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The Chebyshev method for solving a nonlinear equation in Banach spaces is a well-known third- 

order method. Third-order methods are not considered by many authors because of their high 
computational cost, mainly for the evaluation of the second Fr@chet derivative. However, in some 

cases, the rise in the velocity of convergence can justify their use. For instance, these methods 

have been successfully used in the solution of nonlinear integral equations [1,2]. 
Among the classical third-order methods (Chebyshev, Halley, super-Halley, . . . ) ,  maybe the 

first one is the most useful, because it needs one less inversion of a linear operator than the 

others. 

The Chebyshev iteration for an operator F defined between two Banach spaces X and Y is 

defined by 

Xn+l = Xn -- ~ -[- -~LF (xn)  F . F  ( x . ) ,  (1) 

where I is the identity operator on X, Fn = Ft(xn) -1 and LF(Xn) is the linear operator on X, 

LF (zn) = FnF" (z, 0 FnF (x , )  . 

Until now, necessary conditions for the convergence of (1) have been established assuming the 
second Fr@chet derivative of F satisfies a Lipschitz condition 

l iE"(z )  - F"(Y)II <- k II x - Y]I, (2) 

for x and y in a suitable region of X. See [1,3] for more information. The technique developed 

by these authors is an extension of the technique followed by Kantorovich and other authors [4,5] 
for studying Newton's method. 
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Recently, Smale [6] obtained the convergence of Newton's method for analytic maps from data  
at one point, instead of the region conditions (2) in the Newton-Kantorovich theorem. 

Smale-like theorems for the convergence of iterative processes assume that  the following in- 
equalities axe satisfied at a point xo: 

1 

k-i r ° F ( k ) ( x 0 )  I lCoF(xo)l l  k-~ <_ h k - l ,  k > 2 .  (3) 

The constant h is different for different processes [7,8]. 
Our goal in this paper is to prove the convergence of (1), just assuming F "  is bounded and a 

punctual condition. We also show an example where our conditions are fulfilled and the previous 
ones fail. 

THEOREM 1. Let F (x )  = 0 be an equation, where F is a twice continuously Ftdchet differentiable 
operator in an open convex domain [2 C_ X .  Let x0 E f~ be a point where the operator F0 = 
F'(xo) -1 exists. Define 

Mo = sup " ' - '  ' - '  " " " l l ~ o ~ " ( X ) l l ,  
xE~ 

ao = IlroF (xo)ll Mo, 

when this supreme is finite, and 

ro ----- 
(1 + ~o/2)II:FoF (xo)ll 

1 - a 0  (1 + (1 + a0/2)2)  " 

Then, i f  

a0M0 _< r = 0.326664...  (4) 

(r is the smallest positive root of the polynomial p(x) = 2xd + T x 3 - 4 x 2 -  24x +8) and B(xo,  ro) = 

{x E X; IIx-xoll <_ r0} is contained in f~, the Chebyshev sequence (1) is well defined, is contained 
in B(xo,  ro), and converges to x*, a solution o f F ( x )  = O. Furthermore, x* is the unique solution 
in B(xo,  2/Mo - ro). 

PROOF. For n > 0 ,  we define Mn = supxe a I l r ,F"(x)[[ ,  an  = ]]FnF(xn)[[Mn,/3n = (1 + an~2) an. 
Notice that  the hypothesis guarantees the existence of xl in (1) and 

[Ix1--xoll _< (1 + 2 ) I T o F ( x o ) l l  • 

Besides, it can be shown without difficulty that  F1F(x0)  exists and 

1 
I IFIF '  (x0)[] <_ - -  < 2. 

1 - f l 0  

Then x2 is defined, and taking into account (1) and 

IIFoF(Xl)ll <_ ~ -  1 + 1 + HFoF(xo)ll, 

we have 

IIX2--Xill--< (1-b  2 ) I I F o F ( x 0 ) l l  . 

Finally, a l  <_ no. Indeed, by (4) and the above recurrence relations, 

a l  = HFIF(Xl)[[M1 < a2 +/~°2 < no. 
- 2(1--/30) 2 -- 
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Following an induct ive reasoning, we can replace Xl by x2, x2 by x3, and in general,  xn-1  
by xn to  ob ta in  t h a t  there  exists F n F ' ( x n - 1 )  and the  following recurrence relations: 

1 1 
I I r~F ' (Xn_l ) l  I < - -  < . - .  < - -  < 2, 

1 - / 3 , _ 1  - - 1 - / ~ o  

I I r = - l F ( z = ) l l  < a . _ l  1 +  1 + I l r n - l F ( Z ~ - l ) l l  
- -  2 

] ] x n + l - X n l l  < (1 + " ~ ) I I F n F ( x n ) l l ,  

O~n < O~n-1. 

Consequent ly,  

IIz +x- x ll (1 ÷  )IIr F (xn)ll 

< ( 1 +  2 )  a n - 1  ( 1 +  ( 1 +  - ~ ) 2 )  H F n - I F  (xn-1)]] 

_<. . ._< (1 + 2 ) ] , F o F ( x o ) ] ]  [ao ( 1 +  ( 1 + 2 ) 2 ) ]  = 

As a o ( l + ( l + a o / 2 )  2) < 1, {xn} is a Cauchy  sequence, and therefore,  converges to x* E B(xo ,  ro). 

To prove t h a t  F(x* )  = 0, notice t h a t  when n ~ oo, I l rn- iF(x=) l l  --* 0. As IIF(x=)ll _< 
I tg ' ( z ,~- l ) l l l l rn- lF(x ,Ol l  and {llF '(x~)l l} is a bounded  sequence, we deduce IIF(xn)ll ~ 0 and 
by continuity,  F ( x * )  = O. 

Now, to  show the unicity, suppose t ha t  y* ~ B(x0,  2/Mo - to) is ano ther  solution of F ( x )  = O. 

Then,  

0 = F (y*)  - F ( x* )  = F '  (x* + t (y* - x * ) )  d t  (y* - x * ) .  

We have to prove t h a t  the  ope ra to r  f l  F ' (x*  + t(y* - x*)) dt has an inverse and then  y* = x*. 
T h e  s ame  proof  as in [3] works in this case and the unicity can be deduced.  | 

Next ,  we give an example  where  the  condit ions of Theo rem 1 are satisfied, however condi- 
t ions (2) and (3) fail. Consider  the function 

f ( x )  = x 31nx 2 + x 2 - 10x + 2.5, f (0 )  = 2.5 

defined in X = [ -1 ,  1] and let x0 = 0. Notice t h a t  the  derivatives f ( k ) ( x )  are not defined in x0 for 
k > 3. Then ,  the  Smale-like condit ions (4) do not work in this case. Moreover,  nei ther  does f "  

sat isfy the  Lipschitz condit ion (3). Therefore,  the Kantorovich  theorem also fails. However,  

y(o) = 0.25, sup f ' t ( x )  
f ' ( 0 )  = 1.2, 

So = 0.3 < r = 0 . 3 2 6 6 6 4 . . . ,  a n d  T h e o r e m  1 can  be  appl ied .  

R E F E R E N C E S  

1. V. Candela and A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev Method, 
Computing ,15, 355-367 (1990). 

2. B. DSring, Einige S~itze fiber das Verfahren der Tangierenden Hyperbeln in Banach-R/dumen, Aplikace Mat. 
15, 418-464 (1970). 

3. I.K. Argyros and D. Chen, Results on the Chebyshev Method in Banach Spaces, Proyecciones 12 (2), 
119-128 (1993) 

4. L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, (1982). 
5. L.B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E. Krieger, New York, (1979). 
6. S. Smale, Newton's method estimates from data at one point, In Proceedings of a Conference in Honor of 

Gall Young, Vol. 2, pp. 1-16, Laramie, New York, (1986). 
7. J.C. Yakoubsohn, Une constante universelle pour la convergence de la m6thode de Newton, C.R. Acad. Sci. 

Paris, Sdrie 1 320, 385-390 (1995). 
8. S. Zheng, Point estimates for Halley's iteration, Acta Math. Appl. Sinica 14, 376-383 (1991). 


