3b3. If the particle belongs to the platform, then v = 0.
The kinetic energy of the gyrostat is obtained by computing the volume quadrature

T = 1

2

∫

G
(v + ω × x)2 dm

= 1

2

∫

G
(ω × x)2 dm + ω ·

∫

R
(x × v) dm + 1

2

∫

R
v2 dm

= 1

2
ω · Iω + ω · f + TR, (2)

where I is the diagonal tensor of inertia of the gyrostat G while f = f1b1 + f2b2 + f3b3 is
the angular moment of the rotors and TR is the kinetic energy of the rotors in their relative
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motion. Along the paper it is supposed that f is constant; that is, we consider a “Kelvin”
gyrostat.

The Hamiltonian is the Legendre transformation with respect to the velocities of the
Lagrangian function. Let us call the abbreviation q = (φ, θ, ψ) to denote the set of Eulerian
angles; the kinetic energy of the gyrostat (2) is made of the addition of a pure quadratic term( 1

2ω · Iω
)

in the velocities q̇, plus a linear part (ω · f ) in the velocities q̇ (for f does not
depend on the Euler angles), plus a function of the time (TR(t)). By virtue of Euler’s theorem
for homogeneous functions, the Legendre transformation of the Lagrangian (with a potential
V (q)) is

LL : q̇ −→ ∇q̇ (T − V ) · q̇ − (T − V ) = 1

2
ω · Iω − TR + V,

and since the relative kinetic energy is a function of t only, the Hamiltonian is

H = 1

2
ω · Iω + V (q).

Since our paper deals exclusively with a gyrostat in free rotation (V = 0), the Hamiltonian
is

H = 1

2
ω · Iω, (3)

Rather than expressing H in terms of the canonical coordinates and moments, we will express
it in terms of the total angular moment that, as we observed in the Introduction, plays a critical
role in our work.

N.B. The independent variable t does not appear explicitly in the Hamiltonian (3), hence
it is an integral.

The angular momentum vector of the gyrostat in the body frame is

G =
∫

G
(x × (v + ω × x)) dm

=
∫

P
(x × (ω × x)) dm +

∫

R
(x × (v + ω × x)) dm

=
∫

G
(x × (ω × x)) dm +

∫

R
(x × v) dm

= Iω + f .

Let us denote by a j the inverse of the principal moment of inertia I j ; that is a j = 1/I j .
Assume moreover that a1 ≥ a2 ≥ a3 > 0. With these conventions, there is a diagonal tensor
A, such that the angular velocity is ω = A(G − f ). The Hamiltonian (3) in these notations is

H = 1

2
(G − f ) · A(G − f ). (4)

From here on, we shall assume that the rotor moment is constant ( fi = constant, i=1, 2, 3).

Theorem 2 The Hamiltonian of a gyrostat in torque-free motion is a quadratic form with
the phase space on the S2 sphere

Proof By expanding the expression (4), and after dropping the constant terms
(∑

ai f 2
i

)
, we

find the following expression for the Hamiltonian

H = 1

2
(a1g2

1 + a2g2
2 + a3g2

3)− (a1g1 f1 + a2g2 f2 + a3g3 f3). (5)
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The Poisson structure (1) gives rise to the equations of the motion

ġ1 = {g1; H} = (a3 − a2)g2g3 + a2 f2g3 − a3 f3g2,

ġ2 = {g2; H} = (a1 − a3)g1g3 + a3 f3g1 − a1 f1g3,

ġ3 = {g3; H} = (a2 − a1)g1g2 + a1 f1g2 − a2 f2g1.

(6)

From this system, one can easily prove that the norm of the angular momentum vector G is
an integral

‖G‖2 = g2
1 + g2

2 + g2
3 = G2 = constant; (7)

thus history of the rotation of G in the body frame is represented as a curve on the S2 sphere
of constant radius G. ��

The system (6) admits two integrals; the kinetic energy (5) and the norm of the total
angular momentum (7). Therefore it is integrable. The phase space of (6) may be regarded
as a foliation of invariant manifolds

S2(G) = {(g1, g2, g3) | g2
1 + g2

2 + g2
3 = G2}.

By using the angular momentum G instead of the angular velocity ω, the geometric model
depicting the rotations of G is a sphere with constant radius. Most importantly, unlike
Poinsot’s ellipsoids, the underlying model is independent of the ellipsoid of inertia (Table 1).

The differential system (6) belongs to a general class of Hamiltonian systems, the one of
the type

H = T2 + T1, with T2 = 1

2

∑
1≤i, j≤3

Ai j ξiξ j and T1 = 1

2

∑
1≤i≤3

B ξi . (8)

The unknowns ξ have the Poisson structure
{
ξi ; ξ j

} = −
∑

1<k<3

εi, j,k ξk,

where εi, j,k stands for the Levi–Civita symbol. The six coefficients Ai j and the three coeffi-
cients Bi are parameters independent of the variables ξ . The class depends on nine parameters,
but it is possible to reduce it to five standard classes; this is done (Frauendiener 1995) by
rotations in the phase space (ξ1, ξ2, ξ3), additions of invariant quantities to the Hamiltonian
and time reversion. As the table below shows, one can roughly divide the classes by the
number of parameters they contain.

Table 1 The five cases
of parametric quadratic
Hamiltonians represented
by (8)

Case Parameters Hamiltonian

A 1 H = 1

2
ξ2

1 + Rξ2

B.a 2 H = 1

2
ξ2

1 + Qξ1 + Rξ2

B.b H = 1

2
ξ2

1 + 1

2
Pξ2

2 + Qξ1

C 3 H = 1

2
ξ2

1 + 1

2
Pξ2

2 + Qξ1 + Rξ2

D 4 H = 1

2
ξ2

1 + 1

2
Pξ2

2 + Qξ1 + Rξ2 + Sξ3
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Cases A, B.a, B.b and C were identified and analyzed extensively by Elipe and Lanchares
(1994). Case D is due to Frauendiener (1995) and is yet to be analyzed.

In fact, to each class corresponds a different type of gyrostat.

Case A Axially symmetric gyrostat (a1 = a2 > a3) with one rotor spinning about anyone of
the principal axes of inertia ( fi �= 0 and f j = fk = 0).

Case B.a Axially symmetric gyrostat (a1 = a2 > a3) with three rotors spinning about each
principal axis of inertia ( f1, f2, f3 �= 0).

Case B.b Asymmetric gyrostat (a1 > a2 > a3) with one rotor spinning about any one of the
principal axes of inertia ( fi �= 0, f j = fk = 0).

Case C Asymmetric gyrostat (a1 > a2 > a3) with two rotors spinning about any two of the
principal axes of inertia ( fi �= 0, f j �= 0 and fk = 0).

Case D Asymmetric gyrostat (a1 > a2 > a3) with three rotors spinning about each principal
axis of inertia ( f1, f2, f3 �= 0).

Note that when the rotor is not aligned with any principal axis (Hall 1995b), it may be
decomposed as the sum of three different rotors aligned with the principal axes and thus, it
can be reduced to one of these five cases, in general to Case D.

The problem we are considering in this paper, a tri-axial gyrostat with only one rotor,
corresponds to Case B.b, that is, a biparametric Hamiltonian. Elipe and Lanchares (1997b)
obtained Table 2 showing the correspondence among parameters P and Q and parameters
of the gyrostat.

For the sake of simplicity of the notation and graphics representation, let us introduce the
dimensionless variables

(u, v, w) −→ (g1, g2, g3)/G, (ϕ1, ϕ2, ϕ3) −→ ( f1, f2, f3)/G,

and after a time scaling τ = G t , the Hamiltonian considered in this paper becomes

H = 1

2
u2 + 1

2
Pv2 + Qu, (9)

and variables (u, v, w) lie on the unit sphere u2 + v2 + w2 = 1. By using the symplectic
structure (1), the equations of motion are

Table 2 Reduction of the case of one spinning rotor to the generic Hamiltonian H = 1
2 ξ

2
1 + 1

2 Pξ2
2 + Qξ1

Axis P P∈ Q Variables

Biggest (b1)
a3 − a2

a1 − a2
(−∞, 0)

−a1 f1
a1 − a2

(g1, g2, g3) −→ (ξ1, ξ3, ξ2)

Smallest (b3)
a2 − a1

a3 − a1
(0, 1)

−a3 f3
a3 − a1

(g1, g2, g3) −→ (ξ3, ξ2, ξ1)

Intermediate (b2)
a1 − a3

a2 − a3
(1,∞)

−a2 f2
a2 − a3

(g1, g2, g3) −→ (ξ2, ξ1, ξ3)
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Fig. 1 Partition of the parameter plane PQ. The phase flow is similar at points belonging to the same region
in the partition, the number of equilibria is the same, as well as their stability. Boundary lines in the partition
are bifurcation lines

u̇ = Pvw, v̇ = −(Q + u)w, ẇ = (Q + u − Pu)v. (10)

The complete classification of Hamiltonians of the type (9) with parameters P, Q ∈ R
2

was made by Lanchares and Elipe (1995b). The parametric plane partition is represented
in Fig. 1. Differential system (10), as it was already noted by several authors (see e.g. Hall
1992), enjoys the symmetries

(v, t) → (−v,−t), (w, t) → (−w,−t), (u, Q) → (−u,−Q).

Hence, the phase flow is symmetric with respect to the planes v = 0 and w = 0, and due to
the third symmetry, it is sufficient to make the analysis for non-negative values of Q. Thus,
in Fig. 1 regions for Q < 0 are labeled with the same number as their symmetric ones, since
the flow is equivalent.

In the same paper it was proved that there are at most six equilibria, which will play an
essential role in the integration:

E1 = (+1, 0, 0) everywhere
E3 = (−1, 0, 0) everywhere

EMer =
(
−Q, 0,±√

1 − Q2
)

when|Q| ≤ 1

EEq =
(

Q

P − 1
,±

√
(P − 1)2 − Q2

P − 1
, 0

)
when|Q| ≤ |P − 1|
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3 Integration by quadratures

From the equations of motion (10) and taking into account the first integrals (7) and (9) on
the manifold H = H = const., it is easy to arrive at the following differential equation for
the u variable

du

dt
= √

f (u)g(u), (11)

where f (u) and g(u) are the following quadratic polynomials

f (u) = 2H − u2 − 2Qu, g(u) = (1 − P)u2 + 2Qu + P − 2H. (12)

In order to have a complete description of the solutions it is necessary to solve the quadrature
(11) in terms of the parameters P and Q, as well as the energy H in each region of the
parameter plane. However, we can take advantage of the discrete symmetries and equiva-
lence transformations to reduce the solutions only to those regions where the type of flow is
different. Indeed, on account of the symmetries of the problem it is only necessary to consider
the case Q ≥ 0 (Note that Q = 0 stands for a rigid body in free motion). On the other hand,
replacing v2 by 1 − u2 − w2 in the Hamiltonian function we get

H ′ = 1

2
u2 + P ′w2 + Q′u

where

H ′ = 2H − P

2(1 − P)
, P ′ = P

P − 1
, Q′ = Q

1 − P
.

This equivalence transformation maps region 1 to region 7, and region 2 to regions 4′ and
6, and it is related to the symmetry transformation given in Hall (1992). Thus, the solution
must be calculated in regions 1, 2, 3 and 5, which are representative of the four types of flow
described and which may be seen in Fig. 2.

Cochran et al. (1982) noted that there are two basic types of solutions, depending on the
nature of the roots of the polynomials f (u) and g(u): four real roots; two real roots and a
pair of complex conjugate ones. However, the role played by the parameters in the nature of
the roots as well as if they lie in the interval [−1, 1], where u belongs to, is not considered.
In this way this is a simplified approach, because parameters P and Q play an important role
in the number of equilibria as well as in the bifurcations among them, as it is highlighted in
Hall and Rand (1994).

Let us consider the differential equation (11). It is possible to solve it by means of Cayley’s
method (Bowman 1961) to reduce it to a standard form by means of a rational transformation
of the type

u = α + z/α

1 + z

with α a solution of the quadratic equation

α2 − 2H − 1

Q
α + 1 = 0.

This transformation strongly depends on the roots of the polynomials f (u) and g(u). Not
only it depends on their real or complex nature, but also on how they are ordered. Taking this
fact into account it is important to know the conditions under which the nature or the order
of the roots change. This follows from the discriminant of the quartic polynomial f (u)g(u).
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Fig. 2 Phase portraits on the unit
sphere for regions considered 1,
2, 3 and 5. First row, left figure,
view from +v axis; right figure,
view from −v axis. Remaining
rows, left figure, view from +u
axis; right figure, view from −u
axis

Proposition 1 There is a change in the nature or the order of the roots if the energy takes
values

H1 = 1

2
+ Q, H3 = 1

2
− Q, HMer = − Q2

2
, HEq = P

2
+ Q2

2(P − 1)
,

or if P = 1 or P = 0.

The above result tells us that different solutions are obtained when the critical values H1,
H3, HMer, HEq, P = 0 and P = 1 are crossed. Even more, it also tells us that the solution
depends on the energy, as they are the energy levels on the sphere u2+v2+w2 = 1. The cases
P = 0 and P = 1 correspond to the limit situation when the gyrostat is axially symmetric.

It is worthy to notice that the values of the energy correspond to those of the equilibrium
points of the problem, what confirms the important role of the equilibrium points in the phase
flow of a dynamical system. Besides, when a change in the relative values of the energy takes
place the solution also changes. But a change in the relative values of the energy implies
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bifurcation among equilibrium points. As a consequence we can obtain the partition of the
parameter plane P Q where different kind of flow is expected, recovering Fig. 1.

4 Fundamental solutions

From the preceding section it seems that many different solutions are needed to completely
solve the problem. However, we can compute a solution and trace it through the different
values of the parameters and the energy to produce the rest of solutions. In this way from a
fundamental solution we can obtain a collection of solutions.

To begin with, we consider the flow in region 1, defined by P ∈ [0, 1], (P + Q − 1)(P −
Q − 1) > 0, restricted to the case Q > 0 due to the discrete symmetry. In this case, we have
six equilibrium points and the critical energy values satisfy

HMer < HEq < H3 < H1.

Let r1 and r2 be the roots of f (u) and r3 and r4 the roots of g(u) given by

r1 = −Q + √
Q2 + 2H = −Q + √

2(H − HMer),

r2 = −Q − √
Q2 + 2H = −Q − √

2(H − HMer),

r3 = −Q + √
Q2 − (1 − P)(P − 2H)

1 − P
= −Q + √

2(1 − P)(H − HEq)

1 − P
,

r4 = −Q − √
Q2 − (1 − P)(P − 2H)

1 − P
= −Q − √

2(1 − P)(H − HEq)

1 − P
.

Then, there follows

Proposition 2 If P ∈ [0, 1], (P + Q − 1)(P − Q − 1) > 0 and Q > 0 then

(i) If H ∈ [HMer, HEq], then −1 ≤ r2 ≤ r1 ≤ 1 and r3, r4 are complex conjugate.
(ii) If H ∈ [HEq, H3], then −1 ≤ r2 ≤ r4 ≤ r3 ≤ r1 ≤ 1.
(iii) If H ∈ [H3, H1], then r4 ≤ r2 ≤ −1 ≤ r3 ≤ r1 ≤ 1.

Proof The proof is based on computing the values of functions r j (H)−rk(H). For instance,
let us consider the function r1(H) − r3(H) in the case H ∈ [HEq, H3]. Both r1 and r3 are
increasing functions of H . On the other hand r1(HEq) > r3(HEq), whereas r1(E3) = r3(E3).
Thus, from elementary calculus, it must be r1 ≥ r3 for H ∈ [HEq, H3]. ��

Once the nature and the order of the roots has been established we can proceed to the
integration of the differential equation (11), but we only do so when the energy belongs to
the interval [HEq, H3]. It is in this interval where we have to consider two different solutions,
as the variable u can vary in two disjoint intervals, namely [r2, r4] and [r3, r1]. These two
solutions correspond to the orbits filling the bright areas in Fig. 3. Furthermore, as all roots
are real, a bilinear transformation yields directly to the solution (Bowman 1961; Byrd and
Friedman 1954).

In case u ∈ [r2, r4], the bilinear transformation

z = r1 − r4

r4 − r2

u − r2

r1 − u
(13)
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-0.005 0.24 0.4 0.6

HMer HEc H3 H1

u (t)2

u (t)1

r1

r2

r3

r4

u (t)1

u (t)2

Fig. 3 Area where fundamental solutions are calculated. On the left as viewed in phase space from point E3.
On the right as a function of the energy and the roots of the quartic

converts the differential equation (11) into

hdt = dz√
4z(1 − z)(1 − k2z)

where

k2 = (r1 − r3)(r4 − r2)

(r1 − r4)(r3 − r2)
, h = 1

2

√
(1 − P)(r1 − r4)(r3 − r2). (14)

Thus, in this case we obtain the first fundamental solution

u1(t) = A1 + A2 sn2(ht, k)

A3 + A4 sn2(ht, k)
, (15)

where

A1 = r2(r1 − r4), A2 = r1(r4 − r2),

A3 = r1 − r4, A4 = r4 − r2.

It corresponds to the orbits surrounding the equilibrium point E3, located at (u, v, w) =
(−1, 0, 0). Besides, taking into account the first integrals

H = 1

2
u2 + 1

2
Pv2 + Qu, u2 + v2 + w2 = 1,

we obtain, after some algebraic manipulations,

v2
1 = (r1 − r2)

2(r1 − r4)(r4 − r2) sn2(ht, k)

P(A3 + A4 sn2(ht, k))2
,

w2
1 = (r1 − r4)

2(1 − r2
2 ) cn2(ht, k) dn2(ht, k)

(A3 + A4 sn2(ht, k))2
.

In the case u ∈ [r3, r1], the bilinear transformation

z = r3 − r2

r1 − r3

r1 − u

u − r2
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60 A. Elipe, V. Lanchares

converts the differential equation (11) into

hdt = dz√
4z(1 − z)(1 − k2z)

where h and k2 are given by (14). Now, we obtain the second fundamental solution

u2(t) = B1 + B2 sn2(ht, k)

B3 + B4 sn2(ht, k)
, (16)

where

B1 = r1(r3 − r2), B2 = r2(r1 − r3),

B3 = r3 − r2, B4 = r1 − r3.

It corresponds to the orbits surrounding the heteroclinic loop connecting the unstable points
Ec. Besides

v2
2 = (r1 − r2)

2(r1 − r3)(r3 − r2) sn2(ht, k)

P(B3 + B4 sn2(ht, k))2
,

w2
2 = (r3 − r2)

2(1 − r2
1 ) cn2(ht, k) dn2(ht, k)

(B3 + B4 sn2(ht, k))2
.

Considering the fundamental solutions as functions of complex variable, it is possible to
extend them for values of the energy, and the parameters, other than those required to obtain
them. First of all, let us extend the solutions for different values of the energy in the region 1.
To this end, the theory of transformation of elliptic functions provides a basic tool to demon-
strate that the two fundamental solutions are valid for the whole range of energies in region 1.

4.1 H ∈ [HMer, HEq]

From Proposition 2 we know that r3 and r4 are complex conjugate, while r1 and r2 are real. It
is not difficult to prove that now the modulus k2, the same for the two fundamental solutions,
becomes a complex number on the unit circle. In fact, if

r3 = α + iβ, r4 = α − iβ,

we obtain

k2 = (r1 − r3)(r4 − r2)

(r1 − r4)(r3 − r2)
= (r1 − α − iβ)(α − r2 − iβ)

(r1 − α + iβ)(α − r2 + iβ)
,

and then

k2 = (r1 − α)(α − r2)− β2 − iβ(r1 − r2)

(r1 − α)(α − r2)− β2 + iβ(r1 − r2)
,

a complex number such that |k2| = 1, as numerator and denominator are complex conjugate.
On the other hand, the argument of the elliptic function also becomes a complex number, as
well as the coefficients appearing in u1(t), u2(t). Now, we look for a transformation mapping
the modulus k2 into the real interval [0, 1].
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Proposition 3 Let be sn(z, k) such that k2 ∈ C and k2 = cos θ + i sin θ . The composition
of Landen’s and inverse modulus transformations yields

sn(z, k) = sn(
√

kz, λ) dn(
√

kz, λ)√
k cn(

√
kz, λ)

,

where λ2 = (1 + k)2

4k
∈ [0, 1].

Proof It is only necessary to prove that the square of the new modulus belongs to the interval
[0, 1], but,

λ2 =
(

1 + k

2
√

k

)2

=
(

1 + cos θ/2 + i sin θ/2

2(cos θ/4 + i sin θ/4)

)2

= cos2 θ/2 ∈ [0, 1].

Applying Proposition 3 to the fundamental solutions we obtain

sn2(ht, k) = sn2(Gt, λ) dn2(Gt, λ)

k cn2(Gt, λ)
= 1 − cn(2Gt, λ)

k(1 + cn(2Gt, λ))
,

where

G = 1

2

√
(1 − P)

√
(r1 − r3)(r1 − r4)(r3 − r2)(r4 − r2) ∈ R

and

λ2 =
(√
(r3 − r2)(r1 − r4)+ √

(r1 − r3)(r4 − r2)
)2

4
√
(r1 − r3)(r1 − r4)(r3 − r2)(r4 − r2)

.

Therefore, the first fundamental solution can be written as

u1 = C1
1 + C2 cn(2Gt, λ)

1 + C3 cn(2Gt, λ)
,

where

C1 = r2
√
(r1 − r3)(r1 − r4)+ r1

√
(r3 − r2)(r4 − r2)√

(r1 − r3)(r1 − r4)+ √
(r3 − r2)(r4 − r2)

,

C2 = r2
√
(r1 − r3)(r1 − r4)− r1

√
(r3 − r2)(r4 − r2)

r2
√
(r1 − r3)(r1 − r4)+ r1

√
(r3 − r2)(r4 − r2)

,

C3 =
√
(r1 − r3)(r1 − r4)− √

(r3 − r2)(r4 − r2)√
(r1 − r3)(r1 − r4)+ √

(r3 − r2)(r4 − r2)

are real numbers. On the other hand, the second fundamental solution becomes

u2 = C1
1 − C2 cn(2Gt, λ)

1 − C3 cn(2Gt, λ)
,

which it is no more than the first one shifted half a period (see Fig. 4).
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Fig. 4 The two fundamental
solutions for H ∈ [HMer, HEq]
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4.2 H ∈ [H3, H1]

In this case, from Fig. 3, it is clear that only the second fundamental solution can be extended
(to the right to the vertical ruled lines area), as the first one will give rise to values of the
variable u outside the interval [−1, 1].

In order to have the new solution we look at the modulus k2, which becomes negative, as
it is deduced from Proposition 2. Then, the imaginary modulus transformation,

sn(z, ik) = 1√
1 + k2

sd
(√

1 + k2z, k/
√

1 + k2
)
,

is the appropriate one to obtain the desired solution, given by

u2(t) = B̄1 + B̄2 sn2(Gt, λ)

B̄3 + B̄4 sn2(Gt, λ)

where

λ2 = (r1 − r3)(r2 − r4)

(r1 − r2)(r3 − r4)
, G = 1

2

√
(1 − P)(r1 − r2)(r3 − r4),

B̄1 = r1(r3 − r4), B̄2 = r4(r1 − r3),

B̄3 = r3 − r4, B̄4 = r1 − r3.

4.3 Asymptotic solutions

When H = HEq, the two roots r3 and r4 are the same and the modulus k2 becomes 1, and the
fundamental solutions are now expressed in terms of hyperbolic functions. They give rise to
the four heteroclinic orbits connecting the unstable points EEc. In this way, we obtain

u1(t) = B1 + B2 cosh ht

B3 + B4 cosh ht
, u2(t) = −B1 + B2 cosh ht

−B3 + B4 cosh ht
, (17)

where

h = √
(1 − P)(r1 − r3)(r3 − r2),

B1 = (r1 − r3)r2 − (r3 − r2)r1, B2 = (r1 − r3)r2 + (r3 − r2)r1,

B3 = (r1 − r3)− (r3 − r2), B4 = (r1 − r3)+ (r3 − r2).

(18)

By computing v1,2(t) andw1,2(t) from the first integrals it follows that the heteroclinic loops
lie into planes. However, this can be proved in a different way.

Theorem 3 Heteroclinic orbits are planar curves on the sphere.
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Proof Let us prove this result for the heteroclinic orbits connecting points EEq and surround-
ing points EMer, E3 in the region 1 (0 < Q < 1, Q < |P − 1| < 1). The proof for the
remaining case (heteroclinic orbits in region 7) is similar.

We take advantage of the symmetric character of the orbits with respect to the plane v = 0
and we consider the plane −u + αw + δ = 0, with α a tuning parameter to be determined.
As the plane must contain the points EEq, it must be δ = Q/(P − 1). Thus, we have the
equation of the heteroclinic in terms of w

u = αw + Q/(P − 1), v =
√

1 − w2 − (αw + Q/(P − 1))2, w = w.

By replacing these expressions in the Hamiltonian (9), we get

H(curve) =
[
P(P − 1)+ Q2

] + [−α2 + (1 + 2α2)P − (1 + α2)P2
]
w2

2(P − 1)
.

But this energy must be constant and equal to the energy (1) at the equilibrium EEq, hence
the coefficient of w2 must vanish, which happens for α = ±√

P/(1 − P). Whence the four
heteroclinics surrounding the equilibria EMer are on the planes

−u ± √
P/(1 − P)w + Q/(P − 1) = 0. ��

N.B. The quotient P/(1 − P) cannot be negative, which happens if and only if P ∈ [0, 1].
Special attention deserves the limit case P + Q −1 = 0 in the upper boundary of region 1.

Now the three equilibrium points EEq and E3 collide. This has a counterpart in the roots
of polynomials f (u) and g(u). Indeed, in that case r2 = r3 = r4 = −1 and the solution
becomes a rational function of t . This solution can be obtained directly by integrating the
differential equation (11) and it reads

u(t) = 2P − 1 − P2(1 − P)t2

1 + P2(1 − P)t2 .

Nevertheless, it also appears as a limit of the second fundamental solution, given in (17),
by applying twice L’Hôpital rule when Q approaches 1 − P . On the other hand, the first
fundamental solution reduces to the equilibrium point E3, as it is deduced from (17) and
(18). Even more, in this case the solutions are two homoclinic loops, which are minor circles
resulting from the intersection of the unit sphere and the planes

u ± √
P/(1 − P)w + 1 = 0.

These two planes intersect at E3 and then, the two orbits are tangent at this point.

4.4 Limit solutions

Let us consider now those solutions corresponding to limit cases, when parameters P and Q
reach the boundary lines of region 1. Firstly we will also consider Q = 0 as a limit situation,
in which we recover the rigid body in torque free motion.

Let us take Q = 0 and 0 < P < 1. In this situation r2 = −r1 and r4 = −r3. Then, from
(14), (15) and (16), we can write

u1(t) = −u2(t) = −r1
1 − k sn2(ht, k)

1 + k sn2(ht, k)
,
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where

k2 = (r1 − r3)
2

(r1 + r3)2
, h = 1

2

√
(1 − P)(r1 + r3)2.

The Gauss transformation (Byrd and Friedman 1954), yields

u1(t) = −r1 dn(Gt, λ),

with

G = (1 + k)h = √
8H(1 − P) and λ2 = 4k

(1 + k)2
= P(1 − 2H)

2H(1 − P)
.

By appropriate conversion of the parameters H and P (see Table 2) we recover the solution
for a triaxial rigid body given in Deprit and Elipe (1993) in the case of circulations around
the axis of biggest moment of inertia.

An extreme limit situation takes place at P = 1 and Q = 0. Note that in this case,
g(u) it is no longer a polynomial in u as it is just a constant. However, taking limits in (14)
we arrive to

lim
(P,Q)→(1,0)

k2 = 1, lim
(P,Q)→(1,0)

= 1

2

√
2H − 1,

(
0 < H <

1

2

)
.

Similarly, for the ratios of the coefficients in (15), we get

lim
(P,Q)→(1,0)

A1

A2
= 1, lim

(P,Q)→(1,0)

A3

A4
= −1, lim

(P,Q)→(1,0)

A2

A4
= √

2H .

Taking into account that sn(z, 1) = tanh z and that h is purely imaginary, we obtain

u1(t) = √
2H cos

√
1 − 2Ht.

Besides, it can be seen that

v1(t) = √
2H sin

√
1 − 2Ht, w1(t) = ±√

1 − 2H .

That is, the orbits are circles parallel to the planew = 0, i.e. orbits are the intersection of the
family of cylinders u2 + v2 = H with the sphere u2 + v2 + w2 = 1.

Moreover, when w = 0, or H = 1/2, the frequency of the solutions is 0, and there is no
movement; that is, every point on the equator of the sphere is an equilibrium.

We also obtain circular solutions for P = 0. Indeed, since now r1 = r3 and r2 = r4, there
follows

k2 = 0, h =
√

2H + Q2, (−Q2/2 < H < 1/2 + Q).

On the other hand, A2 = A4 = 0, B2 = B4 = 0 and then u1(t) = r2 and u2(t) = r1 are
constant. In addition,

v1,2(t) =
√

1 − u2
1,2 sin ht, w1,2(t) =

√
1 − u2

1,2 cos ht.

It is worth noting that in the case H = −Q2/2, the frequency of the circular solutions
becomes 0, and the corresponding circle (in general a minor circle parallel to the plane
u = 0) is made of equilibria. This situation takes place when the four roots come into coin-
cidence and they belong to the interval (−1, 1), that is to say, |Q| < 1. If |Q| ≥ 1 all the
solutions remain circular, but there is not a set of non-isolated equilibria.
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5 Extended solutions

In the previous section, the fundamental solutions were extended throughout the whole
region 1, including the boundary. Now we will do a similar analysis in the remaining regions.

For the sake of conciseness we will do this only in region 3, because for regions 2 and 5
it is clear that solutions evolve in a natural way from those computed in region 1. Anyway,
the procedure is completely similar.

First of all, we need to determine the nature and order of the roots in region 3, defined by
the conditions |Q| < 1 and (P + Q)2 − 1 > 0. In this way we have

Proposition 4 If |Q| < 1 and (P + Q)2 − 1 > 0 then

(i) If H ∈ [HMer , H3], then r3 ≤ −1 ≤ r2 ≤ r1 ≤ 1 ≤ r4.
(ii) If H ∈ [H3, H1], then r2 ≤ −1 ≤ r3 ≤ r1 ≤ 1 ≤ r4.
(iii) If H ∈ [H1, HEq ], then r2 ≤ −1 ≤ r3 ≤ r4 ≤ 1 ≤ r1.

Now we will extend the fundamental solutions for all the cases described in Proposition 4.

5.1 H ∈ [HMer , H3]

In this situation the modulus k2 > 1 and the frequency h is purely imaginary. Two transfor-
mations, the reciprocal modulus and the imaginary argument transformation yields

sn2(z, k) = − 1

k2

sn2(kz, λ)

cn2(kz, λ)
, λ2 = 1 − 1

k2 .

Thus, the first fundamental solution can be rewritten now as

u1(t) = r2(r1 − r3)+ r3(r1 − r2) sn2(ht, k)

(r1 − r3)+ (r1 − r2) sn2(ht, k)
,

where

h = 1

2

√
(P − 1)(r4 − r2)(r1 − r3) k2 = (r1 − r2)(r4 − r3)

(r4 − r2)(r1 − r3)
. (19)

Similarly, the second fundamental solution is transformed into

u2(t) = r1(r4 − r2)+ r4(r2 − r1) sn2(ht, k)

(r4 − r2)+ (r2 − r1) sn2(ht, k)
,

with h and k2 given by (19). In fact, u2(t) is nothing but u1(t) displaced half a period.
Figure 5 shows the two solutions for values of the parameters in the range considered and
they correspond to the orbits surrounding the stable points EMer.

5.2 H ∈ [H3, H1]

Now, k2 < 0, while h remains real. The imaginary modulus transformation given by

sn2(z, ik) = 1

1 + k2

sn2
(√

1 + k2z, λ
)

dn2
(√

1 + k2z, λ
) , λ2 = k2

1 + k2 ,
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Fig. 5 The two fundamental
solutions for H ∈ [HMer, H3]
in region 3
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maps a modulus k2 ∈ (−∞, 0) into the interval (0, 1). While the first fundamental solution
does not produce a valid orbit, the second one is transformed into

u2(t) = r1(r4 − r3)+ r4(r3 − r1) sn2(ht, k)

(r4 − r3)+ (r3 − r1) sn2(ht, k)
,

where h and k are given by

h = 1

2

√
(P − 1)(r4 − r3)(r1 − r2), k2 = (r1 − r3)(r4 − r2)

(r4 − r3)(r1 − r2)
.

This solution corresponds to the orbits around the homoclinic loops attached to the unstable
points E1 and E3.

5.3 H ∈ [H1, HEc]

In this case, the modulus k2 becomes greater than one, whereas h is now purely imaginary.
However, the sequence of inverse modulus and imaginary argument transformations does
not produce a valid solution. In fact, the two fundamental solutions give rise to real values
of u, but outside the interval [−1, 1], as it can be seen in Fig. 6.

This situation seems to require a new fundamental solution. Nevertheless, it can be
obtained from the first one by means of the translation property for autonomous dynam-
ical systems. Let us consider the new fundamental solution

ū1(t) = u1(t + K ),

with K the complete integral of first kind associated to the modulus k2, that is to say

K =
π/2∫

0

dφ√
1 − k2 sin2 φ

.

Fig. 6 The two fundamental
solutions for H ∈ [H1, HEc]
in region 3
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Fig. 7 The first fundamental
solution shifted half a period
produces a valid solution for
H ∈ [H1, HEc] in region 3
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Taking into account that sn(z + K ) = cd(z), we obtain for ū1 the following expression

ū1(t) = A1 + A2 − (A2 + k2 A1) sn2(ht, k)

A3 + A4 − (A4 + k2 A3) sn2(ht, k)
,

but with these new coefficients, the two transformations mentioned above produce the desired
solution, which is depicted in Fig. 7.

It is worth noting that ū1(t) is the result of an alternative bilinear transformation that
converts the differential equation (11) into the Jacobi standard form. While (13) maps the
roots r2, r4, r1 and r3 into 0, 1, +∞ and 1/k2, respectively, the bilinear transformation asso-
ciated to ū1(t) maps the roots r2, r4, r1 and r3 into 1, 0, 1/k2, +∞. In this way, u1(t) runs
from r2 to r4, whereas ū1(t) runs from r4 to r2. This is the reason why ū1(t) can be extended
in this case, but not u1(t). Indeed, when H ∈ [H1, HEc], variable u belongs to the interval
[r3, r4]. On the other hand, from Proposition 4, r2 < −1 < r3 < r4 < 1 < r1. Thus, if we
run from r2 to r4 we are out of the limits for u. On the contrary, if we run in the opposite
direction, we reach the interval [r3, r4], where u belongs.

6 Conclusions

We find exact analytical solutions for the problem of the attitude dynamics of a gyrostat in
torque free motion. As expected, the trajectories described by the angular momentum on the
S2 sphere are given in terms of elliptic functions. We prove that those solutions do not depend
on the character of the roots of the quartic polynomial which determine the elliptic function,
but the solution at one region can be extended for all values of the parameters and hence we
are able to find the solution at each region from the one already computed.
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