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Abstract

From a study of the convexity we give an acceleration for Newton's method and

obtain a new third order method. Then we use this method for solving non-linear

equations in Banach spaces, establishing conditions on convergence, existence and

uniqueness of solution, as well as error estimates Ó 2001 Elsevier Science Inc. All rights

reserved.

Keywords: Non-linear equation; Newton's method; Kantorovich assumptions; Iterative processes;

Third order method

1. Introduction

The study of concavity and convexity of a real function is an old problem
studied by the mathematicians. It is perfectly established when a function is
concave or convex. However, it is not so developed how to measure this
concavity or convexity. The degrees of convexity introduced by Jensen and
Popoviciu [6] are interesting from the theorical standpoint, but their practical
application is too di�cult.
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Another measure of the convexity is suggested by Bohr±Mollerup's Theo-
rem [2]. In this result appears the concept of log-convex function, that is, a
function whose logarithm is a convex function. The degree of logarithmic
convexity, introduced in Ref. [13], is a measure of this kind of convexity. Let
f : �a; b� � R! R be a convex, twice di�erentiable function on an interval
�a; b� and t0 2 �a; b� such that f 0�t0� 6� 0. The degree of logarithmic convexity of
f at t0 is

Lf �t0� � f �t0�f 00�t0�
f 0�t0�2

:

One of the most interesting applications of the degree of logarithmic
convexity is its relation with the velocity of convergence of Newton's method
[14].

We assume for f to satisfy f 0�x� < 0, f 00�x� > 0, for x 2 �a; b� and
f �a� > 0 > f �b�. In this situation it is well-known that the sequence de®ned
by

tn�1 � tn ÿ f �tn�
f 0�tn� ; t0 � a �1�

converges to t�, the only solution of f �t� � 0 in �a; b�.
Let g be another function satisfying the same conditions as f in �a; b�, with

g�t�� � 0, and let fsng be the sequence de®ned as follows:

sn�1 � sn ÿ g�sn�
g0�sn� ; s0 � t0: �2�

If Lg�t� < Lf �t� for t 2 �t0; t��, it was shown (see Ref. [14]), that the sequence
fsng de®ned by (2) converges to the root t� faster than ftng de®ned by (1).
Moreover, tn6 sn6 t�, for n P 0.

As an application of this result, we derive an acceleration for Newton's
method and a new third order method that we call Super-Halley method. Next,
we extend this method to Banach spaces and we obtain convergence results.
This method has also been studied by other authors (see Ref. [5]). However, the
results they have obtained are only valid for quadratic operators (see Ref. [11]).
The point is that they try to majorize the sequence in the Banach space by a
real sequence arising from a quadratic polynomial. This is not possible in
general because, as we see, Super-Halley method is a third order method, but
when it is applied to a quadratic polynomial, the order is four. In this paper it is
analysed the case of taking a third degree polynomial as a majorizing function,
in a similar way as Yamamoto [18] did for the method of tangent hyperbolas
(see also Ref. [12]). So the convergence can be also stated for non-quadratic
operators.
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2. Super-Halley method for scalar equations

Let f : �a; b� � R! R be a function satisfying f 0�t� < 0, f 00�t� > 0, for
t 2 �a; b� and f �a� > 0 > f �b�. Let us denote ftng the Newton sequence

tn�1 � tn ÿ f �tn�
f 0�tn� ; t0 � a: �3�

Notice that the degree of logarithmic convexity of a straight line is zero.
Then, taking g�t� � f 0�t���t ÿ t�� we obviously obtain a sequence that con-
verges to t� faster than ftng. The problem is that t� is unknown. Instead of
f 0�t���t ÿ t�� we take its Taylor approximation

g�t� � f �t� ÿ f 00�t��
2
�t ÿ t��2:

So, we deduce the following approximations:

g�tn� ' f �tn� ÿ f 00�tn�
2
�tn ÿ tn�1�2;

g0�tn� ' f 0�tn� ÿ f 00�tn��tn ÿ tn�1�:
Thus, we obtain an acceleration for Newton's method (3), which is de®ned

by

sn�1 � tn ÿ g�tn�
g0�tn� � tn ÿ 1

�
� Lf �tn�

2�1ÿ Lf �tn��
�

f �tn�
f 0�tn� : �4�

Before proving that (4) is an acceleration of Newton's method, we give two
elementary lemmas.

Lemma 2.1. Let us write

G�t� � t ÿ 1

�
� Lf �t�

2�1ÿ Lf �t��
�

f �t�
f 0�t� : �5�

Then, we have

G0�t� �
L2

f �t� Lf �t� ÿ Lf 0 �t�
� �

2�1ÿ Lf �t��2
:

The following lemma was applied by Altman to prove the convergence of
the method of tangent hyperbolas [1].
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Lemma 2.2. Let us assume that f satisfies f �t�P 0 for a6 t6 t�, where t� is a
root of f, i.e., f �t�� � 0: The second derivative f 00 is non-decreasing for a6 t6 t�.
Then, Lf �t�6 1=2; for a6 t6 t�:

Theorem 2.3. Under the previous assumptions for f, the sequence fsng defined by
(4) is an acceleration of the Newton's method (3).

Proof. Let G the function de®ned by (5), F �t� � t ÿ �f �t�=f 0�t��, ftng and fsng
given by (3) and (4), respectively. By Lemma 2.1 we have

lim
n!1

t� ÿ sn�1

t� ÿ tn�1

� lim
n!1

t� ÿ G�tn�
t� ÿ F �tn� � lim

t!t�

t� ÿ G�t�
t� ÿ F �t� � 0: �

From this acceleration we can de®ne a new method as follows:

t0 � a; tn�1 � G�tn� � tn ÿ 1

�
� Lf �tn�

2�1ÿ Lf �tn��
�

f �tn�
f 0�tn� : �6�

We call (6) Super-Halley method. In the next result we give conditions on the
convergence of (6).

Theorem 2.4. Let us assume that f satisfies f 0�t� < 0, f 00�t� > 0, for t 2 �a; b�,
and f �a� > 0 > f �b�. Let t� 2 �a; b� such that f �t�� � 0. Suppose

Lf 0 �t�6 Lf �t� < 1; t 2 �a; t��: �7�
Then the sequence ftng defined by (6) converges to t�. In addition, ftng is in-
creasing.

Proof. We write (6) in the form tn�1 � 1=2�F �tn� � Q�tn��; where

F �t� � t ÿ f �t�
f 0�t� ; Q�t� � t ÿ q�t�

q0�t� ; q�t� � f �t�
f 0�t� : �8�

Then, by using the Mean Value Theorem

t� ÿ t1 � F � Q
2
�t�� ÿ F � Q

2
�t0�6 F � Q

2

� �0
�z0��t� ÿ t0�

for some z0 2 �t0; t��. Taking into account Lemma 2.1 and (7) we deduce

F 0�t� � Q0�t� � L2
f �t�

�1ÿ Lf �t��2
Lf �t�
h

ÿ Lf 0 �t�
i
P 0; t 2 �a; t��

and consequently, t16 t�. Following an inductive process is easy to check tn6 t�

for n P 0.
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On the other hand we have

tn�1 ÿ tn � ÿ f �tn�
f 0�tn�H Lf �tn�

ÿ �
;

where H�t� � 1� �t=2�1ÿ t��:For n P 0; we derive from Lemma 2.2 that
H�Lf �tn�� > 0 and tn�1 P tn. Then ftng converges to u 2 �a; b�. Making n!1
in (6) and taking into account H�Lf �tn��P 1 for n P 0, we have f �u� � 0: As f
has a unique root in �a; b�, we conclude u � t�. �

Note. A su�cient condition for (7) to hold is

f 000�t�P 0; t 2 �t0; t��:
In fact, it is known (Lemma 2.2) that f in the previous situation satis®es
Lf �t� � 1=2 < 1. The ®rst inequality follows inmediately since Lf �t�P
0 P Lf 0 �t�, for t 2 �t0; t��:

If (7) is not ful®lled, the convergence of (6) is a hard problem. We cannot
guarantee the sequence obtained in this case to be increasing towards t�. In Ref.
[13] more general convergence conditions for (6) have been established.

The method (6) is a third order method. This follows as a consequence of the
Gander's result [8].

Theorem 2.5. Let t� be a simple zero of f and H any function with H�0� � 1,
H 0�0� � 1=2, jH 00�0�j <1. The iteration

tn�1 � tn ÿ H Lf �tn�
ÿ � f �tn�

f 0�tn�
is of third order.

However, if we use the method (6) for solving the equation p�t� � 0, p being
a quadratic polynomial, we obtain a fourth order method, as we state at the
next result.

Theorem 2.6. Let p be a quadratic polynomial with a simple zero t�. The Super-
Halley method (6) for solving the equation p�t� � 0 is a fourth order method.

Proof. Let G be the function de®ned by (5). Observe that G�t�� � t�. By Lemma
2.1 we obtain, for a quadratic polynomial p,

G0�t� � L3
p�t�

2�1ÿ Lp�t��2

and then G0�t�� � 0. We can prove without di�culty that G00�t�� � 0 and
G000�t�� � 0 too. However,
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G�iv��t�� � 3p00�t��3
p0�t��3 6� 0: �

The previous results about the order of convergence of the sequence (6) hold
if t� is a simple zero of f. When the multiplicity of t� is m > 1, we only can
guarantee linear convergence [17].

In Theorem 2.6 we have established that Super-Halley method to solve a
equation p�t� � 0, where p is a quadratic polynomial, is a fourth order method.
Moreover, we can prove in this case that two iterations of Newton's method is
equivalent to one iteration of Super-Halley method.

Theorem 2.7. Let p be a quadratic polynomial with two positive roots. Let us
suppose, without loss of generality, that

p�t� � bt2 ÿ t � a; ab6 1

4
:

Denote by fzng the Newton sequence to solve p�t� � 0, and by ftng the iterates
(6). Suppose z0 � t0. Then z2n � tn for n P 0:

Proof. Let G and F be the functions de®ned in (5) and (8), respectively. Then,

F F �t�� � � b bt2 ÿ a� �2 ÿ a�2bt ÿ 1�2
�2bt ÿ 1� 2b�bt2 ÿ a� ÿ �2bt ÿ 1�� �

� b3t4 ÿ 6ab2t2 � 4abt � a2bÿ a
�2bt ÿ 1� 2b�bt2 ÿ a� ÿ �2bt ÿ 1�� � � G�t�:

Therefore, z2 � F �z1� � F F �z0�� � � G�z0� � G�t0� � t1, z4 � F �z3� � F F �z2�� �
� G�z2� � G�t1� � t2 and so on. �

3. Super-Halley method in Banach spaces

Let X and Y be Banach spaces and F : X � X ! Y , a non-linear, twice
Fr�echet di�erentiable operator in an open convex domain X0 � X. For solving
the equation

F �x� � 0 �9�
we can use the next generalization of (6):

xn�1 � xn ÿ I
�
� 1

2
LF �xn�Dÿ1

n

�
CnF �xn�; n P 0; �10�

where x0 2 X0, I is the identity operator on X, Cn � �F 0�xn��ÿ1
, Dn � I ÿ LF �xn�� �

and LF �xn� is the following linear operator [10]:
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LF �xn�� � � CnF 00�xn� CnF �xn�; � �� �;
provided that Cn and Dÿ1

n exist at each step.
We use the majorant principle due to Kantorovich [15] to prove the con-

vergence of the method. Following Altman [1] we could establish convergence
of (10) under majorant assumptions for F 00 and F 000. In this paper, taking into
account the technique employed by Yamamoto [18], we establish results on
convergence of (10) under weaker conditions. From now on we assume that F
given by (9) satis®es the following conditions:

(i) There exists a continous linear operator C0 � �F 0�x0��ÿ1
; x0 2 X0.

(ii) kC0�F 00�x� ÿ F 00�y��k6 kkxÿ yk; x; y 2 X0, k P 0:
(iii) kC0F �x0�k6 a; kC0F 00�x0�k6 b:
(iv) The equation

p�t� � k
6

t3 � b
2

t2 ÿ t � a � 0 �11�

has one negative root and two positive roots r1 and r2 (r16 r2) if k > 0, or
has two positive roots r1 and r2 (r16 r2) if k � 0. Equivalently, [18],

a6 b2 � 4k ÿ b
���������������
b2 � 2k
p

3k b� ���������������
b2 � 2k
pÿ � if k > 0;

or ab6 1=2 if k � 0.
Observe that, in both cases, Super-Halley method

t0 � 0; tn�1 � tn ÿ 1

�
� Lp�tn�

2�1ÿ Lp�tn��
�

p�tn�
p0�tn� ; n P 0; �12�

for solving the equation p�t� � 0, with p given by (11), converges to r1, the
smallest positive root of p�t� � 0 (see Theorem 2.4).

To establish the convergence of (10) to x�, a solution of (9), the uniqueness
of solution and the error estimates we shall need the following lemmas.

Lemma 3.1. The iterates (10) are well-defined for n P 0, converge to x�, a
solution of (9) and

kxn�1 ÿ xnk6 tn�1 ÿ tn; �13�

kx� ÿ xnk6 r1 ÿ tn: �14�

Proof. For n P 0 we prove

[In] There exists Cn � �F 0�xn��ÿ1
.

[IIn] kC0F 00�xn�k6 ÿ p00�tn�=p0�t0�:
[IIIn] kCnF 0�x0�k6 p0�t0�=p0�tn�.
[IVn] kC0F �xn�k6 ÿ p�tn�=p0�t0�.
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[Vn] There exists Dÿ1
n � �I ÿ LF �xn��ÿ1

and kDÿ1
n k6 1=�1ÿ Lp�tn��.

Note that [Vn�1] follows as a consequence of [IIn�1], [IIIn�1], [IVn�1] and
Lemma 2.2 which guarantees Lp�t�6 1=2. Thus, we prove [In�1]±[IVn�1] using
induction. Applying Altman's technique, (see Ref. [1]), [In�1], [IIn�1] and [IIIn�1]
follow inmediately.

To prove [IVn�1], using Taylor's formula and (10), we obtain

F �xn�1� � ÿ 1

2
F 00�xn�CnF �xn�Dÿ1

n CnF �xn� � 1

2
F 00�xn��xn�1 ÿ xn�2

�
Z xn�1

xn

F 00�x�� ÿ F 00�xn�
��xn�1 ÿ x�dx

� ÿ 1

2
F 00�xn�CnF �xn�Dÿ1

n CnF �xn�

� 1

2
F 00�xn� CnF �xn�� �2 � 1

8
F 00�xn� LF �xn�Dÿ1

n CnF �xn�
� �2

� 1

2
F 00�xn�CnF �xn�LF �xn�Dÿ1

n CnF �xn�

�
Z xn�1

xn

�F 00�x� ÿ F 00�xn���xn�1 ÿ x�dx:

Bearing in mind Dÿ1
n � I � LF �xn�Dÿ1

n and writing yn � LF �xn�Dÿ1
n CnF �xn�, we

have

F �xn�1� � 1

8
F 00�xn�y2

n �
Z xn�1

xn

�F 00�x� ÿ F 00�xn���xn�1 ÿ x�dx:

Denote sn � Lp�tn�. Notice that

kynk6 kLF �xn�kkDÿ1
n kkCnF �xn�k6 ÿ snp�tn�

�1ÿ sn�p0�tn�
and therefore,

kC0F �xn�1�k6 1

8

s3
np�tn�
�1ÿ sn�2

� k
6
kxn�1 ÿ xnk36 1

8

s3
np�tn�
�1ÿ sn�2

� k
6
�tn�1 ÿ tn�3:

Consequently

kC0F �xn�1�k6 p�tn�1� �15�
and we conclude the induction.

So, we have

kxn�1 ÿ xnk � I
�



 � 1

2
LF �xn�

�
Dÿ1

n CnF �xn�






6 1

�
� Lp�tn�

2�1ÿ Lp�tn��
�

p�tn�
p0�tn� � tn�1 ÿ tn;
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then (13) happens and ftng majorizes fxng. The convergence of ftng (see The-
orem 2.4 and its note) implies the convergence of fxng to a limit x�. Making
n!1 in (15), we deduce F �x�� � 0.

Finally, for p P 0, kxn�p ÿ xnk6 tn�p ÿ tn: Making p !1 we obtain (14).
�

Lemma 3.2. Under the previous assumptions we have, for k > 0,

kx� ÿ xn�1k
r1 ÿ tn�1

6 kx� ÿ xnk
r1 ÿ tn

� �3

; n P 0

and, for k � 0,

kx� ÿ xn�1k
r1 ÿ tn�1

6 kx� ÿ xnk
r1 ÿ tn

� �4

; n P 0:

Proof. This proof follows the technique used by Yamamoto in Ref. [18] for the
method of tangent hyperbolas. Observe that Dÿ1

n � I � LF �xn�Dÿ1
n and then,

I � 1

2
LF �xn�Dÿ1

n �
1

2
�I � Dÿ1

n � �
1

2
Dÿ1

n �Dn � I� � Dÿ1
n I
�
ÿ 1

2
LF �xn�

�
:

Taking this into account we deduce

x� ÿ xn�1 � x� ÿ xn �Dÿ1
n I
�
ÿ 1

2
LF �xn�

�
CnF �xn�

� ÿ Dÿ1
n Cn F �x��

�
ÿ F �xn� ÿ F 0�xn��x� ÿ xn� ÿ 1

2
F 00�xn��x� ÿ xn�2

�
� �x� ÿ xn� ÿ 1

2
Dÿ1

n LF �xn�CnF �xn� ÿ Dÿ1
n �x� ÿ xn�

ÿ 1

2
Dÿ1

n CnF 00�xn��x� ÿ xn�2

� ÿ Dÿ1
n Cn

Z x�

xn

F 00�x�� ÿ F 00�xn�
��x� ÿ x�dx� I

� ÿ Dÿ1
n

��x� ÿ xn�

ÿ 1

2
Dÿ1

n CnF 00�xn� �CnF �xn���2
h

� �x� ÿ xn�2
i

� ÿ Dÿ1
n Cn

Z x�

xn

F 00�x�� ÿ F 00�xn�
��x� ÿ x�dx

ÿ 1

2
Dÿ1

n CnF 00�xn� Cn

Z x�

xn

F 00�x��x�
�

ÿ x�dx
�2

and therefore
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kx� ÿ xn�1k6 kDÿ1
n kkCnF 0�x0�k

Z x�

xn

C0�F 00�x�




 ÿ F 00�xn���x� ÿ x�dx






� 1

2
kDÿ1

n kkCnF 0�x0�kkC0F 00�xn�k Cn

Z x�

xn

F 00�x��x�




 ÿ x�dx





2

6 ÿ k�r1 ÿ tn�3
6p0�tn��1ÿ Lp�tn��

kx� ÿ xnk
r1 ÿ tn

� �3

ÿ p00�tn�
2p0�tn�3�1ÿ Lp�tn��

Z r1

tn

p00�z��r1

�
ÿ z�dz

�2 kx� ÿ xnk
r1 ÿ tn

� �4

: �16�

For k > 0, from (14), we have

kx� ÿ xn�1k6 ÿ k�r1 ÿ tn�3
6p0�tn��1ÿ Lp�tn��

"
� p00�tn�

2p0�tn�3�1ÿ Lp�tn��

�
Z r1

tn

p00�z��r1

�
ÿ z�dz

�2
#
kx� ÿ xnk

r1 ÿ tn

� �3

� �r1 ÿ tn�1� kx
� ÿ xnk

r1 ÿ tn

� �3

:

But if k � 0, from (16), we deduce

kx� ÿ xn�1k6 ÿ p00�tn�
2p0�tn�3�1ÿ Lp�tn��

Z r1

tn

p00�z��r1

�
ÿ z�dz

�2 kx� ÿ xnk
r1 ÿ tn

� �4

� �r1 ÿ tn�1� kx
� ÿ xnk

r1 ÿ tn

� �4

: �

Relation (14) allows us to obtain error estimates for the sequence fxng in
terms of the real sequence ftng. When k � 0 we derive ftng from a quadratic
polynomial. Following Ostrowski [16] we obtain the next error expression
when Super-Halley method is applied to a quadratic polynomial.

Lemma 3.3. Let p be the polynomial given by (11) with k � 0, that is

p�t� � b
2

t2 ÿ t � a:

We assume p has two positive roots r16 r2. Let ftng the method defined by (12),
then

r1 ÿ tn � �r2 ÿ r1�h4n

1ÿ h4n ; n P 0; r1 < r2; h � r1

r2

;
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r1 ÿ tn � r1

4n
; n P 0; r1 � r2:

When k > 0 the real sequence ftng in (14) is obtained from a cubic poly-
nomial. In this case, it is di�cult to obtain an error expression by Ostrowski
method. In the next lemma and in a di�erent way [12], we establish estimates
for the error in this situation.

Lemma 3.4. Let p be the polynomial given by (11) with k > 0, that is

p�t� � k
6

t3 � b
2

t2 ÿ t � a:

Let us assume that p has two positive roots r16 r2 and a negative root, ÿr0. Let us
consider Super-Halley method ftng defined by (12), then, if r1 < r2;

r1 ÿ tn � �r2 ÿ r1�h3n���
k
p ÿ h3n ; n P 0;

where

k � r2 ÿ r1

r0 � r1

< 1; h �
���
k
p r1

r2

< 1:

If r1 � r2, we have
r1

4n
6 r1 ÿ tn6

r1

3n
:

Proof. The polynomial p de®ned above can be written in the form

p�t� � k
6
�r1 ÿ t��r2 ÿ t��r0 � t�:

Notice that comparing the coe�cients of t2 we obtain r1 � r26 r0.
Let us write an � r1 ÿ tn, bn � r2 ÿ tn and cn � r0 � tn. Then p�tn� � 1

6
kanbncn,

p0�tn� � 1
6
k�anbn ÿ ancn ÿ bncn� and p00�tn� � 1

6
k�2cn ÿ 2an ÿ 2bn�. Thus, taking

into account (12), we have

an�1 � r1 ÿ tn�1 � r1 ÿ tn � 1

�
� Lp�tn�

2�1ÿ Lp�tn��
�

p�tn�
p0�tn�

� k
6

� �3 a3
n

p0�tn�3�1ÿ Lp�tn��
an�bn

� ÿ cn��b2
n � c2

n� ÿ b2
nc2

n

�
:

In a similar way, we deduce

bn�1 � k
6

� �3 b3
n

p0�tn�3�1ÿ Lp�tn��
bn�an

� ÿ cn��a2
n � c2

n� ÿ a2
nc2

n

�
:
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Consequently,

an�1

bn�1

� a3
n

b3
n

H�tn�;

where

H�tn� � b2
nc2

n � an�cn ÿ bn��b2
n � c2

n�
a2

nc2
n � bn�cn ÿ an��a2

n � c2
n�
:

Notice that

H�tn� � b3
nan�1

a3
nbn�1

� �r1 ÿ G�tn���r2 ÿ tn�3
�r2 ÿ G�tn���r1 ÿ tn�3

;

with G de®ned in (5). As G�r1� � r1, G0�r1� � G00�r1� � 0, we have for t close to
r1

H�t� � G000�r1�
6
�r2 ÿ r1�2 � ÿ f 000�r1�

6f 0�r1� �r2 ÿ r1�2 � r2 ÿ r1

r0 � r1

:

Since tn ! r1 when n!1, we obtain

an

bn
� anÿ1

bnÿ1

� �3

k � � � � � a0

b0

� �3n

k�3
nÿ1�=2 �

���
k
p r1

r2

� �3n

1���
k
p :

Then, r1 ÿ tn � �r2 ÿ r1 � r1 ÿ tn��h3n
=
���
k
p � and the ®rst part follows.

If r1 � r2, we can write p�t� � 1
6
k�r1 ÿ t�2�r0 � t�, where 2r16 r0. With the

same technique and notations, we obtain

an�1 � an
a3

n ÿ cna2
n ÿ c3

n

�an ÿ 2cn��a2
n � 2c2

n�
� an

an=cn� �3 ÿ an=cn� �2 ÿ 1

�an=cn� ÿ 2� � an=cn� �2 � 2
� � :

Taking into account that an=cn6 1
2

and the function

f �x� � 1� x2 ÿ x3

�x2 � 2��2ÿ x�

increases in �0; 1=2�, we deduce an=46 an�16 an=3 and the result follows. �

Theorem 3.5. Let us assume (i)±(iv) and in addition

B � B�x1; r1 ÿ t1� � fx 2 X ; kxÿ x1k6 r1 ÿ t1g � X0:

Then the iterative method defined by (10) is well-defined, xn 2 B (interior of B) for
n P 1 and the sequence fxng is convergent to x�, solution of (9). If r1 < r2 we have
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a third order method for k > 0 and a fouth order method for k � 0. If r1 � r2 we
only can guarantee linear convergence. The solution, x�, is unique ineB � B�x0; r2� \ X0 if r1 < r2;eB � B�x0; r2� \ X0 if r1 � r2:

Proof. The ®rst part follows inmediately from Lemma 3.3 and because of the
sequence ftng de®ned by (12) is convergent. That (10) is a third order method
for k > 0 follows from Lemma 3.2 and Theorem 2.5. To prove that (10) is a
fourth order method for k � 0, we use Lemmas 3.2, 3.3 and Theorem 2.6 to
obtain for 16 c < 4

kx� ÿ xn�1k
kx� ÿ xnkc 6

r1 ÿ tn�1

�r1 ÿ tn�c �
1

�r1 ÿ r2�cÿ1

�1ÿ h4n�c
1ÿ h4n�1 h�4ÿc�4n ! 0:

However, taking into account Theorem 2.6,

0 < lim
n!1
kx� ÿ xn�1k
kx� ÿ xnk4

6 1

�r2 ÿ r1�3
<1:

For the uniqueness, the proof of Yamamoto [18] also holds. �

Now we center our study in error estimates for (10). As an application of
Gragg and Tapia's techniques [9], Yamamoto [18] established some error es-
timates for Halley's method (or method of tangent hyperbolas). In the same
way, the following results hold.

Theorem 3.6. Let s�n and r�n be the smallest positive root and the unique positive
root of the equations

/n�t� � knt3 ÿ t � dn � 0;

wn�t� � knt3 � t ÿ dn � 0;

where

kn � r1 ÿ tn�1

�r1 ÿ tn�3
; dn � kxn�1 ÿ xnk > 0:

Then the next estimates hold

r�n6 kx� ÿ xnk6 s�n6 r1 ÿ tn:

kx� ÿ xn�1k6 s�n ÿ dn:

Proof. By Lemma 3.2 and using the same proof as in Yamamoto [18], we can
derive the result. �
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Corollary 3.7. With the previous notations, the following error estimates hold:

0:89dn6 kx� ÿ xnk6 1:5dn;

kx� ÿ xn�1k6 0:5dn:

4. Examples

We give two examples of application of Super-Halley method to a system of
non-linear equations and a non-linear integral equation.

Example 1. Now, let us consider the systems of non-linear equations
F �x; y� � 0, where F �x; y� � �x2 ÿ y ÿ 2; y3 ÿ x2 � y � 1�.

Newton sequence to solve this system can be written as follows:

�xn�1; yn�1� � �xn; yn� ÿ C�xn; yn�F �xn; yn�;
where

C�xn; yn� � �F 0�xn; yn��ÿ1 � 1

6xny2
n

3y2
n � 1 1
2xn 2xn

� �
:

In this case, we have

xn�1 � 3x2
ny2

n � 2y3
n � 6y2

n � 1

6xny2
n

;

yn�1 � 2y3
n � 1

3y2
n

:

The linear operator LF �x; y� de®ned in (10), is given by the following matrix:

LF �x; y� � 1

6x2y3

y�3x2y2 ÿ 2y3 ÿ 6y2 ÿ 1� 2x�y3 ÿ 1�
0 4x2�y3 ÿ 1�

� �
:

Super-Halley method can be written

�wn�1; zn�1� � �wn; zn� ÿ 1

2
I
h
� �I ÿ LF �wn; zn��ÿ1

i
C�wn; zn�F �wn; zn�;

that is,

wn�1 � wn ÿ �9w2
nz2

n � 2z3
n � 6z2

n � 1��3w2
nz2

n ÿ 2z3
n ÿ 6z2

n ÿ 1�
12wnz2

n�3w2
nz2

n � 2z3
n � 6z2

n � 1� ÿ �z
3
n ÿ 1�2
6wnz5

n

;

zn�1 � zn ÿ �2z3
n � 1��z3

n ÿ 1�
3z2

n�z3
n � 2� :
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Starting at �x0; y0� � �w0; z0� � �6; 3� we obtain the iterations given in Tables 1
and 2.

In the following example we use Theorem 3.5 to show the existence and
uniqueness of solution for an integral equation. The results that we obtain are
compared with the ones obtained by using other third order iterative processes
(see Refs. [3,4,7]).

Example 2. Let us consider the espace X � C�0; 1� of continuous functions on
the interval �0; 1�, equipped with the max-norm,

kxk � max
s2�0;1�

x�s�j j:

Consider the equation F �x� � 0, where

F �x��s� � x�s� ÿ s� 1

2

Z 1

0

s cos�x�t��dt; x 2 C�0; 1�; s 2 �0; 1�:

Using the above notation and taking as starting-point the function
x0 � x0�s� � s, we obtain

Table 1

Newton's method

n xn yn

0 6.000000000000000000 3.000000000000000000

1 3.336419753086419753 2.037037037037037037

2 2.183486059447010306 1.438355269870421386

3 1.806201995430546569 1.120022383336509062

4 1.737006139001477947 1.012402260381869450

5 1.732101431071650477 1.000151311360582637

6 1.732050814916382536 1.000000022890509658

7 1.732050807568877460 1.000000000000000524

8 1.732050807568877294 1.000000000000000000

9 1.732050807568877294 1.000000000000000000

Table 2

Super-Halley method

n wn zn

0 6.000000000000000000 3.000000000000000000

1 2.195930445526441461 1.173690932311621967

2 1.726757444904059338 0.998981852656109923

3 1.732050203990691682 1.000000000352888045

4 1.732050807568877294 1.000000000000000000

5 1.732050807568877294 1.000000000000000000
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F 0�z�x�s� � x�s� ÿ s
2

Z 1

0

x�t� sin�z�t��dt;

�F 0�z��ÿ1y�s� � y�s� � s
2Uz

Z 1

0

y�t� sin�z�t��dt;

where

Uz � 1ÿ 1

2

Z 1

0

t sin�z�t��dt;

F 00�z�xy�s� � ÿ s
2

Z 1

0

x�t�y�t� cos�z�t��dt;

for x; y; z 2 C�0; 1� and s 2 �0; 1�: So we deduce

a � b � sin 1

2ÿ sin 1� cos 1
; k � 1

2ÿ sin 1� cos 1
:

In this case the majorizing polynomial is

p�t� � k
6

t3 ÿ b
2

t2 ÿ t � a

� 1

6�2ÿ sin 1� cos 1� t3
� � 3�sin 1�t2 ÿ 6�2ÿ sin 1� cos 1�t � 6 sin 1

�
which has two positive roots

r1 � 0:6095694860276291; r2 � 1:70990829134757:

Consequently, Theorem 3.5 guarantees that F �x� � 0 has a root in B�x0; r1� and
this is the only root in B�x0; r2� (we have written B�x0; r� � fx 2 X ; kxÿ x0k6 rg
and B�x0; r� the corresponding closed ball).

Let fsng, ftng and fung be the sequences obtained by applying Chebyshev,
Halley and Super-Halley methods to solve the equation p�t� � 0. Each one
allows us to give an error bound for the corresponding sequence in Banach
spaces. These error bounds are shown in Table 3.

Table 3

Error bounds

n r1 ÿ sn r1 ÿ tn r1 ÿ un

0 0.6095694860276291 0.6095694860276291 0.6095694860276291

1 0.0534834955243040 0.0495130055348865 0.0349873303274992

2 0.0001520166774545 0.0000984825547302 0.0000560164474543

3 0.0000000000042804 0.0000000000009129 0.0000000000001218

4 0.000000000000000 0.000000000000000 0.000000000000000
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Notice that the best error bounds are attained with Super-Halley method.
For this equation and using Halley method, D�oring [7] gave the bound

kx� ÿ x2k6 0:000825:

Later, Candela and Marquina [3,4], gave the bounds

kx� ÿ x2k6 0:00037022683427694

and

kx� ÿ x2k6 0:00014987029635502

with Chebyshev and Halley method, respectively.
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