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Abstract

A number n is said to be multiperfect (or multiply perfect) if n divides its sum of divisors σ(n). In
this paper, we study the multiperfect numbers on straight lines through the Pascal triangle. Except
for the lines parallel to the edges, we show that all other lines through the Pascal triangle contain
at most finitely many multiperfect numbers. We also study the distribution of the numbers σ(n)/n
whenever the positive integer n ranges through the binomial coefficients on a fixed line through
the Pascal triangle.
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1 Introduction and main results

For a positive integer n we put σ(n) for the sum of its divisors. Given an integer k,
the number n is said to be multiperfect, multiply perfect, or k-fold perfect if σ(n) = kn.
Of course, ordinary perfect numbers are 2-fold perfect. The single 1-fold perfect is the
trivial case n = 1. The 3-fold perfect numbers are also called triperfect, and only six of
them are known: they are 120, 672, 523776, 459818240, 1476304896, 51001180160. All of
them were already known by the seventeenth century. Several multiperfect numbers are
also known for every k ≤ 11. Their number varies from thousands for k = 8, 9, 10, to
only one for k = 11 which has more than a thousand decimal digits and was discovered
in 2001. Descartes discovered the first 4-fold number, and Fermat the first 5-fold number,
respectively. Dickson’s History of the Theory of Numbers [1, p. 33–38] records a long interest
in such numbers. See also [5, Section B2], or the web page [23] for more details and references.

Except for the well-known Euclid-Euler rule for k = 2, no formula to generate multiper-
fect numbers is known. Lehmer [6] proved that if n is odd, then n is perfect just if 2n is
3-fold perfect. Moreover, no odd multiperfect number is known. There are several conjec-
tures on the size of k in what relates to the size of n. For example, from the maximal order
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of the sum of divisors function, it is known that there exists a positive constant c such that
the inequality σ(n)/n > c log log n holds for infinitely many positive integers n, where here
and from now on we use log for the natural logarithm. Contrary to this inequality, Erdős
conjectured that if there were infinitely many multiperfect numbers, then k = o(log log n)
as n → ∞ through multiperfect numbers. It has even been suggested there may be only
finitely many k-fold perfect numbers altogether with k ≥ 3, and it is further believed that
all multiperfect numbers with k = 3, 4, 5, 6, and 7 are known.

There are several results in the literature addressing perfect and multiperfect numbers
of various shapes. For example, Pomerance [18] proposed as a problem to find all positive
integers n such that n! is multiperfect. In the solution [2] to the above problem, it is shown
that this happens only for n = 1, 3, 5. In [7], it is shown that there is no Fibonacci number
which is perfect and in [9] it was shown that there are at most finitely many Fibonacci
numbers which are multiperfect. In [8], it is shown that no Fermat number; i.e., number of
the form 22

n

+ 1 for some non-negative integer n, is perfect, and the method of proof shows
easily that such numbers are not multiperfect either.

There are various extensions of perfect and multiperfect numbers in the literature. For
example, a number n is called superperfect if σ(σ(n)) = 2n. More generally, a number n is
called (m, k)-perfect if σ(m)(n) = kn, where σ(m) denotes the mth fold iterate of the sum
of divisors function.

It has been shown that there are only finitely many multiperfect numbers of the form(
2n
n

)
(see [13,14]). In this paper, we take a closer look at this problem and we study the

multiperfect as well as (2, k)-perfect numbers (for any positive integer k) on straight lines
on the Pascal triangle. Our theorem here is the following:

Theorem 1. Let L be a line passing through the Pascal triangle and not parallel to any of
its sides. Then the following hold:

(i) There are only finitely many binomial coefficients x belonging to L such that x | σ(x).
(ii) There are only finitely many binomial coefficients x belonging to L such that x | σ(σ(x)).

Our theorem above does not say anything about the lines parallel to the edges; they are
{
(
n
m

)
: n ≥ m} with a fixed value of m or their symmetries with respect to the middle axis

{
(

n
n−m

)
: n ≥ m}. When m = 1, we have

(
n
1

)
= n, so saying something about these numbers

amounts to saying something about all the numbers which are multiperfect. When m = 2,

we have
(
n
2

)
= n(n−1)

2 . All even perfect numbers are of this form with n = 2r, where 2r − 1
is a prime number. However, for m ≥ 3, and limiting ourselves to perfect numbers only, we
have the following result.

Theorem 2. There is no perfect number of the form
(
n
m

)
with n ≥ 2m ≥ 6.

The proof of Theorem 1 is effective and relies on the Prime Number Theorem and the
Primitive Divisor Theorem for the Mersenne numbers, which have the form Mn = 2n − 1
for all n ≥ 1. That is, given the line L, one can write down an explicit upper bound for the
size of the largest possible multiperfect number on L. Below we give a result identifying all
the multiperfect numbers as well as the (2, k)-perfect numbers (for any positive integer k)
on the central line of the Pascal triangle. For a positive integer n let Bn =

(
2n
n

)
be the nth

middle binomial coefficient and Cn = 1
n+1Bn be the nth Catalan number.

Theorem 3.

(i) The only n such that Bn is multiperfect is n = 2. The only n such that Cn is multiperfect
is n = 1.

(ii) The only n such that Bn | σ(σ(Bn)) is n = 1. Furthermore, the only n such that
Cn | σ(σ(Cn)) are n = 1, 2 and 5.

The occurrence of members of specific sequences on lines in the Pascal triangle is a
question that has been studied before. For example, in [15] it is shown that if (un)n≥0 is
any fixed binary recurrent sequence of integers and L is any line of the Pascal triangle, except
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for an edge or a line of the form {
(
n
1

)
: n ≥ 1} or its symmetric {

(
n
n−1
)

: n ≥ 1}, there are
at most finitely many members of the sequence (un)n≥0 belonging to L. The problem [10]
asks to show that the largest Fibonacci number which is also a Catalan number is 5.

Divisor sums of binomial coefficients have been studied also in the recent paper [12]
in the following context. It is known that the average value of σ(n)/n when n ranges in
the interval [1, x] approaches π2/6 as x tends to infinity. When (un)n≥0 is a nondegenerate
linearly recurrent sequence of integers, then the average value of σ(|un|)/|un| when n ranges
in the interval [1, x] through values such that un 6= 0 approaches a finite limit when x→∞.
This is a result of Shparlinski from [22] (see also [17]). For binomial coefficients, the situation
is different. Indeed, it is shown in [12] that there exists a positive constant c such that the
inequality

1

n+ 1

∑
0≤m≤n

σ
((
n
m

))(
n
m

) > c log log log n

holds for all sufficiently large n and further that

1

2n

∑
0≤m≤n

σ

((
n

m

))
→∞ as n→∞.

The above estimates should be consistent with our intuition that most binomial coefficients
are divisible by many small primes, therefore their divisor sums should be quite a bit larger
than the numbers themselves.

In the present paper, we take again a line L passing through the Pascal triangle and
study the distribution of the numbers σ(x)/x, when x ranges through members of L. For
the purpose of the next result, we shall assume that L contains infinitely many members of
the Pascal triangle. The next result shows that numbers σ(x)/x tend to behave differently
when x ranges through a line L nonparallel to the sides than when x ranges through one
line that is parallel to the sides. Informally speaking, σ(x)/x tends to infinity when L is
not parallel to the sides, while these numbers form a dense set in [1,∞) when the line is
parallel to the sides.

Theorem 4. Let L be a fixed line through the Pascal triangle containing infinitely many
binomial coefficients and which is not one of the two edges.

(i) If L is not parallel to any of the edges, then there exists a positive constant cL depend-
ing on the line such that the inequality σ(x)/x > (log log x)cL holds for all binomial
coefficients x on L which are sufficiently large.

(ii) If L = {
(
n
m

)
: n ≥ m}, where m ≥ 1 is a fixed positive integer, then {σ(x)/x : x ∈ L}

is dense in [1,∞).

Density questions for the set {σ(un)/un : n ≥ 1}, where (un)n≥1 is some interesting
sequence of positive integers have been studied before. For example, it was shown in [11]
that {σ(Mn)/Mn : n ≥ 1} is dense in [1,∞), where again Mn = 2n− 1 is the nth Mersenne
number. The proof of this result applies also when the sequence of Mersenne numbers is
replaced by the sequence of Fibonacci numbers. In [16], it is shown that {σ(φ(n))/n :
n ≥ 1} is dense in [12 + 1

234−1 ,∞), where φ(n) is the Euler totient function. It is not very
hard to prove that {σ(σ(n))/n : n ≥ 1} is dense in [1,∞), but it is not known whether
{σ(σ(σ(n)))/n : n ≥ 1} is dense in [1,∞).

As usual, we will use the Landau symbols O and o as well as the Vinogradov symbols�,
� and � with their regular meaning. Recall that the statements A = O(B), A � B and
B � A are all equivalent to the fact that |A| < cB holds for some positive constant c, A � B
means that both A� B and B � A hold, and A = o(B) means that A/B approaches zero.
We use π(t) for the number of primes p ≤ t.
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2 Proof of Theorem 1

Let us start by presenting a parametrization of the lines in the Pascal triangle.

Lemma 1. Let L ⊆ {(n,m) : n ≥ m} be a line of the Pascal triangle not parallel to any of
its sides and containing infinitely many elements. Then, L can be parametrized as{

n = at+ b,

m = ct+ d,
t ∈ Z, t ≥ t0, (1)

for some integers a, b, c, d with a and c coprime and 0 < c < a.

Proof. If the line L is parallel to one of the sides, then either m is a constant or n−m is
a constant. Otherwise, there exist rational numbers A, B such that n = Am+B. Writing
A = a/c with coprime integers a and c > 0, and writing m = ct+r, where r ∈ {0, 1, . . . , c−1}
and t is an integer, we get that

n = at+

(
ar

c
+
e

f

)
,

where we put B = e/f with coprime integers e and f > 0. Since r can take only finitely
many values, we may assume that r is fixed. Since ar/c+e/f is an integer, we get that f | c,
therefore c = fc1 holds with some positive integer c1, and further r = c1r1 holds with some
nonzero integer r1. Furthermore, (ar1 + e)/f is an integer. Thus, putting b := (ar1 + e)/f
and d := r, we get (1). Since c > 0 and m is positive, it follows that t > 0 if m is sufficiently
large. The first relation above together with the fact that n ≥ m can be arbitrarily large
implies first that a ≥ 1. Next, again since n ≥ m, it follows by looking at large values of t
that 0 < c ≤ a. Finally, we can assume that 0 < c < a, otherwise if a = c we get that n−m
remains constant.

Let us now prove Theorem 1. Let L ⊆ {(n,m) : n ≥ m} be the line of the Pascal triangle;
by Lemma 1 above, it can be parametrized as shown in (1). Furthermore, by the symmetry(
n
m

)
=
(

n
n−m

)
, and by replacing m with n−m if needed, it follows that we may assume that

0 < c ≤ a/2.

Now let us look at the binomial coefficient:

x :=

(
n

m

)
=

(
at+ b

ct+ d

)
=

(at+ b)(at+ b− 1) · · · ((a− c)t+ b− d+ 1)

(ct+ d)!
.

Since a− c ≥ c, it follows that for large t, all primes p in the interval I = [(a− c)t+ b− d+
1, at + b] divide x with at most O(1) exceptions. These exceptional values can occur only
when a− c = c (i.e., a = 2c, therefore c = 1 and a = 2, since we have already assumed that
a and c are coprime), and b− d+ 1 < d, in which case we can take the constant implied by
the above O(1) to be max{|d| + 1, |b| + 1}. Let A be the above set of primes. For large t,
we have that 2 /∈ A.

Let p ∈ A. Clearly, 2p ≥ 2(a− c)t+ 2(b− d+ 1). Since a ≥ 2c, it follows, by an argument
similar to the previous one, that the inequality 2p > at+ b holds for large values of t unless
a = 2, c = 1, in which case the inequality 2p > at+ b also holds for all primes p ∈ A with
O(1) exceptions.

The above argument shows that there exists a positive constant c1 (depending on a, b, c, d),
such that if t is sufficiently large, then all primes p ∈ A except for at most c1 of them di-
vide exactly x (namely, such primes are divisors of the above number but the squares of
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these primes are not). Thus, writing B for the subset of A such that p ‖ x, and putting
u =

∏
p∈B p, it follows that x = uv holds with some positive integer v coprime to u. Hence,

σ(x) = σ(u)σ(v) = σ(v)
∏
p∈B

(p+ 1).

The factor p+ 1 is even for all p ∈ B, and there are

#B ≥ π(at+ b)− π((a− c)t+ b− d)− c1

such factors p + 1. By the Prime Number Theorem, we have that the inequality #B ≥
ct/(2 log t) holds for large values of t. Hence, writing α for the exponent of the prime 2 in
σ(x), we get that the inequality α ≥ ct/(2 log t) holds for large values of t.

By a well-known theorem of Kummer (see, for instance, Exercise 5.36, p. 245, of the
chapter “Binomial Coefficients” in [3]), the exponent β of 2 in

(
n
m

)
equals the number of

carries when adding m and n−m in base 2. In particular, β < c2 log t for large values of t,
where c2 is any fixed constant in (0, 1/ log 2). We are now ready to prove the theorem.

For (i), let us suppose that x is multiperfect. Then the relation

σ(x) = kx

holds for some positive integer k. Letting γ be the exponent of 2 in the factorization of k,
we get, by the previous arguments, that

γ ≥ α− β ≥ ct

2 log t
− c2 log t >

ct

3 log t
(2)

for large values of t.

On the other hand, since the inequality x ≤ 2n < 22at holds for large values of t, we
have, by the maximal order of the sum of divisors function, that

k =
σ(x)

x
� log log x ≤ log log(22at) ≤ 2 log t (3)

if t is sufficiently large. Comparing inequalities (2) and (3), we get that

2ct/(3 log t) ≤ 2γ ≤ k � log t,

which shows that t is, in fact, bounded. This completes the proof of part (i) of this theorem.

For (ii), let us suppose that x is (2, k)-perfect for some positive integer k. Then

σ(σ(x)) = kx.

Since 2α ‖ σ(x), we get that 2α+1 − 1 | σ(σ(x)). Recall that if u ≥ 1 is any positive integer,
then a primitive divisor of the number 2u − 1 is a prime factor of 2u − 1 which does not
divide 2v − 1 for any positive integer 1 ≤ v < u. It is known that a primitive divisor p of
2u − 1, whenever it exists, is congruent to 1 (mod u). It is also known that if we write

2u − 1 = AB,

where A and B are positive integers such that every prime factor of A is primitive for 2u−1
and no prime factor of B is primitive for 2u − 1, then A > 2φ(u)/2 holds for all large values
of u. For us, writing

2α+1 − 1 = AB



6 F. Luca and J. L. Varona

as described previously, then A > 2φ(α+1)/2 provided that α is large. Since α > ct/(2 log t),
and the inequality φ(u)� u/ log log u holds for all large positive integers u, it follows that
there exists a positive constant c3 such that

A > exp

(
c3t

log t log log t

)
(4)

provided that t is sufficiently large. On the other hand, all prime factors dividing A divide
also kx. Note that

k =
σ(σ(x))

x
=
σ(σ(x))

σ(x)
· σ(x)

x
� (log log σ(x)) log log x� (log t)2, (5)

where the last inequalities above follow as in part (i) because x < 22at. If p | A, then p ≡ 1
(mod α+1). In particular, p > α+1 > ct/(2 log t), therefore, by inequality (5), we have that
p > k for large values of t. Thus, p | x. The exponent of p in x is, by Kummer’s theorem, at
most log t for large values of t. Furthermore, p ≤ at + b and p ≡ 1 (mod α + 1), therefore
the number of possibilities for t is at most (even discarding the condition that p is a prime)
b(at + b)/(α + 1)c + 1 < c4 log t for large t, where we can take c4 = 3a/c. Hence, we have
just showed that

A ≤
∏
p|x

p≡1 (mod α+1)

plog t < (at+ b)c4(log t)
2

< exp(2c4(log t)3) (6)

provided that y is sufficiently large. Comparing inequalities (4) and (6), we get that

c3t

log t log log t
< 2c4(log t)3,

which obviously implies that t is bounded. This finishes the proof of part (ii) of this theorem.

3 Proof of Theorem 2

Assume that x :=
(
n
m

)
is perfect, where n ≥ 2m ≥ 6. Assume that n ≥ 30. Corollary 3

in [20] shows that

n(n− 1) · · · (n−m+ 1) (7)

is divisible by at least two primes exceeding m. Since x is perfect, it then follows by a result
of Euler that x = pu2 for some odd prime p and positive integer u (here, p = 2r − 1 and
u = 2(r−1)/2 when the perfect number is even). Now u is divisible by a prime q exceeding m.
Hence, q2 divides the number shown at (7), and since q exceeds m, we get that q2 | n− i for
some i = 0, . . . ,m−1. In particular, n ≥ (m+1)2 = m2 +2m+1, therefore n−m+1 > m2.
Now let j be an integer in {0, 1, . . . ,m− 1} such that n−m+ 1 + j is a multiple of p (note
that j is unique if p > m). Since the number shown at (7) is of the form k! pu2, it follows
easily that if we remove from this product the number n−m+ 1 + j we get an equation of
the form

(n−m+ 1) · · · (n−m+ 1 + (j − 1))(n−m+ 1 + (j + 1)) · · ·n = bw2,

where b is a positive integer whose largest prime factor is at most m. This is impossible for
m ≥ 3 by Theorem 2 in [20]. Thus, n ≤ 30, and now a short calculation reveals no perfect
number of the form

(
n
m

)
with 3 ≤ m ≤ n/2 and n ≤ 30.
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4 Proof of Theorem 3

We follow the proof of Theorem 1 but make it effective. By Corollary 2 (p. 69) in [19],
we have

α ≥ π(2n)− π(n) ≥ 3n

5 log n

for n ≥ 21. Now, let us observe that σ(
(
2n
n

)
) is a multiple of

∏
n<p≤2n(p+ 1), therefore also

of 2π(2n)−π(n). Letting β be the power of 2 in the prime factorization of
(
2n
n

)
, Kummer’s

theorem gives us 2β ≤ 2n.

We now prove (i). Assume that
(
2n
n

)
is multiperfect. Let k be an integer such that

σ(
(
2n
n

)
) = k

(
2n
n

)
. Then, 2γ | k, where

2γ ≥ 2π(2n)−π(n)−β ≥ 2
3n

5 logn

2n
. (8)

On the other hand,

k =
σ(
(
2n
n

)
)(

2n
n

) <
∑
d≤22n

1

d
≤ 1 +

∫ 22n

1

dt

t
≤ log(22n) + 1 = 2n log 2 + 1.

Thus, when n > 1,

2
3n

5 logn

2n
≤ 2n log 2 + 1 < 2n,

and then

3n log 2 < 10(log n) log(2n),

whose largest solution is n = 130. In this way, we have proved that
(
2n
n

)
is not multiperfect

when n > 130. For n ≤ 130, a quick computer search confirmed that
(
2n
n

)
is multiperfect

only when n = 2.

Assume now that the Catalan number Cn is multiply perfect. Then the exponent of 2 in
σ(Cn) is at least π(2n)− π(n)− 1 (by 1 smaller than before since n+ 1 might be a prime),
while the power of 2 in Cn does not exceed the power of 2 in

(
2n
n

)
. Hence, the lower bound

on γ, the power of 2 in k defined analogously as σ(Cn) = kCn, satisfies the inequality

2γ ≥ 2
3n

5 logn

4n
>

2
3n

5 logn

(2n)2
. (9)

Thus, following the same arguments as before, we arrive at

3n log 2 < 15(log n) log(2n),

whose largest solution is n = 247. A quick computer check confirmed that the only n ≤ 247
for which Cn is multiply perfect is n = 1.

We now look at (ii). Let x = Bn or Cn and let α be the power of 2 in either σ(Bn) or
σ(Cn). Then the arguments from part (i) show that

α ≥ π(2n)− π(n)− 1 ≥ 3n

5 log n
− 1 for n ≥ 1.

Now 2α+1 − 1 divides σ(σ(x)) = kx. Clearly, σ(x) < x2 < 24n, so the arguments from (i)
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show that

k =
σ(σ(x))

σ(x)
· σ(x)

x
<

(
1 +

∫ 22n

1

dt

t

)(
1 +

∫ 24n

1

dt

t

)
< (1 + 2n log 2)(1 + 2n log 4) < (2n)2,

where the last inequality holds for n > 30, which we are assuming from now on. Now write

2α+1 − 1 = AB,

where all prime factors of A are congruent to 1 modulo α + 1. It is well-known, from the
proof of the Primitive Divisor Theorem (see, for example, [24]), that

A >
2φ(α+1)−2ω(α+1)−1

α+ 1
,

where for a positive integer m we put ω(m) for the number of distinct prime factors of m.
We now assume that n > 135. Then

α+ 1 >
3n

5 log n
> 12

(where the last inequality holds for n > 90), therefore, by a result of Schinzel, [21], we have
that A has a prime factor at least as large as 2(α+ 1) + 1. This prime factor either divides
x (so it is < 2n), or it divides k < 4n2, therefore α+ 1 < 2n2. Thus,

A >
2φ(α+1) − 2ω(α+1)−1

2n2
. (10)

Now every prime factor dividing A, either divides k, or divides x. Let p be a prime factor
dividing both A and x. Then

p2 > (α+ 1)2 >

(
3n

5 log n

)2

> 2n,

where the last inequality holds for all n > 135, which we are assuming. Thus, p ‖ x.
Furthermore, the number of such primes is ≤ 2n/(α + 1) and every one of such primes
is < 2n. This shows that

A ≤ k(2n)2n/(α+1) < (2n)2/(α+1)+2.

Thus, comparing the above upper bound on A with the lower bound (10), we get

φ(α+ 1)− 2ω(α+1)−1 <

(
2n

α+ 1
+ 4

)
log(2n)

log 2
. (11)

This is the master inequality. Since α+ 1 > 3n/(5 log n), we get that

φ(α+ 1)− 2ω(α+1)−1 <

(
10 log n

3
+ 4

)
log(2n)

log 2
. (12)

Let s be the number of prime factors of α+1. Clearly, 2s ≤ α+1, so s ≤ (log(α+1))/ log 2,
therefore

φ(α+ 1) ≥ (α+ 1)

s+1∏
i=2

(
1− 1

i

)
≥ α+ 1

s+ 1
≥ (α+ 1) log 2

log(2(α+ 1))
.
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Finally, writing τ(m) for the number of divisors of m, and observing that

2ω(α+1)−1 ≤ τ(α+ 1)

2
≤
√

3(α+ 1)

2
,

we get that

φ(α+ 1)− 2ω(α+1)−1 ≥ (α+ 1) log 2

log(2(α+ 1))
−
√

3(α+ 1)

2
.

The function

t 7→ t log 2

log(2t)
−
√

3t

2

is increasing for t ≥ 8, and since for us α+ 1 ≥ 3n/(5 log n) > 12, we have that

φ(α+ 1)− 2ω(α+1)−1 ≥ 3n log 2

5(log n) log(6n/(5 log n))
− 3

2

(
n log 2

5

)1/2

. (13)

From inequalities (12) and (13), we get that

3n log 2

5(log n) log(6n/(5 log n))
− 3

2

(
n log 2

5 log n

)1/2

<

(
10 log n

3
+ 4

)
log(2n)

log 2
,

giving n ≤ 310000. Thus, there is no solution with n > 310000.

Now we start lowering the upper bound on n. Assume still n > 135 but n ≤ 310000.
Here, we have that α + 1 ≤ π(2n) + 1 < 51000. The product of the first 7 primes exceeds
51000, therefore

φ(α+ 1)

α+ 1
≥

∏
2≤q≤13

(
1− 1

q

)
=

192

1001
.

Moreover, for α+1 < 51000, we have τ(α+1) ≤ 108, therefore the largest power of 2 which
is ≤ τ(α+ 1)/2 is at most 32. Hence, we get the inequality

φ(α+ 1)− 2ω(α+1)−1 ≥ 192(α+ 1)

1001
− 32 ≥ 594n

5005 log n
.

Comparing the last inequality above with inequality (12), we get

594n

5005 log n
− 32 <

(
10 log n

log 3
+ 4

)
log(2n)

log 2
,

giving n ≤ 72000. Thus, there is no solution with n > 72000. Assume now that n >
20000. We have checked with Mathematica that π(2n) − π(n) > 0.95n/ log n for all n ∈
[20000, 80000]. Thus, instead of the inequality α+1 > 3n/(5 log n), we can use the inequality
α + 1 > 0.95n/ log n, in which case we also have 2n/(α + 1) < 40(log n)/19. Furthermore,
since 2n < 144000 and α + 1 < π(144000) < 14000, but the product of the first 6 primes
exceeds 14000, it follows that

φ(α+ 1)

α+ 1
≥

∏
2≤q≤11

(
1− 1

q

)
=

16

77
.

Thus,

φ(α+ 1)− 2ω(α+1)−1 ≥ 15.2n

77 log n
− 32,
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and comparing this with the bound (11), we get

15.2n

5 log n
− 32 <

(
40 log n

19
+ 4

)
log(2n)

log 2
,

giving n < 20000. Thus, there is no solution with n ≥ 20000.

Next we checked that there is no solution with n > 1100 in the following way. For each
n ∈ [1100, 20000], we used Mathematica to find the exact value of α. In order to do so, for
each n we factored the integer Bn and Cn (which are large integers all whose prime factors
are smaller than 2n), and then

α =
∑

pαp |Bn
αp odd

ord2

(
pαp+1 − 1

p− 1

)
,

where for a positive integer m we write ord2(m) for the exponent of 2 in the factorization
of m. We then checked whether the master inequality (11) holds. No solution for either
x = Bn or x = Cn was found with n > 1100. We then checked that the only n ≤ 1100 for
which x | σ(σ(x)) are the claimed ones.

5 Proof of Theorem 4

We start with part (i) and assume, as in the proof of Theorem 1, that we are looking
at pairs (n,m) parameterized as in Lemma 1. Let t be large and put z1 = exp((log t)1/2)
and z2 = t1/4. Lemma 5.1 with J = 1 and ε = 1/10 in [4] shows that for any two constants
0 < σ0 < σ1 < 1 there exists some positive constant c1 such that uniformly in y ≤ x we
have that the set of prime numbers p ≤ y such that {x/p} ∈ (σ0, σ1) has cardinality

(σ1 − σ0)π(y) +O
(

(y1−c1(log y)
2/ log x + y8/5x−1/2)(log x)4

)
.

From the way we have chosen z1 and z2, we deduct that for large t, there are

(σ1 − σ0)π(y)

(
1 +O

(
1

log y

))
primes p ≤ y such that {t/p} ∈ (σ0, σ1) and this holds for all y ∈ [z1, z2]. We now put
σ0 = 1− 1/(4c(a− c)), σ1 = 1− 1/(5c(a− c)), and deduct that if we put Py for the set of
primes p ∈ (y, 2y) with {t/p} in the above interval, then the inequality

#Py ≥
y

30c(a− c) log y

holds uniformly for all y ∈ [z1, z2/2] once t is sufficiently large. Since all such primes are at
most as large as y, we get that ∑

p∈Py

1

p
≥ c1

log y
, (14)

where we put c1 = 1/(30c(a− c)). Observe that if p is such a prime, then{
(a− c)t+ (b− d)

p

}
∈
(

1− 1

3c
, 1− 1

6c

)
,

and {
ct+ d

p

}
∈
(

1− 1

3(a− c)
, 1− 1

6(a− c)

)
,
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provided that t is large. In particular, since(
1− 1

3c

)
+

(
1− 1

3(a− c)

)
> 1

for all c ≥ 1 and a − c ≥ 1, we get that for large t, the binomial coefficient x =
(
n
m

)
is a

multiple of such a prime p since there is at least one carry when adding (a − c)t + (b − d)
with ct+ d in base p.

Now give y the values 2`, where ` is an integer. Since 2` must belong to the interval
[z1, z2/2], it follows that we can take ` ∈ [L1, L2], where

L1 =

⌊
(log t)1/2

log 2

⌋
+ 1 and L2 =

⌊
log t

4 log 2

⌋
− 1.

Thus, x is divisible by all primes in
⋃
L1≤`≤L2

P2` , and the sets making up the above union
are disjoint. Hence, using (14), we get

σ (x)

x
≥

∏
L1≤`≤L2

∏
p∈P

2`

(
1 +

1

p

)
= exp

 ∑
L1≤`≤L2

p∈P
2`

1

p
+O

∑
p≥2

1

p2




≥ exp

c2 ∑
L1≤`≤L2

1

`
+O(1)

� exp

(
c2

∫ L2

L1

ds

s

)
� exp

(
c2 log

L1

L2

)
� (log t)cL ,

where we put c2 = c1/ log 2 and cL = c2/2. Since x ≤ 22at for large values of t, we get that

σ(x)

x
� (log log x)

cL ,

where cL depends only on the line L, which is what we wanted to prove.

Finally, for (ii) let m be fixed, α ∈ [1,∞), and ε > 0 be arbitrary. Choose m disjoint
finite sets of primes Pi for i = 1, . . . ,m all exceeding m such that

∏
p∈Pi

(
1 +

1

p

)
∈ [α1/m(1− ε), α1/m(1 + ε)].

Let also t be some positive real number whose natural logarithm exceeds all members of⋃
1≤i≤m Pi and let Q be the set of primes p ∈ (m, log t) not belonging to any of the sets Pi

for i = 1, . . . ,m. Put M = (m!)2, Pi =
∏
p∈Pi p, P =

∏m
i=1 Pi, Q =

∏
q∈Q q and consider

the following system of congruences

n ≡ 0 (mod MQ) and n+ i ≡ Pi (mod P 2
i ) for i = 1, . . . ,m.

By the Chinese Remainder Theorem, the above system of congruences puts n into an arith-
metic progression n ≡ n0 (mod N), where N = MQP 2. The size of the modulus is, by the
Prime Number Theorem,

N ≤M

 ∏
p≤log t

p

2

= Me2(1+o(1)) log t
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as t → ∞, therefore N < t3 for large values of t. Hence, there is a number n ∈ [t3, 2t3) in
the above progression once t is sufficiently large. Observe that

x =

(
n+m

m

)
=

m∏
i=1

(
1 +

n

i

)
.

Putting mi = 1 + n/i, it is easy to see that mi ≡ 1 (mod m!), that mi is divisible by all
primes p in Pi but not by their squares, and mi is not divisible by any member of Q for any
i = 1, . . . ,m. Hence, mi = PiMi, where Mi is a positive integer whose prime factors exceed
log t. Since Mi < 2t3 + 1, we get that ω(Mi) = O(log t/ log log t) for all i = 1, . . . ,m. Thus,

x =

(
n+m

m

)
=

m∏
i=1

Pi

m∏
i=1

Mi,

where the two products above are coprime. Thus,

σ(x)

x
=
σ (
∏m
i=1 Pi)∏m
i=1 Pi

σ (
∏m
i=1Mi)∏m
i=1Mi

.

Note that, from the way we have chosen our sets Pi, we have

σ (
∏m
i=1 Pi)∏m
i=1 Pi

=

m∏
i=1

∏
p∈Pi

(
1 +

1

p

)
∈ [α(1− ε)m, α(1 + ε)m],

while

1 ≤
σ (
∏m
i=1Mi)∏m
i=1Mi

≤
(

1 +
1

log t

)O(m log t/ log log t)

= 1 +O

(
m

log log t

)
,

so this last number is in [1, 1 + ε) for sufficiently large values of t. Since α and ε were
arbitrary and m was fixed, we get that α can be approximated arbitrarily well by rational
numbers of the form σ(x)/x with x =

(
n+m
m

)
∈ L, which is what we wanted to prove.
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