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A construction procedure of iterative methods
with cubical convergence II:
Another convergence approach
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Abstract

We extend the analysis of convergence of the iterations considered in Ezquerro et al.
[Appl. Math. Comput. 85 (1997) 181] for solving nonlinear operator equations in Ban-
ach spaces. We establish a different Kantorovich-type convergence theorem for this fam-
ily and give some error estimates in terms of a real parameter o« € [-5,1). © 1998
Elsevier Science Inc. All rights reserved.
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1. Introduction

Here we are concerned with the problem of approximating a locally unique
solution x* of the equation

F{x)=0 (1)

in a Banach space X, where F is a nonlinear operator defined on some convex
subset 2 of X with values in a Banach space Y.
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We continue the analysis initiated in Ref. [1] of a new parameter-based iter-
ation following the basic idea of continuation methods [2,3]. We defined a ho-
motopy /i (x) + (1 — a)Jy(x), where o € [0, 1], between two operators Jy and J;
and designed the iterative process

Xon+l = O(‘]] (xain) + (1 - a)JO(-x(x.n)7 n 2 O’ (2)

where x,,+1 = Jy(x,,) is the Chebyshev method [4,5] and x, 41 = J; (x,,) is the
convex acceleration of Newton’s method [6,7].

In Ref. [1], we studied the convergence of Eq. (2) for a« € [0, 1]. The aim of
this paper is to get new iterative processes from the previous homotopy. For
that, we extend the values of the parameter « by using a different technique that
consists in decomposing iteration (2) (see Refs. [4,6,8]), and so we analyse the
convergence of the family (2) of iterates for o € [-5, 1). Under Newton—
Kantorovich assumptions, we give an existence-uniqueness theorem and pro-
vide error bound expressions depending on «.

If xo = x,0 € 2, we can define Eq. (2) as

Yoan = Xagn — F,(xa.n)_lF(xot.n)a
Xan+1 = Yan + %LF (xaun)Ga( (xa,n)(yx,n - xa,n)a
where Lp(x) is the linear operator defined by

Le(x) = F'(x)" F'(0)F (x) 'F(x), xeX

(f F'(x)"" exists), G,(x) = I + oLr(x)H(x),H(x) = (I — Lg(x))"',1 is the iden-
tity operator on X and o € [-5, 1). The first and second Fréchet derivatives
of F evaluated at x =x,, are denoted by F'(x,,) and F”(x,,). Note that
F'(x,,) is a linear operator whereas F'(x,,) is a bilinear operator for all
n = 0. We prove that if the sequence {x,,} defined by Eq. (3) converges to a
limit x* € Q, then x* is a zero of Eq. (1).

Let us denote

Bix,r)={xXeX;|xX — x| <r} and B(x,r)={x e X;|x —x| < r}.

2. A Kantorovich-type convergence in Banach spaces

Our convergence analysis will show that under standard Newton—Kantoro-
vich assumptions, we have convergence to a zero x* of Eq. (1).

Following Argyros [8], it is assumed that

(i) There exists a continuous linear operator I'y = F' (xo)‘l,xo € Q. More-
over ||| < B.

Gi) ||F7(x)|| <M for x € Q.

(ii)) |F"(x) — F"(y)| < N|}x — yl| for x,y € 2.

(iv) | ToF (xo) || < #-
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(v) Let the equation

g =201t

1
- = 4
=0 @

1-3 , N _, .
& < —5-1
l—ocM+3ﬂ k if ae[-5-1],

, N .
(V'_;) 2<M +m><k2 lfOCE(—l,O),

N
(V3) M2+ﬁ <k2 lfOC:O,

(va) é((l—ka)M“ ;Vﬂ)<k2 if o€ (0,1).

Assume that this equation has two positive roots ¢* and * (r* < ) or equiv-
alently 2kfn < 1.
Let us define the scalar sequence {,,} for all « € [-5,1) by

gLy,
b = typ0, San = lan — (—17!)_’ = U,

g'(tzn)
lynyl = Px(toc,n) = Sun +‘;‘Lg(ta.n) <1 + oL ( Zt") ))(Sx.n — ta‘,,), n>=0, (5)

where g is the polynomial defined in Eq. (4) and L,(¢) = g(¢)g"(t)/g'(¢ .
In Lemma 2.1, we prove that the sequence {t,‘,,} defined by Eq. (5) is in-
creasing and converges cubically to ¢* for all & € [-5,1).

Lemma 2.1. Let g be the polynomial defined in Eq. (4) Then sequence (5) is
increasing and converges cubically to t* for all « € [-5,1).

Proof. Note that

L@
PO = S T |

=0

(1= a)(1 = Le(1)*(3 = Ly (1) + (L (1) — Le (1))

in [0,#]. Then by mathematical induction on #, it follows that ¢, <#,n = 0.
On the other hand, it is easy to show that ¢, <¢,,, for all » € N and conse-
quently the proof is completed. []
We now show that {z,,} is a majorizing sequence of {x,,} (see Ref. [9]).
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Theorem 2.2. Let F: Q C X — Y. Let us assume that the nonlinear operator F is
twice Fréchet differentiable on Q. Assume that conditions (i)—(v) are satisfied and
B(yyo,t* — 1) C Q. Then the iterations generated by Eq. (3) are well defined for all
n = 0 and converge to a zerox™ € B(xo, t*) of Eq. (1) forall o« € [—5,1). Moreover
Xonms Yan € B(xo,t°), for all n = 0. The limit x* is the unique solution of Eq. (1} in
B(xo, ") N Q. Furthermore the following error estimates are true for all n = 0:

X" = x| S8 =ty and  ||X" — || <O = Sy

Besides we have:
(a) When t* < ¢, let i, = 2(1 — o) and 0, = (t'/t")\/A,. Hence

22,
(a1) If « €[-5,0) and kfin < ————— < 0.485,
(1+ VL)
V0]

where 8, < 1.

U=ty ~ nz=0,

2Va

— <05,
(1+ V&)

(a) If a€ { ,,) and kfn <

(v =)oy

t*_tx_,,rv——\/_j—';_—gy‘, I’l>0,
where 0, < 1.
(8,3) If xe [%7 1)7
*k t* 03"
t*'—tx,,,"\’(t )a I’ZZO,

\/—A—z_()in )
where 1, <1 and 0, < 1.
(b) When t* = t**,

t*—tm,:t*(%) , n=0.

We first need the following results.

Lemma 2.3. Let F: Q C X — Y. Let us assume that the nonlinear operator F is
twice Fréchet differentiable on Q, the iterations {x,,} generated by Eq. (3)
belong to Q and F’ (x“)‘l exists for all n = 0. Then we have for n 2z 0:
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1

F(xx,rH»l) :/Fﬂ(ya.n + z(xoc.nJrl _yot.n))(xx,n+1 ‘_yoc.n)z(l - t) dt

0
|

+ /F,/(xa.n ‘I' t(yx,n - xx.n))(xa.n+l - yez.n)( T xac,n) dt

0
I

5
2

+ /F”(xa_,, + tWan — X)) = Go(X) Y Vo — X0) (1 — 2) dt

4]
1

+ /[F”(xa.n + l( o.n _xx,n))

- F”(xd.n)]Ga(xa.n)( W] _-xa,n)z(l — 1) dt.

Proof. To prove this equality, we note that

F(xo(.n+l) :F(xz,rﬂ—l) - F(yozn) - F,(yz,n)(xapn+l _yot.n) + F(yx‘n)
+ F,(yaz.n)(xmn+l - yot,n)

Kot 1

= / F"(x) (xanit — %) dx + F (V) + F' (Von) Xansr = Yan)-

Yan

On the other hand, we have

M

F( u.n) = /F”(x)(}&,n _x) dx+F(xoc.n) +F/(x1,n)( o _xonn)

Xon

1
= /F,/(xa.n + t(yxﬁn - -xx,n))(,yx.n - x:‘t}i)z(l - t) dl
0

and

Yan

F/(yz.n)(xx./1+l _yo(.n) = /F”(x)(xa(.n+1 _ya(,n) dx+F/(x1.n)(x1.n+l _yx.n)-

Xan

As F"(x,,) is a symmetric bilinear operator, we see that

F,(yx,n)(xx.rwl "yot.n) = "‘% ”(xx,n)Goc(xa.n)(yx,n _-x14n)2
and the proof is complete. []

Lemma 2.4. The sequence {t,,} defined by Eq. (5) is a majorizing sequence of
{x4.} defined by Eq. (3), ic.
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I|xor.n+l - xa,n” < Lyny1 — tat,n, nz 0.

Proof. It suffices to show by mathematical induction that the following items
are true for all n > 0.

L] Xan € B(x0, 14,)-

1
IIn Hrac,n g - 3
[IL,] | )
[IHH] Hyotn - xx,n” <Sx.n = Lyns

[IV’I] Yan S B(XOa sa(,n) ’

[Vn] ||xx,n+l - yx,n” g tz.n+l — San-

For a € [-5,—1], it is easy to check [Iy] — [Vo] from the initial conditions (i)-
(v). Now assume that the above statements are true for a fixed n = 1. Then
[I,+1] follows immediately.

Notice that

1
I — ToF (Xypi1) = /FOF"(XO + t(xXy i1 — X0)) (Xanr1 — Xo) d,
0

S0
11 = FoF" (e ) || < BE|Xanir — Xol| < Bht* < 1,
and, by the Banach lemma [9] on inversion of operators, I', .| exists and

I 7oll < B < —1 _
1 - ”I - F()F,(xanﬂ)” 1 - Bk”xmﬂ _x0|l gl(tm,nﬂ)

[LPPISTES

So [I1,,.4] is also true.
By using Lemma 2.3, the Altman lemma [10]} and taking into account that
|Le(xypms1 )| < Le(t041), We can estimate F(x,,.1) to obtain

M 2
||F(xu‘n+l)|| < ? ||-xx,n+l —yaz.nH + M”xo(,rH»l _'yaz.n””yoc.n _xx.n”

M N
+ 5 M~ Ga(xa.n)” lVon — xx,nllz + 6 ”Gx(xz,n)H en — xa.n”3

M
< 5 (tamsr = Saa)” A MILp ()11 = (14 )| Le ()]
Y2 — xa,nllz

AT =Ly (tyy) T Mo )

2
I ”yam — Xz
2(1 _Lg(tz,n))
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0 1 e Rl
; N Ly (ten)
M 2 N M’
_M ~ N_ M
D) (tot,n+1 S“‘v”) + |:< 3 g’(toz,n))

X (1= (1 4+ 0)Lg(t20)) +

aMz (Saz.n - tot.n)3
2

g (tun) ] 21 = Ly(t2n))
k 2 1-3a. , l-ua
< Z — -
x 2(tot.n+l Sx.n) ( 2 M + 6ﬁ N)
(Soc.n - t(xn)3 k 2 kZ(l — oc) 3
X - < N taz‘n — San - —,— Syn — toc.n .
28/ (tan)(1 = Lg(ton)) 2( - ) 2¢'(tun) ( )
Consequently, it is satisfied
HF(xa.n+l)|| <g(ta.n+l) (6)
and
Lun
||yac.n+l _xoz4n+l|| < ||F1,n+l ||||F(xo(,n+l)|| < g,( +1) = Sa,n+l - ta.n+l-
g (ta.n+l)

Then [III,,,] holds. Now, [IV,,,] and [V, ] follow easily. The cases o« € (—1,0)
and o € (0,1) are similar to the case mentioned above.
Finally, for « = 0, we deduce that

M 2 2 N (Saz.n B ti-")3
F(xyn L = (byns1 = San) — | M 38 ) 2e(z. )
e L s ) e
k 2 K 3
oK _ - —_ =
< 2(ta.”+1 Sa,n) 2g’(ta$n) (Sz,n ta.n) g(tx,nJrl)

and [I,.1] - [V.;1] following analogously to the case « € [-5,—1]. [

Proof of Theorem 2.2. It follows from Lemma 2.4 that the sequence {t,,}
defined by Eq. (5) majorizes the sequence {x,,} given by Eq. (3). Therefore the
convergence of {t,,} implies the convergence of {x,,} to a limit x*. Letting
n — oo in Eq. (6), we infer that F(x*) = 0. Moreover

||x1,n = Van—1 || + ”yrx,nfl — Xyn—1 H + et Hxx.l "‘yzz.(]”
(to(in - Sm.n—l) + (Sa,rhl - tu.nfl) + -+ (taz,l - SCI.O)
=l — <t -,

”xa.n - ya(,OH

NN

and similarly

ny,n _yac‘()” gscx,n - n < t* - 71
Now it follows for p = 0,

||xa<.n+p - xaz.n“ < taz,n+p - tat.n and ||xaz,n+p - yaz.n“ < taz.nﬂ? - sz,n
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and, by letteing p — oo we get
X" = xpal| <~ 1y, and ||x" — Yol <7 — Sy, n=0.

To prove the uniqueness, we assume that there exists another solution z* of
Eq. (1) in B{xq,#™) N Q. Following Argyros and Chen [4] and using the esti-
mate

ol [ 16 + 2" = 27) = P} do
0
<M [+ 1z —x) — ol dt
/

1
<ﬁM/<(1 )l = xoll 4 12" — xoll)
0

M
< ﬂT(t* +)< 1L
we deduce that the linear operator fol F'(x* +t(z" — x*)) dt is invertible. It fol-
lows from the approximation

/F'(x* +i1z - x)) —x")dt =F(z") — F(x") =0,

0
that x* = z*, Finally, see Ref. [1] to get the error bounds. []

Remark. Note that the value of @ = 1 has been omitted. For « = 1 the iteration
defined by Eq. (3) is reduced to the convex acceleration of Newton’s method.
In [11] it has been shown that it is a third-order method in general. However if
this method is applied to polynomials of degree two, the order of the method is
four. Consequently, it is not possible to find a second degree polynomial which
majorizes an operator satisfying (i)—(iv) with N # 0. An analysis of the
convergence of the convex acceleration of Newton’s method is also made in
Ref. [11] by taking polynomials of degree three.

3. Application

Let us consider the Chandrasekhar integral equation cited in Ref. [4]

Fx)(s) = 1 - x(s) —I—‘l‘x(s) / ;—j_—tx(t) dr
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in the space X = C[0, 1] of all continuous functions on the interval {0, 1] with
the norm

Ibell = maxix(s)].

Let xo = x¢{s) = 1 for Theorem 2.2. Use the definition of the first and second
Fréchet derivatives of the operator F to obtain (see Ref. [4])

B=|F (x0)""|| = 1.53039421,

1
M = L max /L dt| = In V2 = 0.34657359,

2se0)| ) s+t
0

N=0, n=]|F(x) F(x)| =0.2651971.
If we choose o = — { then k = M. As kfin = 0.1406590 < 1, Eq. (9) becomes
0.1732877 — 0.653426¢ + 0.173287 = 0.

This equation has two positive roots: ¢ = 0.287049 and ¢+~ = 3.48372. Then
there is a solution x* € {u € C[0,1];ju — 1|| < 0.287049} of the equation
F(x) = 0. Besides the solution is unique in {u € C[0,1]; ||u — 1|} < 3.48372}
and the error bound is

3.19668(0.1345538)"
1.6329932 — (0.1345538)”"

*

lx" —

Ll
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