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Abstract—We consider an inverse-free Jarratt-type approximation, whose order of convergence is
four, for solving nonlinear equations. The convergence of this method is analysed under two different
types of conditions. We use a new technique based on constructing a system of real sequences.
Finally, this method is applied to the study of Hammerstein’s integral equations. (© 1998 Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION

Many scientific and engineering problems can be brought in the form of a nonlinear equation
F (I) =0, (1)

where F is a nonlinear operator defined on a convex subset Q2 of a Banach space X with values in
another Banach space Y. The resolution of equation (1) by iterative methods has been studied
by many authors for a long time, see [1-5]. The study of this methods is habitually based on the
well-known Kantorovich-type conditions [6].

The multipoint methods are defined as iterations which use new information at a number of
points. In (7], it is imposed that the restriction on one-point iteration of order N that they
must depend explicitly on the first N — 1 derivatives of F. This implies that their informational
efficiency is less than or equal to unity. Those restrictions are relieved in only small measure by
turning to one-point iterations with memory.

Neither of these restrictions need hold for multipoint methods, that is, for iterations which
sample F and its derivatives at a number of values of the independent variable.

A natural generalization of the Newton method is to apply a multipoint scheme [7]. Suppose
that we already have the expressions of F(zx), F’'(zx), and F'(zx)~! =[x at a current step Zi.
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10 J. A. EZQUERRO et al.

In order to increase the order of convergence without evaluating the second Fréchet derivative,
we can add one more evaluation of F'(c;zx + cayx) !, where ¢; and c; are real constants that are
independent of zx and yi is generated by a Newton step. Ostrowski [8] and Traub [7] developed
two-point schemes of this type for functions of one variable.

According to this idea, Argyros, Chen and Qian (see [9]) give the following new multipoint
iteration of order four in Banach spaces:

Yn = Zn — F'(zn) " F(2y),
Glonstn) = F'en)™ [P (5 + S0m = 2)) = Flan)], o

3 3
Tnt+l = Yn — ZG(xmyn) [I - EG(xm yn)] (yn - xn)’ n 2> 0.

First of all, we analyse, under certain assumptions of the pair (F, zp), the convergence of (2) to
a unique zero z* of (1) by using a new technique consisting of a system of real sequences which
satisfy some recurrence relations.

Second, as a consequence of the previous study, we obtain a result on the existence-uniqueness
of solutions for the Hammerstein nonlinear equations [10]. The convergence result mentioned
above provides a result of this type, but the operator F' must satisfy several conditions as a
consequence of iteration (2) has R-order of convergence four. We then study the convergence
of (2) by a Newton-Kantorovich theorem under milder conditions for the operator F. After that,
a new existence-uniqueness result of solutions of equation (2) is given.

Finally, we study a particular Hammerstein equation, which has been already studied by
Werner [11]. We compare the results obtained applying iteration (2) with the ones given by
Werner for other iterative methods with a similar operational cost. We shall see that better
approximations to the discretized solution of this Hammerstein equation are obtained.

We denote B(z,7) ={y € X; |ly—z|| <r} and B(z,7) ={y e X; |ly—z| <r}.

2. CONVERGENCE ANALYSIS

We analyse the convergence of (2) to a solution z* of (1). Let zo € Q and suppose that
Lo = F'(zo)~! € L(Y, X) exists at some zo € §, where L(Y, X) is the set of bounded linear
operators from Y into X.

We assume the following assumptions:

(A1) [IToll < B,

(A2) [lyo — zoll = ToF(zo)ll < m,

(A3) ||F”(:B)|| <M,zeq,

(Ag) |F”(z)| <N, z €,

(As) 1F"(z) — F" < Lz - yll, z,y €2, L 2 0.

Let us denote ag = M A7, bp = NBn?, and ¢y = LAn3. We define the sequences

Gn+1 = anf(an)?g(an, bn,cn), 3)
bpt1 = bnf(an)sg(anv bn, cn)2’ (4)
and
nt1 = Cnf(an)*9(an, bnscn)?, ()
where 9
f(z)=2—2x——x2—-x3 ©)
and

9(z,y,2) = 2—16 (272® (z® + 2z + 5) + 18zy + 172) . (7)
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First, we observe that taking into account initial Hypotheses (A;)-(As) and assuming that
Yo € 1, we have

2 2 2
IG(zo, yo)ll < ITolll| F* («'Bo + 3w - ivo)) — Fl(zo)]l < 35Mn = 300
Then the iterate z, is well defined and

llyo — zoll

3 3
|1 = zoll < “I = 76(@0,%0) [I - §G(-’Bo,yo)]
ao
< (1431 +a0)) lvo - .

Next we prove the following items are true for all n > 1, by mathematical induction:

(In) (ITall = 1F(za) 7 £ f@an-1)|Tn-1lls
(I1n) llyn — 2ol = ITaF(zn)ll £ f(@n-1)9(an-1,bn-1,cn-1)¥n-1 — Zn-1ll,
(L) |G (2, yn)ll < (2/3)MIITallllyn — znll < (2/3)an,
(IVs) NiCallllyn — :t,,||2 < bn,
(Vn) L"Fn" "yn - -’Bn“s <cn,
(VIn) lIzn+1 = znll < (1 + (an/2)(1 + an)) lyn — zxll.
We now assume Zy,¥yn € 1, for all n > 0. The proof of that is given in Theorem 2.4. If we

suppose
a,,(1+%(1+a,.))<1, n>0, ®)

then we have
I = ToF'(z1)l| < (TollllF'(zo) — F'(z1)l| < M||To|ll|lz1 — zoll
ag
5ao(1+7(1+ao)) <1

Hence, I'; is defined and ||T'y|| < f(ao)||Toll-
Using Taylor’s formula and (2), we get (see {9])

F(z1) = F(yo) + F'(yo)(z1 — o) + /wl F"(z)(z, — z)dz
Yo
1
= [ P+ o1 - w01~ ) e = ?
1
+/o [F" (zo + t{yo — o)) (1 —t) — -;'F” (1‘0 + %t(yo - wo))] dt(yo — To)?
3

1 F" F” 2
~1J, [ (zo + t(yo — x0)) — (xo + §t(yo - -’Bo))] dt(yo — T0)G(o, ¥o)(¥o — To)

1
+ g /0 F" (zo + t(yo — 20)) dt(yo — z0)G(zo, 0)G (0, %0)(¥0 — Zo)-

v = z1ll = T Fz)ll < ITall 1F (@)l < Flao)IToll 1 F (1)l
< f(aO)g(aO) bOa cO)"yO - x0"$

and (II;) is therefore true. To show (III;)~(V}) we, respectively, note that

2 2 2
IG(z1, y)ll € zM|Tall Iy — 21|l £ §M IToll llyo — ol £ (a0)2g(a0, bo, co) < 300
N1l llyr = z1}j2 < N||Toll llyo — zol|? f(a0)>g(ao, bo, c0)? < by,
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and
LiT1 [ lys = z1]* < L{iToll llyo — oll* f(a0)*g(ao, bo, c0)® < c1.

Finally, we easily deduce
ai
oz =zl < (1431 +a1)) llys - zall

Now if we suppose that (I,)~(VI,) are true for a fixed n > 1, we can prove (In+1)~(VIn41) by
induction.

Our next goal is to analyse real sequences (3)-(5) to obtain the convergence of sequence (2)
defined in Banach spaces. So as to obtain the convergence of (2), we only have to prove (2) is
a Cauchy sequence and the above assumption (8). First, we provide a technical lemma whose
proof is trivial.

LEMMA 2.1. Let f and g be two real functions given in (6) and (7), respectively. Then
(i) f is increasing and f(z) > 1 in (0,1/2),
(ii) g is increasing in its three arguments for z € (0,1/2), y >0, and 2 > 0,
(i) f(yz) < f(z) and g(7yz,7%y,7°2) < v*g(z,y,2), for v € (0,1).
Some properties for the sequences {a,}, {br}, and {cn} given, respectively, by (3)~(5) are now
shown.

LEMMA 2.2. Let f and g be two real functions given by (6) and (7), respectively. Let
p(z) =27(1 - z)(1 — 2z) (2 + 2 + 2) (2% + 2z + 4) . (9)

Ifag € (0,1/2) and 17cy + 18agbp < p(ap), then

(l) f(00)2g(a07b0y cO) < 17
(ii) the sequences {an}, {bn}, and {c,} are decreasing,
(iii) an (1 + (an/2)(1+an)) <1, for alln > 0.

PROOF. From the hypotheses, item (i) follows immediately. We show item (ii) by mathematical
induction on n. The facts that 0 < a3 < ap, 0 < b; < bp, and 0 < ¢; < ¢ follow by previous
item (i) and Lemma 2.1(i). Next, it is supposed that a; < a;_1, b; < bj_1, and ¢; < ¢j—; for
j=1,2,...,n. Then,

an+1 = anf(an)2g(an, bn,cn) < anf(ao)?g(ao, bo,co) < an,

since f is increasing and g is also increasing in its three arguments. We have

4 2
b, f@n)g(an bmcn _,

— 3 2 _
bny1 = bnf(a'n) g(am b, cn) = f(an) n

and

6 3
Catt = caf(an)9(an, by ca)® = caL22) ;EZ:;.?"’C") < ¢n,

by the same reasoning as before and the fact that f(z) > 1 in (0,1/2).
Finally, we have

an (1 + 0—2"(1 +a,,)) <ag (1 + 927°(1 +ao)) <1,

for all n > 0, since {a,} is a decreasing sequence and ao € (0,1/2). ]
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LEMMA 2.3. Let us suppose the hypotheses of Lemma 2.2 and define v = a /ag. Then

(in) @n < 7" anoy < 14V 3aq, by < (" )asy < /3@ Dby, and ¢, < (")
en-1 <7 e, for alin > 2,
(iin) f(an)g(an,bn,ca) <¥* ~1f(ao)g(ao,bo,co) = (v*"/f(a0)), for alln > 1.

PROOF. We prove (i) following an inductive procedure. As ay = yag, we have by = by f(ag)3
9(ao,bo,c0)? < ¥%bo and ¢, = cof(ao)?g(ao, bo,co)® < ¥3co, if and only if f(ap) > 1, and by
Lemma 2.1 the result holds. If we suppose that (i,) is true, then

an+1 = @nf(an)?g(an, bn,cn)

n—1 n-1 2 n—1 n-1 2 n— 3
<" an1f (74 an—l) g(v“ an—l,('74 ) bn—la('74 ‘) cn—l)

n—

1 n—1 3 n
<" an-1f(an-1)? (74 ) 9(@n-1,bn—1,¢n-1) = 7* an.

We also have

2
b1 = nf(a'n):‘xg(a'mb'rucn)2 < <a2+1) bn,

3
a
Cnyl = Cnf(a'n)4g(am bn’ c‘n)3 < ( Z+1> Cn,
i3
if and only if
85.f(3n)°9(an, bn, cn)? < 6341 = a2 f(an)*g(an, bn, cn)?,
a?;f(an)4g(am by, c'n)3 < a?ﬂ-l = aif(an)sg(am bn, Cn)s-

These conditions are true since f(ap) > 1. Now buy1 < (¥37)%b, and cayy < (717)3c,, since
@ny1/as <7%". Moreover,

n—1 n—1 n—
an <7 apo1 <A

b, < (70—1)2,,"_1 < (,74"-1)2 (74"-2)2,,"_2 <er < /BE =Dy

2 n
[+ ) L e <L 7(4 _1)/300,

and
4n-1 3 4»—1 3 4n—2 3 4™ -1
cn<(’7 )Cn—1<(’7 ) ('7 )Cn—z<"'<’r Co-

On the other hand, we observe that

£(@n)9(@n, baycn) < £ (Y477 2a0) g (14711200, 4 /DU 1o, 44" 10y)

n

' 4
< """ f(ao)g(ao, bo, co) = 7?@ n>1.

The proof is complete. |
After that, we show the following result on the convergence of sequence (2).

THEOREM 2.4. Let X, Y be Banach spaces and F :  C X — Y be a nonlinear three times
Fréchet differentiable operator in an open convex domain Q. Let us assume that Ty = F'(z¢) ! €
L(Y, X) exists at some 1o € Q and (A;)-(As) are satisfied. Let us denote ag = Mfn, by = Npn?,
and co = LPn®. Under the conditions of Lemma 2.2, if B(zo,Rn) C Q, where R = (1 +
(a0/2)(1 + a0))/(1 =~ vA), ¥ = a1/ao, and A = 1/f(ag), the sequence {z,} defined in (2) has
at least R-order of convergence four, and starting at o converges to a solution z* of (1). The
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solution z* and the iterates x,, and y, belong to B(xo, Rn). Moreover, the solution z* is unique
in B(zq,2/(MB) — Rn) N Q. Furthermore, the following error bounds are obtained:

lz* = zg|l < (1 + — 2 7(4"'1)/3 (1 + agy@” 1)/3)) (7(4"‘1)/3) i—:%;;zn, n>0. (10)

PROOF. First, we prove that {z,} is a Cauchy sequence. From (II,,), we observe that
a ag
(1+ 51 +00) ln = 2all < (14321 +0)) F(@n-1)9(@n-1,bn1,en1) -1 = Zna

<o < (14 21+ a0)) lvo = ol H f(a;)9(aj,bjrc5).

We now have, from Lemma 2.3,
n—1 n—1 )
[T f(as)glas,bs,e) < [T (7¥'8) = 4"-072am,
=0 =0

where vy =a1/ap <1 and A =1/f(ap) < 1. So,form>1andn > 1,
1Zn+m — Znll < |Zntm — Tntm-1ll + |Tntm-1 = Tngm—2ll + -+ + | Tat1 — zal
a n+m—2
-1
< (1 + HTm(l +an+m—1)) 7 H fla;)g(aj, b, ¢5)
+"'+(1+ 2(1+an))77nfaa 9(aj, bj, c;) (11)

(1 + _(1 +an)) (7(4"“" 1—1)/3An+m—1 + _“+,7(4"—1)/3An) n
1- ,7(4"(4'"-‘+2))/3 Am

(4~-1)/3 (47 -1)/3\ (4" ~1)/3 An
(1+27 (1+a07 ))7 A =774 m,
since y(4'+4"3)/3 > /(N8 for i = n+1,...,n+m—1. For m > 1 and n = 0, we obtain
m—1
ao 1-— ,7(4(4 -1))/3 Am~1
lem — zoll < (1+ 2+ ao)) — n< Ry. (12)

Thus, {z,} is a Cauchy sequence.

On the other hand, from (12), it follows that z,,, € B(zo, Rn), for all m > 0. We similarly have
that y, € B(zo, R7), for all n > 0.

To see that z* is a solution of (1), we have ||[', F(z,)|| — 0 as n — oco. Taking into account
that ||F(zy)|| < [|F'(za)l| ITnF(zn)| and the sequence {||F'(z,)||} is bounded, we infer that
|| F(zn)|]| — 0 as n — 0o. Consequently, we obtain F(z*) = 0 by the continuity of F.

To prove the uniqueness, let us assume some other solution z* of (1) in B(zg,2/(MB)— Rn)NSL.
From the approximation

0= F(z*) - F(z") =/01F’(m* +t(2* —3%) dt (2" — %),

we have to prove that the operator fol F'(z* + t(z* — z*))dt is invertible and then 2* = z*.
Indeed, from

1 1
||I‘o||/0 |F' (z* + t(z* — z*)) — F'(z0)]| dt < Mﬂ/o flz* +t(z* —z*) — 0| dt
1
< Mp /0 (1 = t) 12" — zol| +t{|z" — zoll) dt < 1,

it follows that | fol F'(z* + t(z* — z*)) dt]| ! exists.
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Finally, by letting m — oo in (11) and (12), we obtain (10), for all n > 0. In addition,

from (10), it follows that the R-order of convergence [12] of (2) is at least four, since

o~
lz* — zall < (1 + %(1 +ao)) WZ———WA_)- (’71/3) y  n20.
The proof is complete. (]
We apply our new technique of convergence analysis to the following integral equation.
EXAMPLE. Let

1
F@6)=1-20)+ 5 [ e

be the H-equation called integral equation of Chandrasekhar and studied by Argyros, Chen and
Qian in [9]. We consider the space X = C|[0, 1] of all continuous functions on the interval [0,1]
with the norm

=]l = e |=(s)] -

Let zo = zo(s) = 1. Then the parameters appearing in Theorem 2.4 are (see [9])
M =0.3465, N=0=L, (=15304, and n=0.2652.

In addition, ag = 0.1406312 and by = 0 = ¢g. Consequently, the hypotheses of Theorem 2.4
are satisfied, and therefore, the integral equation of Chandrasekhar has a solution z*(s) in {¢ €
C([0,1])/ll¥ — 1|| < 0.287094}. Moreover, this solution is unique in {y € C([0,1])/ll¥ — 1| <
3.48447}. Furthermore, the next error bounds are obtained:

lz* — z1]| <5.6740310"* and ||z* - z3|| < 2.10679107 4,

They are a little better than the ones obtained by Argyros, Chen and Qian in [9] for the same
method:
lz* — z1|| < 7.367910™% and ||z* — x| < 4.5111107™4,

3. APPLICATION TO NONLINEAR
HAMMERSTEIN EQUATIONS

An interesting aspect of the study of iteration convergence to solve equations is to get existence-
uniqueness results of solutions. So, in this section, we obtain results of this type for the known
integral equation of Hammerstein [13]

(s) = f(s) + / ' K(s, )t z(t)) dt, =€ C(o,1)), (13)

where K(s,t) is the kernel of a lineal integral operator in C[0, 1] and £(t, u) is a continuous function
for0<t<1, —00o<u<+oo.
Note that solving (13) is equivalent to solving (1), where

b
(F(@)](s) = 2(s) - £(s) - / K(s,£)0(t, z(t)) dt

is an operator defined in the space C[0,1]. It is clear that we can get an existence-uniqueness
domain of solutions of (13) by Theorem 2.4. But in this theorem, it is proved that the R-order of
convergence is four, so that the operator F' must satisfy some strong conditions. In the following
result, we obtain domains of this type under milder assumptions than the ones that appeared in
Theorem 2.4. In particular, under the same conditions that for the Newton method (see [14]),
we suppose that (A;) and (A3) are satisfied along with a Lipschitz-type condition for F’.
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THEOREM 3.1. Let F be a continuously Fréchet differentiable operator in an open convex domain
Q C X. Let 29 € Q be a point where the operator 'y = F'(z)~! exists and

IToll <8, llvo—zoll <n, IF(z)-FWI<Klz-yl, =zyeQ

We define dy, = dn_19(dn—1)%w(dn_1) with do = Kfn, v(z) = 2/(2 — 2z — 2% — 23), and w(z) =
(x/8)(8 + 8z + 5z% + 2% + z*). If

do < T =0.300637..., (14)
where 7 is the smallest positive root of the polynomial
225 +32% + 82* — 52% — 82% — 242 + 8
and B(zo, Rn) C €, where R = (1+ (do/2)(1 +do)) /(1= 7A), v = d1/do, and A = 1/v(do),
then equation (13) has at least a solution z* in B(xy, Rn). Moreover, z* is unique in B(zy, 2/(Kf3)

—Rp) N Q.
PROOF. Notice that the hypotheses guarantee the existence of z; in (2) and

d
Jox - 2ol < (1+ 21+ do) ) o ~ ol

Besides it can be shown without difficulty that I'; F/(zo) exists and
[IT1]l < v(do)lToll-

Then z; is defined, and taking into account (2), we have
3 3 *1 ’ ,
LoF(x1) = ZG(xo,yo) I- EG(xo,yo) (xo—w)+ | To[F'(z) - F'(x0)] dz
Zo

by Taylor’s formula. So
lly1 — z1ll < v(do)w(do)llyo — Zoll-

On the other hand,
d1
K|Tillllga —z1ll £di and [ze—zaf < (1 + 3(1 +d1) ) lyr — 1l

Finally, from (14) and v(dp)?w(dp) < 1, we have
dy = dov(do)z’w(do) < dy.

Following an inductive procedure, we can replace z; by z2, 2 by z3 and, in general, z,_;
by z, to obtain that there exists I';, and the following recurrence relations:

"F‘n” = “F,(xn)—lll < 'U(dn—l)"r‘n—lu,
"yn - zn" < U(dn—l)w(dn-—l)”yn—l - zn—l",
KITal Iy — 2al < o,
fonss =2l < (14 50 + ) It =
d'n < dn—l-
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Consequently, taking into account that w(dp) < 1 and following, a similar way as in Theo-
rem 2.4, we infer that {z,} is a Cauchy sequence and therefore converges to a solution z* €
B(zo,2/(KB) — Rn)NQ of (1). The uniqueness follows as in Theorem 2.4. 1

Observe that we need evaluate K, 3, and n from the initial point z9. Then we do certain
considerations for equation (13). We assume that £ has partial derivative respect to the second
argument and satisfies a Lipschitz condition.

It is easy to prove that

b
[F'(2)y] () = y(s) - / K(s,8)8) (¢, 2(t)) y(t) dt,
where £(t, p) = %Z(t, ).

On the other hand, fixed zo(s), we consider [F’(zq)y](s) = 2(s). Then y(s) = [['oz|(s), and
consequently,

b
y(s) = 2(s) + / K(s, 8)8(t, zo(t))y(t) de

b b
= z(s)+/ K(s,t)l5(t, zo(t)) (z(t) +/ K(t, u)y(u, zo(u))y(w) du) dt.

By recurrence and taking the max-norm, we deduce

ly(a)l = llToz] ()l < (Z lIAl™ Ilf'zll") [E7IP

n>0

where h(€) = [> K(€,0)do. Now if ||k [|£4]| < 1, then

-t
1- Al el

From the definition of the operator F', we deduce that || F(xo)|| = ||xo— f|l+]A|/||4|l, and therefore,

IToll <

leo — £ + A1 12
ToF(z9)| < .
ICoF (=)l < =TT

Besides, taking into account that

b
[(F'(z) - F'(y)) 2] (s) = /a K(s,t) (63(t, y(2) — &5(t, 2(2))) 2(t) it

it follows
\F'(z) — F' ()|l < [[Rl|Pllz — yl,

where P is the Lipschitz constant for £5.

Therefore, we can give a more explicit result on the existence-uniqueness of solutions of equa-
tion (13).
THEOREM 3.2. Following the same notation, let F : Q C C[0,1] — C[0,1], where Q is an open
convex domain and

b
F@(s) = 2(s) = £(5) = [ Kls, O(t,2(t))
a
Let zo € Q be a point where the operator 'y exists and

1 leo — £Il + 81 €]
S S . K=P||,
B=T-mmmgr  "T T i enal 1A
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where h(€) = [ K(¢,0)do and P is the Lipschitz constant for #. If do = Kfin < 0.300637...
and B(zo, Rn) C , where R = (14 (do/2)(1+do))/(1 — YA), v = d1/do, and A = 1/v(dy), then
a solution of (13) exists at least in B(xo, Rn). Moreover, this is the only one in B(xo,2/(Kf) —
Rp)N .

Notice when the kernel K and the functions f and £ are fixed, then F(zo) is improved.

After, we study a particular equation of Hammerstein-type. Let us consider the same equation
as Werner in [11] and given by

x(s)—l—é/lL—l—dt se[0,1], re 01| fixed 15
T2 t+sz(t) T "2 ' (15)

in the space C[0,1] of all continuous functions with the max-norm. Note that (15) is also an
H-equation that arises on the radiative transfer theory (see [13] and the references appearing
there). From now on

F:QCcX-X, X=C[01], Q = {z € C[0,1); z is positive},
(F(z)|(s) = ()—1+é/1—8—-1—dt re o2
TNe) =8 2 )y t+sz®) 1N

First, we obtain an existence-uniqueness result of solutions depending on the parameter A. Sec-
ond, we discretized the above equation to get, by (2), approximations to the solutions. Finally,
we compare the speed of convergence of (2) with the classical Newton method and other Newton-
type iterations, considered in [11] with a similar operational cost. The speed of convergence is
improved by (2).

Before that, we provide some important features of the solution of (15). If z(s) is a solution
of (15), then z(0) = 1, z(s) is a decreasing function and z(1) > (1++v1 —2AIn2)/2 = T.
Consequently, we consider

2 = {x € C[0,1]; z is positive with T < z(s) < 1, s € [0,1]} C Q, (16)

and take F : Qo — X. According to the general case, as f(s) = 1, K(s,t) = —(A/2)s/(s +1),
and £(t,z(t)) = 1/z(t), then
2ol
[ (S | ki |
IToll < 2||zol|2 - Aln2’

if and only if
2 2
A< 5ol (1n

Moreover, by the Banach lemma, Iy exists and

1
s | Iyl _ A2
dt‘ < .
/os+t Teal? < Zaal? V!

Then ||I — F'(zo)ll < 1, if (17) is satisfied. Furthermore,

I - Fea) sl (@ < 5

Aln2

F(zo)|| = l|lxo = 1| + 77—

and Aln2
IF@) - PO < 3le =3l sy,
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COROLLARY 3.3. With the notation of Theorem 3.1, let F : Qo C C[0,1] — C[0, 1], where Qp is
given by (16) and

At s 1
[F(w)](8)=$(3)—1+§/0 t+sz(t)

Let o € Qo, 0 < X < (2/1n2)|lz0]|?,

- 2||xo | _ 2||zol|? Aln2 _Aln2
b= Aol — An2’ | 2fzel? - Aln2 lzo — 1l + 3 Tzl )’ and K ==5".

If dy = KBn < 0.300637... and B(zo, Rn) C Qo, where R = (1 + (do/2)(1 + dp))/(1 — 7A),
v = dy/dy, and A = 1/v(dyp), then equation (15) has at least a solution in B(zo, Rn). Besides
this solution is the only one in B(zo,2/(K3) — Rn) N Q.

Observe that zo must be chosen such that (2/1n2)||zo||? > 1/2, since (15) is defined for
A€ [0,1/2].

If we take the same initial function z¢(s) = 1, as Werner in {11}, we see that the previous
corollary is satisfied for all A € [0,1/2], as a consequence of

2(In 2)2)?

= oAy < 0-300637....

do
Finally, equation (15) is discretized to replace it by a finite dimension problem. The integral
appearing in (15) is approximated by a numerical integration formula. We choose A = 1/2 and
the composite trapezoidal rule with mesh size 1/m.
So, for 7 =0,1,...,m, we have

11t,-1'{5tj11t,-1

O=a(t]) 1+ |23 1 z
) =1+ G |25+ 00 2t0) T 2 T 4% 2(t) T 2 6 +1m 3m) |

k=1

where t; = j/m.

In this way, we can compare the results obtained with the ones given by Werner in [11] for
some different iterations with a similar operational cost.

If we denote :cg) = zn(t;), 1 =0,1,...,m, then (mslo),zs,l), e ,:cﬁf"))‘ is the iteration n of (2).
The solution is denoted by (£(9,z(1), ..., z(m)e,

Taking (2) with m = 20 and a:(()i) =1, fori=0,1,...,20, the results of Table 1 are obtained.

Table 1.
i £ i 29
1 | 0.956652783895941 11 | 0.830471666177964
2 | 0.931973961726981 12 | 0.824546396027649
3 | 0.912972463361788 13 | 0.819121327252762
4 0.897743855274231 14 0.814138891021997
5 0.884895332371650 15 0.809558477036342
6 | 0.873888360619056 16 | 0.812107706037000
7 0.864307534740268 17 0.808390913203738
8 | 0.855512839646057 | 18 | 0.804976549647592
9 0.848351533450320 19 0.801790182723719
10 0.841610323653732 20 0.798809056636777

Tables 2 and 3 contain the errors

max |z — z()
o<i<2ol™ ™

)




20

for the iterates (zf,o)

(1)

T gy

1. Stirling’s method,
II. Newton’s method,
III. the variable ¥ method appearing in [11],

IV. method (2).

xs‘m) )t
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generated by the iterative methods:

Table 2. z§ = 1.

n I I 1 v

1| 418x10°3 4.80 x 10~3 9.23 x 10~4 5.69 x 10~4
2 | 1.98x 108 3.69 x 10~8 1.99 x 10~8 2,22 x 10~18
3 | 433x10°13 | 217x10"12 | 9.11 x 10~18 0.0

Table 3. z{" = 1.2,

n 1 II II1 v

1| 1.85x10~2 1.75 x 10~2 4.11x 108 6.52 x 10~4
2 | 411x10°8 5.03 x 105 4.11x 1077 1.24 x 10~ 4
3 | 1.88x10710 | 405x10-10 | 3.87x 10715 | 222x 1018

The numerical results, using 20 significant decimal figures indicate that iteration (2) converges
faster to a solution (Z(®, (1), .. £(20)¢ than the Methods I-III.
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