

Applied Mathematics and Computation 92 (1998) 59-68



A construction procedure of iterative methods with cubical convergence II: Another convergence approach

J.A. Ezquerro, J.M. Gutiérrez, M.A. Hernández *

Department of Mathematics and Computation, University of La Rioja, Cl Luis de Ulloa s/n, 26004 Logroño, Spain

Abstract

We extend the analysis of convergence of the iterations considered in Ezquerro et al. [Appl. Math. Comput. 85 (1997) 181] for solving nonlinear operator equations in Banach spaces. We establish a different Kantorovich-type convergence theorem for this family and give some error estimates in terms of a real parameter $\alpha \in [-5, 1)$. © 1998 Elsevier Science Inc. All rights reserved.

AMS classification: 47H17; 65J15

Keywords: Iterative processes in Banach spaces; Chebyshev's method; Convex acceleration of Newton's method; Newton-Kantorovich conditions; Majorizing sequences; Error bound expression

1. Introduction

Here we are concerned with the problem of approximating a locally unique solution x^* of the equation

$$F(x) = 0 (1)$$

in a Banach space X, where F is a nonlinear operator defined on some convex subset Ω of X with values in a Banach space Y.

0096-3003/98/\$19.00 © 1998 Elsevier Science Inc. All rights reserved. PII: \$0096-3003(97)10031-5

^{*}Corresponding author. E-mail: mahernan@siur.unirioja.es.

We continue the analysis initiated in Ref. [1] of a new parameter-based iteration following the basic idea of continuation methods [2,3]. We defined a homotopy $\alpha J_1(x) + (1-\alpha)J_0(x)$, where $\alpha \in [0,1]$, between two operators J_0 and J_1 and designed the iterative process

$$x_{\alpha,n+1} = \alpha J_1(x_{\alpha,n}) + (1-\alpha)J_0(x_{\alpha,n}), \quad n \geqslant 0,$$
 (2)

where $x_{\alpha,n+1} = J_0(x_{\alpha,n})$ is the Chebyshev method [4,5] and $x_{\alpha,n+1} = J_1(x_{\alpha,n})$ is the convex acceleration of Newton's method [6,7].

In Ref. [1], we studied the convergence of Eq. (2) for $\alpha \in [0, 1]$. The aim of this paper is to get new iterative processes from the previous homotopy. For that, we extend the values of the parameter α by using a different technique that consists in decomposing iteration (2) (see Refs. [4,6,8]), and so we analyse the convergence of the family (2) of iterates for $\alpha \in [-5, 1)$. Under Newton-Kantorovich assumptions, we give an existence-uniqueness theorem and provide error bound expressions depending on α .

If $x_0 = x_{\alpha,0} \in \Omega$, we can define Eq. (2) as

$$y_{\alpha,n} = x_{\alpha,n} - F'(x_{\alpha,n})^{-1} F(x_{\alpha,n}),$$

$$x_{\alpha,n+1} = y_{\alpha,n} + \frac{1}{2} L_F(x_{\alpha,n}) G_{\alpha}(x_{\alpha,n}) (y_{\alpha,n} - x_{\alpha,n}),$$
(3)

where $L_F(x)$ is the linear operator defined by

$$L_F(x) = F'(x)^{-1}F''(x)F'(x)^{-1}F(x), \quad x \in X$$

(if $F'(x)^{-1}$ exists), $G_{\alpha}(x) = I + \alpha L_F(x)H(x), H(x) = (I - L_F(x))^{-1}, I$ is the identity operator on X and $\alpha \in [-5, 1)$. The first and second Fréchet derivatives of F evaluated at $x = x_{\alpha,n}$ are denoted by $F'(x_{\alpha,n})$ and $F''(x_{\alpha,n})$. Note that $F'(x_{\alpha,n})$ is a linear operator whereas $F''(x_{\alpha,n})$ is a bilinear operator for all $n \ge 0$. We prove that if the sequence $\{x_{\alpha,n}\}$ defined by Eq. (3) converges to a limit $x^* \in \Omega$, then x^* is a zero of Eq. (1).

Let us denote

$$\overline{B(x,r)} = \{x' \in X; ||x' - x|| \le r\} \text{ and } B(x,r) = \{x' \in X; ||x' - x|| < r\}.$$

2. A Kantorovich-type convergence in Banach spaces

Our convergence analysis will show that under standard Newton-Kantorovich assumptions, we have convergence to a zero x^* of Eq. (1).

Following Argyros [8], it is assumed that

- (i) There exists a continuous linear operator $\Gamma_0 = F'(x_0)^{-1}, x_0 \in \Omega$. Moreover $\|\Gamma_0\| \leq \beta$.
- (ii) $||F''(x)|| \leq M$ for $x \in \Omega$.
- (iii) $||F''(x) F''(y)|| \le N||x y||$ for $x, y \in \Omega$.
- (iv) $\|\Gamma_0 F(x_0)\| \leq \eta$.

(v) Let the equation

$$g(t) \equiv \frac{k}{2}t^2 - \frac{t}{\beta} + \frac{\eta}{\beta} = 0, \tag{4}$$

where

$$(\mathbf{v}_1) \quad \frac{1-3\alpha}{1-\alpha}M^2 + \frac{N}{3\beta} \leqslant k^2 \quad \text{if } \alpha \in [-5,-1],$$

$$(\mathbf{v}_2)$$
 $2\left(M^2 + \frac{N}{3(1-\alpha)\beta}\right) \leqslant k^2$ if $\alpha \in (-1,0)$,

$$(v_3) \quad M^2 + \frac{N}{3\beta} \leqslant k^2 \quad \text{if } \alpha = 0,$$

$$(\mathbf{v}_4) \quad \frac{2}{1-\alpha} \left((1+\alpha) M^2 + \frac{N}{3\beta} \right) \leqslant k^2 \quad \text{if } \alpha \in (0,1).$$

Assume that this equation has two positive roots t^* and t^{**} ($t^* \le t^{**}$) or equivalently $2k\beta\eta \le 1$.

Let us define the scalar sequence $\{t_{\alpha,n}\}$ for all $\alpha \in [-5,1)$ by

$$t_0=t_{\alpha,0},\quad s_{\alpha,n}=t_{\alpha,n}-rac{g(t_{\alpha,n})}{g'(t_{\alpha,n})},\ \ n\geqslant 0,$$

$$t_{\alpha,n+1} = P_{\alpha}(t_{\alpha,n}) = s_{\alpha,n} + \frac{1}{2}L_g(t_{\alpha,n})\left(1 + \frac{\alpha L_g(t_{\alpha,n})}{1 - L_g(t_{\alpha,n})}\right)(s_{\alpha,n} - t_{\alpha,n}), \quad n \geqslant 0, \quad (5)$$

where g is the polynomial defined in Eq. (4) and $L_g(t) = g(t)g''(t)/g'(t)^2$.

In Lemma 2.1, we prove that the sequence $\{t_{\alpha,n}\}$ defined by Eq. (5) is increasing and converges cubically to t^* for all $\alpha \in [-5, 1)$.

Lemma 2.1. Let g be the polynomial defined in Eq. (4) Then sequence (5) is increasing and converges cubically to t^* for all $\alpha \in [-5, 1)$.

Proof. Note that

$$P'_{\alpha}(t) = \frac{L_{g'}(t)^2}{2(1 - L_{g'}(t))^2} \left[(1 - \alpha)(1 - L_g(t))^2 (3 - L_{g'}(t)) + \alpha(L_g(t) - L_{g'}(t)) \right]$$

 ≥ 0

in $[0, t^*]$. Then by mathematical induction on n, it follows that $t_n \le t^*, n \ge 0$. On the other hand, it is easy to show that $t_n \le t_{n+1}$ for all $n \in \mathbb{N}$ and consequently the proof is completed. \square

We now show that $\{t_{\alpha,n}\}$ is a majorizing sequence of $\{x_{\alpha,n}\}$ (see Ref. [9]).

Theorem 2.2. Let $F: \Omega \subseteq X \to Y$. Let us assume that the nonlinear operator F is twice Fréchet differentiable on Ω . Assume that conditions (i)-(v) are satisfied and $\overline{B(y_{\alpha,0},t^*-\eta)} \subset \Omega$. Then the iterations generated by Eq. (3) are well defined for all $n \ge 0$ and converge to a zero $x^* \in B(x_0,t^*)$ of Eq. (1) for all $\alpha \in [-5,1)$. Moreover $x_{\alpha,n}, y_{\alpha,n} \in \overline{B(x_0,t^*)}$, for all $n \ge 0$. The limit x^* is the unique solution of Eq. (1) in $B(x_0,t^{**}) \cap \Omega$. Furthermore the following error estimates are true for all $n \ge 0$:

$$||x^* - x_{\alpha,n}|| \le t^* - t_{\alpha,n}$$
 and $||x^* - y_{\alpha,n}|| \le t^* - s_{\alpha,n}$.

Besides we have:

(a) When
$$t^* < t^{**}$$
, let $\lambda_{\alpha} = 2(1 - \alpha)$ and $\theta_{\alpha} = (t^*/t^{**})\sqrt{\lambda_{\alpha}}$. Hence

(a₁) If
$$\alpha \in [-5,0)$$
 and $k\beta \eta < \frac{2\sqrt{\lambda_{\alpha}}}{(1+\sqrt{\lambda_{\alpha}})^2} \leq 0.485$,
$$t^* - t_{\alpha,n} \sim \frac{(t^{**} - t^*)\theta_{\alpha}^{3^n}}{\sqrt{\lambda_{\alpha}} - \theta_{\alpha}^{3^n}}, \quad n \geq 0,$$
where $\theta_{\alpha} < 1$.

(a₂) If
$$\alpha \in \left[0, \frac{1}{2}\right)$$
 and $k\beta \eta < \frac{2\sqrt{\lambda_{\alpha}}}{(1+\sqrt{\lambda_{\alpha}})^2} < 0.5$,

$$t^* - t_{\alpha,n} \sim \frac{(t^{**} - t^*)\theta_{\alpha}^{3^n}}{\sqrt{\lambda_{\alpha}} - \theta_{\alpha}^{3^n}}, \quad n \geqslant 0,$$
where $\theta_{\alpha} < 1$.

(a₃) If
$$\alpha \in [\frac{1}{2}, 1)$$
,

$$t^* - t_{\alpha,n} \sim \frac{(t^{**} - t^*)\theta_{\alpha}^{3^n}}{\sqrt{\lambda_{\alpha}} - \theta_{\alpha}^{3^n}}, \quad n \geqslant 0,$$

where $\lambda_{\alpha} \leq 1$ and $\theta_{\alpha} < 1$.

(b) When
$$t^* = t^{**}$$
,

$$t^* - t_{\alpha,n} = t^* \left(\frac{3-\alpha}{8}\right)^n, \quad n \geqslant 0.$$

We first need the following results.

Lemma 2.3. Let $F: \Omega \subseteq X \to Y$. Let us assume that the nonlinear operator F is twice Fréchet differentiable on Ω , the iterations $\{x_{\alpha,n}\}$ generated by Eq. (3) belong to Ω and $F'(x_{\alpha,n})^{-1}$ exists for all $n \ge 0$. Then we have for $n \ge 0$:

$$F(x_{\alpha,n+1}) = \int_{0}^{1} F''(y_{\alpha,n} + t(x_{\alpha,n+1} - y_{\alpha,n}))(x_{\alpha,n+1} - y_{\alpha,n})^{2} (1 - t) dt$$

$$+ \int_{0}^{1} F''(x_{\alpha,n} + t(y_{\alpha,n} - x_{\alpha,n}))(x_{\alpha,n+1} - y_{\alpha,n})(y_{\alpha,n} - x_{\alpha,n}) dt$$

$$+ \int_{0}^{1} F''(x_{\alpha,n} + t(y_{\alpha,n} - x_{\alpha,n}))(I - G_{\alpha}(x_{\alpha,n}))(y_{\alpha,n} - x_{\alpha,n})^{2} (1 - t) dt$$

$$+ \int_{0}^{1} [F''(x_{\alpha,n} + t(y_{\alpha,n} - x_{\alpha,n}))(I - G_{\alpha}(x_{\alpha,n}))(y_{\alpha,n} - x_{\alpha,n})^{2} (1 - t) dt.$$

Proof. To prove this equality, we note that

$$F(x_{\alpha,n+1}) = F(x_{\alpha,n+1}) - F(y_{\alpha,n}) - F'(y_{\alpha,n})(x_{\alpha,n+1} - y_{\alpha,n}) + F(y_{\alpha,n}) + F'(y_{\alpha,n})(x_{\alpha,n+1} - y_{\alpha,n}) = \int_{y_{\alpha,n}}^{x_{\alpha,n+1}} F''(x)(x_{\alpha,n+1} - x) dx + F(y_{\alpha,n}) + F'(y_{\alpha,n})(x_{\alpha,n+1} - y_{\alpha,n}).$$

On the other hand, we have

$$F(y_{\alpha,n}) = \int_{x_{\alpha,n}}^{y_{\alpha,n}} F''(x)(y_{\alpha,n} - x) dx + F(x_{\alpha,n}) + F'(x_{\alpha,n})(y_{\alpha,n} - x_{\alpha,n})$$
$$= \int_{0}^{1} F''(x_{\alpha,n} + t(y_{\alpha,n} - x_{\alpha,n}))(y_{\alpha,n} - x_{\alpha,n})^{2} (1 - t) dt$$

and

$$F'(y_{\alpha,n})(x_{\alpha,n+1}-y_{\alpha,n})=\int_{x_{\alpha,n}}^{y_{\alpha,n}}F''(x)(x_{\alpha,n+1}-y_{\alpha,n})\,\mathrm{d}x+F'(x_{\alpha,n})(x_{\alpha,n+1}-y_{\alpha,n}).$$

As $F''(x_{\alpha,n})$ is a symmetric bilinear operator, we see that

$$F'(y_{\alpha,n})(x_{\alpha,n+1}-y_{\alpha,n}) = -\frac{1}{2}F''(x_{\alpha,n})G_{\alpha}(x_{\alpha,n})(y_{\alpha,n}-x_{\alpha,n})^2$$
 and the proof is complete. \square

Lemma 2.4. The sequence $\{t_{\alpha,n}\}$ defined by Eq. (5) is a majorizing sequence of $\{x_{\alpha,n}\}$ defined by Eq. (3), i.e.

$$||x_{\alpha,n+1}-x_{\alpha,n}|| \le t_{\alpha,n+1}-t_{\gamma,n}, \quad n \ge 0.$$

Proof. It suffices to show by mathematical induction that the following items are true for all $n \ge 0$.

$$[\mathbf{I}_n]$$
 $x_{\alpha,n} \in \overline{B(x_0,t_{\alpha,n})}.$

$$[\mathrm{II}_n] \qquad \|\Gamma_{\alpha,n}\| \leqslant -\frac{1}{g'(t_{\alpha,n})},$$

$$||\mathbf{III}_n|| \qquad ||y_{\alpha,n} - x_{\alpha,n}|| \leqslant s_{\alpha,n} - t_{\alpha,n},$$

$$[IV_n] y_{\alpha,n} \in \overline{B(x_0, s_{\alpha,n})},$$

$$[V_n] ||x_{\alpha,n+1}-y_{\alpha,n}|| \leqslant t_{\alpha,n+1}-s_{\alpha,n}.$$

For $\alpha \in [-5, -1]$, it is easy to check $[I_0] - [V_0]$ from the initial conditions (i)–(v). Now assume that the above statements are true for a fixed $n \ge 1$. Then $[I_{n+1}]$ follows immediately.

Notice that

$$I - \Gamma_0 F'(x_{\alpha,n+1}) = \int_0^1 \Gamma_0 F''(x_0 + t(x_{\alpha,n+1} - x_0))(x_{\alpha,n+1} - x_0) dt,$$

so

$$||I - \Gamma_0 F'(x_{\alpha,n+1})|| \le \beta k ||x_{\alpha,n+1} - x_0|| \le \beta k t^* < 1,$$

and, by the Banach lemma [9] on inversion of operators, $\Gamma_{\alpha,n+1}$ exists and

$$\|\Gamma_{\alpha,n+1}\| \leqslant \frac{\|\Gamma_0\|}{1 - \|I - \Gamma_0 F'(x_{\alpha n+1})\|} \leqslant \frac{\beta}{1 - \beta k \|x_{\alpha,n+1} - x_0\|} \leqslant \frac{-1}{g'(t_{\alpha,n+1})}.$$

So $[II_{n+1}]$ is also true.

By using Lemma 2.3, the Altman lemma [10] and taking into account that $||L_F(x_{x,n+1})|| \le L_g(t_{x,n+1})$, we can estimate $F(x_{x,n+1})$ to obtain

$$||F(x_{\alpha,n+1})|| \leq \frac{M}{2} ||x_{\alpha,n+1} - y_{\alpha,n}||^{2} + M ||x_{\alpha,n+1} - y_{\alpha,n}|| ||y_{\alpha,n} - x_{\alpha,n}||$$

$$+ \frac{M}{2} ||I - G_{\alpha}(x_{\alpha,n})|| ||y_{\alpha,n} - x_{\alpha,n}||^{2} + \frac{N}{6} ||G_{\alpha}(x_{\alpha,n})|| ||y_{\alpha,n} - x_{\alpha,n}||^{3}$$

$$\leq \frac{M}{2} (t_{\alpha,n+1} - s_{\alpha,n})^{2} + M ||L_{F}(x_{\alpha,n})|| [1 - (1 + \alpha) ||L_{F}(x_{\alpha,n})||]$$

$$\times \frac{||y_{\alpha,n} - x_{\alpha,n}||^{2}}{2(1 - L_{F}(t_{\alpha,n}))} + M\alpha ||L_{F}(x_{\alpha,n})|| \frac{||y_{\alpha,n} - x_{\alpha,n}||^{2}}{2(1 - L_{F}(t_{\alpha,n}))}$$

$$\begin{split} & + \frac{N}{6} [1 - (1 + \alpha) \| L_F(x_{\alpha,n}) \|] \frac{\| y_{\alpha,n} - x_{\alpha,n} \|^3}{1 - L_g(t_{\alpha,n})} \\ & \leq \frac{M}{2} (t_{\alpha,n+1} - s_{\alpha,n})^2 + \left[\left(\frac{N}{3} - \frac{M^2}{g'(t_{\alpha,n})} \right) \right. \\ & \times (1 - (1 + \alpha) L_g(t_{\alpha,n})) + \frac{\alpha M^2}{g'(t_{\alpha,n})} \left] \frac{(s_{\alpha,n} - t_{\alpha,n})^3}{2(1 - L_g(t_{\alpha,n}))} \\ & \leq \frac{k}{2} (t_{\alpha,n+1} - s_{\alpha,n})^2 - \left(\frac{1 - 3\alpha}{2} M^2 + \frac{1 - \alpha}{6\beta} N \right) \\ & \times \frac{(s_{\alpha,n} - t_{\alpha,n})^3}{2g'(t_{\alpha,n})(1 - L_g(t_{\alpha,n}))} \leq \frac{k}{2} (t_{\alpha,n+1} - s_{\alpha,n})^2 - \frac{k^2(1 - \alpha)}{2g'(t_{\alpha,n})} (s_{\alpha,n} - t_{\alpha,n})^3. \end{split}$$

Consequently, it is satisfied

$$||F(x_{\alpha,n+1})|| \leqslant g(t_{\alpha,n+1}) \tag{6}$$

and

$$||y_{\alpha,n+1}-x_{\alpha,n+1}|| \leq ||\Gamma_{\alpha,n+1}|| ||F(x_{\alpha,n+1})|| \leq \frac{g(t_{\alpha,n+1})}{g'(t_{\alpha,n+1})} = s_{\alpha,n+1}-t_{\alpha,n+1}.$$

Then [III_{n+1}] holds. Now, [IV_{n+1}] and [V_{n+1}] follow easily. The cases $\alpha \in (-1,0)$ and $\alpha \in (0,1)$ are similar to the case mentioned above.

Finally, for $\alpha = 0$, we deduce that

$$||F(x_{\alpha,n+1})|| \leq \frac{M}{2} (t_{\alpha,n+1} - s_{\alpha,n})^2 - \left(M^2 + \frac{N}{3\beta}\right) \frac{(s_{\alpha,n} - t_{\alpha,n})^3}{2g'(t_{\alpha,n})}$$

$$\leq \frac{k}{2} (t_{\alpha,n+1} - s_{\alpha,n})^2 - \frac{k^2}{2g'(t_{\alpha,n})} (s_{\alpha,n} - t_{\alpha,n})^3 = g(t_{\alpha,n+1})$$

and $[I_{n+1}] - [V_{n+1}]$ following analogously to the case $\alpha \in [-5, -1]$. \square

Proof of Theorem 2.2. It follows from Lemma 2.4 that the sequence $\{t_{\alpha,n}\}$ defined by Eq. (5) majorizes the sequence $\{x_{\alpha,n}\}$ given by Eq. (3). Therefore the convergence of $\{t_{\alpha,n}\}$ implies the convergence of $\{x_{\alpha,n}\}$ to a limit x^* . Letting $n \to \infty$ in Eq. (6), we infer that $F(x^*) = 0$. Moreover

$$||x_{\alpha,n} - y_{\alpha,0}|| \le ||x_{\alpha,n} - y_{\alpha,n-1}|| + ||y_{\alpha,n-1} - x_{\alpha,n-1}|| + \dots + ||x_{\alpha,1} - y_{\alpha,0}||$$

$$\le (t_{\alpha,n} - s_{\alpha,n-1}) + (s_{\alpha,n-1} - t_{\alpha,n-1}) + \dots + (t_{\alpha,1} - s_{\alpha,0})$$

$$= t_{\alpha,n} - \eta \le t^* - \eta,$$

and similarly

$$||y_{\alpha,n}-y_{\alpha,0}|| \leqslant s_{\alpha,n}-\eta \leqslant t^*-\eta.$$

Now it follows for $p \ge 0$,

$$||x_{\alpha,n+p}-x_{\alpha,n}|| \le t_{\alpha,n+p}-t_{\alpha,n}$$
 and $||x_{\alpha,n+p}-y_{\alpha,n}|| \le t_{\alpha,n+p}-s_{\alpha,n}$

and, by letteing $p \to \infty$ we get

$$||x^* - x_{\alpha,n}|| \le t^* - t_{\alpha,n}$$
 and $||x^* - y_{\alpha,n}|| \le t^* - s_{\alpha,n}$, $n \ge 0$.

To prove the uniqueness, we assume that there exists another solution z^* of Eq. (1) in $B(x_0, t^{**}) \cap \Omega$. Following Argyros and Chen [4] and using the estimate

$$\|F_0\| \int_0^1 \|F'(x^* + t(z^* - x^*)) - F'(x_0)\| dt$$

$$\leq \beta M \int_0^1 \|x^* + t(z^* - x^*) - x_0\| dt$$

$$\leq \beta M \int_0^1 ((1 - t)\|x^* - x_0\| + t\|z^* - x_0\|) dt$$

$$< \frac{\beta M}{2} (t^* + t^{**}) \leq 1.$$

we deduce that the linear operator $\int_0^1 F'(x^* + t(z^* - x^*)) dt$ is invertible. It follows from the approximation

$$\int_{0}^{1} F'(x^* + t(z^* - x^*))(z^* - x^*) dt = F(z^*) - F(x^*) = 0,$$

that $x^* = z^*$. Finally, see Ref. [1] to get the error bounds. \square

Remark. Note that the value of $\alpha = 1$ has been omitted. For $\alpha = 1$ the iteration defined by Eq. (3) is reduced to the convex acceleration of Newton's method. In [11] it has been shown that it is a third-order method in general. However if this method is applied to polynomials of degree two, the order of the method is four. Consequently, it is not possible to find a second degree polynomial which majorizes an operator satisfying (i)–(iv) with $N \neq 0$. An analysis of the convergence of the convex acceleration of Newton's method is also made in Ref. [11] by taking polynomials of degree three.

3. Application

Let us consider the Chandrasekhar integral equation cited in Ref. [4]

$$F(x)(s) = 1 - x(s) + \frac{1}{4}x(s) \int_{0}^{1} \frac{s}{s+t}x(t) dt$$

in the space X = C[0, 1] of all continuous functions on the interval [0, 1] with the norm

$$||x|| = \max_{s \in [0,1]} |x(s)|.$$

Let $x_0 = x_0(s) = 1$ for Theorem 2.2. Use the definition of the first and second Fréchet derivatives of the operator F to obtain (see Ref. [4])

$$\beta = ||F'(x_0)^{-1}|| = 1.53039421,$$

$$M = \frac{1}{2} \max_{s \in [0,1]} \left| \int_{0}^{1} \frac{s}{s+t} \, dt \right| = \ln \sqrt{2} = 0.34657359,$$

$$N = 0$$
, $\eta = ||F'(x_0)^{-1}F(x_0)|| = 0.2651971$.

If we choose $\alpha = -\frac{1}{3}$ then k = M. As $k\beta\eta = 0.1406590 < \frac{1}{2}$, Eq. (9) becomes $0.173287t^2 - 0.653426t + 0.173287 = 0$.

This equation has two positive roots: $t^* = 0.287049$ and $t^{**} = 3.48372$. Then there is a solution $x^* \in \{u \in C[0,1]; ||u-1|| \le 0.287049\}$ of the equation F(x) = 0. Besides the solution is unique in $\{u \in C[0,1]; ||u-1|| < 3.48372\}$ and the error bound is

$$||x^* - x_{-\frac{1}{3},n}|| \sim \frac{3.19668(0.1345538)^{3^n}}{1.6329932 - (0.1345538)^{3^n}}.$$

Acknowledgements

Supported in part by grant 96PYB25MHV of the University of La Rioja.

References

- [1] J.A. Ezquerro, J.M. Gutiérrez, M.A. Hernández, A construction procedure of iterative methods with cubic convergence, Appl. Math. Comput. 85 (1997) 181-199.
- [2] D. Kincaid, W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, Brooks/ Cole Publishing Company, 1991.
- [3] J. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
- [4] I.K. Argyros, D. Chen, Results on the Chebyshev Method in Banach Spaces, Proyecciones 12 (2) (1993) 119–128.
- [5] M.A. Hernández, M.A. Salanova, A family of Chebyshev-Halley type methods, Int. J. Comput. Math. 47 (1993) 59-63.
- [6] D. Chen, I.K. Argyros, Q.S. Qian, A local convergence theorem for the super-Halley method in a Banach space, Appl. Math. Lett. 7 (5) (1994) 49-52.

- [7] M.A. Hernández, Newton-Raphson's method and convexity, Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 22 (1) (1992) 159-166.
- [8] I.K. Argyros F. Szidarovsky, The Theory and Applications of Iterations Methods, CRC Press, Boca Raton, 1993.
- [9] L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
- [10] M. Altman, Concerning the method of tangent hyperboals for operator equations, Bull. Acad. Pol. Sci., Serie Sci. Math., Ast. et Phys. 9 (1961) 633-637.
- [11] J.M. Gutiérrez, M.A. Hernández, Convex acceleration of Newton's method, submitted.