# Mean convergence of Fourier-Dunkl series 

Óscar Ciaurri ${ }^{\text {a,1 }}$, Mario Pérez ${ }^{\text {b,1,2,* }}$, Juan Manuel Reyes ${ }^{\text {c }}$, Juan Luis Varona ${ }^{\text {a,1 }}$<br>${ }^{a}$ CIME and Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain<br>${ }^{b}$ IUMA and Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain<br>${ }^{c}$ Departament de Tecnologia, Universitat Pompeu Fabra, 08003 Barcelona, Spain


#### Abstract

In the context of the Dunkl transform a complete orthogonal system arises in a very natural way. This paper studies the weighted norm convergence of the Fourier series expansion associated to this system. We establish conditions on the weights, in terms of the $A_{p}$ classes of Muckenhoupt, which ensure the convergence. Necessary conditions are also proved, which for a wide class of weights coincide with the sufficient conditions.


Keywords: Dunkl transform, Fourier-Dunkl series, orthogonal system, mean convergence
2000 MSC: Primary 42C10; Secondary 33C10

## 1. Introduction

For $\alpha>-1$, let $J_{\alpha}$ denote the Bessel function of order $\alpha$ :

$$
J_{\alpha}(x)=\left(\frac{x}{2}\right)^{\alpha} \sum_{n=0}^{\infty} \frac{(-1)^{n}(x / 2)^{2 n}}{n!\Gamma(\alpha+n+1)}
$$

(a classical reference on Bessel functions is [17]). Throughout this paper, by $\frac{J_{\alpha}(z)}{z^{\alpha}}$ we denote the even function

$$
\begin{equation*}
\frac{1}{2^{\alpha}} \sum_{n=0}^{\infty} \frac{(-1)^{n}(z / 2)^{2 n}}{n!\Gamma(\alpha+n+1)}, \quad z \in \mathbb{C} . \tag{1}
\end{equation*}
$$

In this way, for complex values of $z$, let

$$
\mathcal{I}_{\alpha}(z)=2^{\alpha} \Gamma(\alpha+1) \frac{J_{\alpha}(i z)}{(i z)^{\alpha}}=\Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(z / 2)^{2 n}}{n!\Gamma(n+\alpha+1)}
$$

the function $\mathcal{I}_{\alpha}$ is a small variation of the so-called modified Bessel function of the first kind and order $\alpha$, usually denoted by $I_{\alpha}$. Also, let us take

$$
E_{\alpha}(z)=\mathcal{I}_{\alpha}(z)+\frac{z}{2(\alpha+1)} \mathcal{I}_{\alpha+1}(z), \quad z \in \mathbb{C}
$$

These functions are related with the so-called Dunkl transform on the real line (see [6] and [7] for details), which is a generalization of the Fourier transform. In particular, $E_{-1 / 2}(x)=e^{x}$ and the Dunkl transform

[^0]of order $\alpha=-1 / 2$ becomes the Fourier transform. Very recently, many authors have been investigating the behaviour of the Dunkl transform with respect to several problems already studied for the Fourier transform; for instance, Paley-Wiener theorems [1], multipliers [4], uncertainty [16], Cowling-Price's theorem [11], transplantation [14], Riesz transforms [15], and so on. The aim of this paper is to pose and analyse in this new context the weighted $L^{p}$ convergence of the associated Fourier series in the spirit of the classical scheme which, for the trigonometric Fourier series, can be seen in Hunt, Muckenhoupt and Wheeden's paper [10].

The function $\mathcal{I}_{\alpha}$ is even, and $E_{\alpha}(i x)$ can be expressed as

$$
E_{\alpha}(i x)=2^{\alpha} \Gamma(\alpha+1)\left(\frac{J_{\alpha}(x)}{x^{\alpha}}+\frac{J_{\alpha+1}(x)}{x^{\alpha+1}} x i\right)
$$

Let $\left\{s_{j}\right\}_{j \geq 1}$ be the increasing sequence of positive zeros of $J_{\alpha+1}$. The real-valued function $\operatorname{Im} E_{\alpha}(i x)=$ $\frac{x}{2(\alpha+1)} \mathcal{I}_{\alpha+1}(i x)$ is odd and its zeros are $\left\{s_{j}\right\}_{j \in \mathbb{Z}}$ where $s_{-j}=-s_{j}$ and $s_{0}=0$. In connection with the Dunkl transform on the real line, two of the authors introduced the functions $e_{j}, j \in \mathbb{Z}$, as follows:

$$
\begin{aligned}
& e_{0}(x)=2^{(\alpha+1) / 2} \Gamma(\alpha+2)^{1 / 2} \\
& e_{j}(x)=\frac{2^{\alpha / 2} \Gamma(\alpha+1)^{1 / 2}}{\left|\mathcal{I}_{\alpha}\left(i s_{j}\right)\right|} E_{\alpha}\left(i s_{j} x\right), \quad j \in \mathbb{Z} \backslash\{0\}
\end{aligned}
$$

The case $\alpha=-1 / 2$ corresponds to the classical trigonometric Fourier setting: $\mathcal{I}_{-1 / 2}(z)=\cos (i z), \mathcal{I}_{1 / 2}(z)=$ $\frac{\sin (i z)}{i z}, s_{j}=\pi j, E_{-1 / 2}\left(i s_{j} x\right)=e^{i \pi j x}$, and $\left\{e_{j}\right\}_{j \in \mathbb{Z}}$ is the trigonometric system with the appropriate multiplicative constant so that it is orthonormal on $(-1,1)$ with respect to the normalized Lebesgue measure $(2 \pi)^{-1 / 2} d x$.

For all values of $\alpha>-1$, in [5] the sequence $\left\{e_{j}\right\}_{j \in \mathbb{Z}}$ was proved to be a complete orthonormal system in $L^{2}\left((-1,1), d \mu_{\alpha}\right), d \mu_{\alpha}(x)=\left(2^{\alpha+1} \Gamma(\alpha+1)\right)^{-1}|x|^{2 \alpha+1} d x$. That is to say

$$
\int_{-1}^{1} e_{j}(x) \overline{e_{k}(x)} d \mu_{\alpha}(x)=\delta_{j k}
$$

and for each $f \in L^{2}\left((-1,1), d \mu_{\alpha}\right)$ the series

$$
\sum_{j=-\infty}^{\infty}\left(\int_{-1}^{1} f(y) \overline{e_{j}(y)} d \mu_{\alpha}(y)\right) e_{j}(x)
$$

which we will refer to as Fourier-Dunkl series, converges to $f$ in the norm of $L^{2}\left((-1,1), d \mu_{\alpha}\right)$. The next step is to ask for which $p \in(1, \infty), p \neq 2$, the convergence holds in $L^{p}\left((-1,1), d \mu_{\alpha}\right)$. The problem is equivalent, by the Banach-Steinhauss theorem, to the uniform boundedness on $L^{p}\left((-1,1), d \mu_{\alpha}\right)$ of the partial sum operators $S_{n} f$ given by

$$
S_{n} f(x)=\int_{-1}^{1} f(y) K_{n}(x, y) d \mu_{\alpha}(y)
$$

where $K_{n}(x, y)=\sum_{j=-n}^{n} e_{j}(x) \overline{e_{j}(y)}$. We are interested in weighted norm estimates of the form

$$
\left\|S_{n}(f) U\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)} \leq C\|f V\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}
$$

where $C$ is a constant independent of $n$ and $f$, and $U, V$ are nonnegative functions on $(-1,1)$.
Before stating our results, let us fix some notation. The conjugate exponent of $p \in(1, \infty)$ is denoted by $p^{\prime}$. That is,

$$
\frac{1}{p}+\frac{1}{p^{\prime}}=1, \quad \text { or } \quad p^{\prime}=\frac{p}{p-1}
$$

For an interval $(a, b) \subseteq \mathbb{R}$, the Muckenhoupt class $A_{p}(a, b)$ consists of those pairs of nonnegative functions $(u, v)$ on $(a, b)$ such that

$$
\left(\frac{1}{|I|} \int_{I} u(x) d x\right)\left(\frac{1}{|I|} \int_{I} v(x)^{-\frac{1}{p-1}} d x\right)^{p-1} \leq C
$$

for every interval $I \subseteq(a, b)$, with some constant $C>0$ independent of $I$. The smallest constant satisfying this property is called the $A_{p}$ constant of the pair $(u, v)$.

We say that $(u, v) \in A_{p}^{\delta}(a, b)$ (where $\delta>1$ ) if $\left(u^{\delta}, v^{\delta}\right) \in A_{p}(a, b)$. It follows from Hölder's inequality that $A_{p}^{\delta}(a, b) \subseteq A_{p}(a, b)$.

If $u \equiv 0$ or $v \equiv \infty$, it is trivial that $(u, v) \in A_{p}(a, b)$ for any interval $(a, b)$. Otherwise, for a bounded interval $(a, b)$, if $(u, v) \in A_{p}(a, b)$ then the functions $u$ and $v^{-\frac{1}{p-1}}$ are integrable on $(a, b)$.

Throughout this paper, $C$ denotes a positive constant which may be different in each occurrence.

## 2. Main results

We state here some $A_{p}$ conditions which ensure the weighted $L^{p}$ boundedness of these Fourier-Dunkl orthogonal expansions. For simplicity, we separate the general result corresponding to arbitrary weights in two theorems, the first one for $\alpha \geq-1 / 2$ and the second one for $-1<\alpha<-1 / 2$.
Theorem 1. Let $\alpha \geq-1 / 2$ and $1<p<\infty$. Let $U, V$ be weights on $(-1,1)$. Assume that

$$
\begin{equation*}
\left(U(x)^{p}|x|^{\left(\alpha+\frac{1}{2}\right)(2-p)}, V(x)^{p}|x|^{\left(\alpha+\frac{1}{2}\right)(2-p)}\right) \in A_{p}^{\delta}(-1,1) \tag{2}
\end{equation*}
$$

for some $\delta>1$ (or $\delta=1$ if $U=V$ ). Then there exists a constant $C$ independent of $n$ and $f$ such that

$$
\left\|S_{n}(f) U\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)} \leq C\|f V\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)} .
$$

Theorem 2. Let $-1<\alpha<-1 / 2$ and $1<p<\infty$. Let $U, V$ be weights on $(-1,1)$. Let us suppose that $U$, $V$ satisfy the conditions

$$
\begin{align*}
\left(U(x)^{p}|x|^{(2 \alpha+1)(1-p)}, V(x)^{p}|x|^{(2 \alpha+1)(1-p)}\right) & \in A_{p}^{\delta}(-1,1),  \tag{3}\\
\left(U(x)^{p}|x|^{2 \alpha+1}, V(x)^{p}|x|^{2 \alpha+1}\right) & \in A_{p}^{\delta}(-1,1) \tag{4}
\end{align*}
$$

for some $\delta>1$ (or $\delta=1$ if $U=V$ ). Then there exists a constant $C$ independent of $n$ and $f$ such that

$$
\left\|S_{n}(f) U\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)} \leq C\|f V\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}
$$

As we mentioned in the introduction, the case $\alpha=-1 / 2$ corresponds to the classical trigonometric case. Accordingly, (2) reduces then to $\left(U^{p}, V^{p}\right) \in A_{p}^{\delta}(-1,1)$. It should be noted also that taking real and imaginary parts in these Fourier-Dunkl series we would obtain the so-called Fourier-Bessel series on $(0,1)$ (see $[18,2,3,9]$ ), but the known results for Fourier-Bessel series do not give a proof of the above theorems. Also in connection with Fourier-Bessel series on ( 0,1 ) , Lemma 3 below can be used to improve some results of [9].

Theorems 1 and 2 establish some sufficient conditions for the $L^{p}$ boundedness. Our next result presents some necessary conditions. To avoid unnecessary subtleties, we exclude the trivial cases $U \equiv 0$ and $V \equiv \infty$.

Theorem 3. Let $-1<\alpha, 1<p<\infty$, and $U$, $V$ weights on $(-1,1)$, neither $U \equiv 0$ nor $V \equiv \infty$. If there exists some constant $C$ such that, for every $n$ and every $f$,

$$
\left\|S_{n}(f) U\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)} \leq C\|f V\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}
$$

then $U \leq C V$ almost everywhere on $(-1,1)$, and

$$
\begin{aligned}
U(x)^{p}|x|^{\left(\alpha+\frac{1}{2}\right)(2-p)} & \in L^{1}((-1,1), d x), \\
\left(V(x)^{p}|x|^{\left(\alpha+\frac{1}{2}\right)(2-p)}\right)^{-\frac{1}{p-1}}=V(x)^{-p^{\prime}}|x|^{\left(\alpha+\frac{1}{2}\right)\left(2-p^{\prime}\right)} & \in L^{1}((-1,1), d x) \\
U(x)^{p}|x|^{2 \alpha+1} & \in L^{1}((-1,1), d x) \\
\left(V(x)^{p}|x|^{(2 \alpha+1)(1-p)}\right)^{-\frac{1}{p-1}}=V(x)^{-p^{\prime}}|x|^{2 \alpha+1} & \in L^{1}((-1,1), d x)
\end{aligned}
$$

Notice that the first two integrability conditions imply the other two if $\alpha \geq-1 / 2$, while the last two imply the other if $-1<\alpha<-1 / 2$.

When $U, V$ are power-like weights, it is easy to check that the conditions of Theorem 3 are equivalent to the $A_{p}$ conditions (2), (3), (4). By power-like weights we mean finite products of the form $|x-t|^{\gamma}$, for some constants $t, \gamma$. For these weights, therefore, Theorems 1,2 and 3 characterize the boundedness of the Fourier-Dunkl expansions. For instance, we have the following particular case:

Corollary. Let $b, A, B \in \mathbb{R}, 1<p<\infty$, and

$$
U(x)=|x|^{b}(1-x)^{A}(1+x)^{B}
$$

Then, there exists some constant $C$ such that

$$
\left\|U S_{n} f\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)} \leq C\|U f\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}
$$

for every $f$ and $n$ if and only if $-1<A p<p-1,-1<B p<p-1$ and

$$
-1+p\left(\alpha+\frac{1}{2}\right)_{+}<b p+2 \alpha+1<p-1+p(2 \alpha+1)-p\left(\alpha+\frac{1}{2}\right)_{+}
$$

where $\left(\alpha+\frac{1}{2}\right)_{+}=\max \left\{\alpha+\frac{1}{2}, 0\right\}$.
In the unweighted case $(U=V=1)$ the boundedness of the partial sum operators $S_{n}$, or in other words the convergence of the Fourier-Dunkl series, holds if and only if

$$
\frac{4(\alpha+1)}{2 \alpha+3}<p<\frac{4(\alpha+1)}{2 \alpha+1}
$$

in the case $\alpha \geq-1 / 2$, and for the whole range $1<p<\infty$ in the case $-1<\alpha<-1 / 2$.
Remark. These conditions for the unweighted case are exactly the same as in the Fourier-Bessel case when the orthonormal functions are $2^{1 / 2}\left|J_{\alpha+1}\left(s_{n}\right)\right|^{-1} J_{\alpha}\left(s_{n} x\right) x^{-\alpha}$ and the orthogonality measure is $x^{2 \alpha+1} d x$ on the interval $(0,1)$.

Other variants of Bessel orthogonal systems exist in the literature, see [2, 3, 18]. For instance, one can take the functions $2^{1 / 2}\left|J_{\alpha+1}\left(s_{n}\right)\right|^{-1} J_{\alpha}\left(s_{n} x\right)$, which are orthonormal with respect to the measure $x d x$ on the interval $(0,1)$. The conditions for the boundedness of these Fourier-Bessel series, as can be seen in [3], correspond to taking $A=B=0$ and $b=\alpha-\frac{2 \alpha+1}{p}$ in our corollary. Another usual case is to take the functions $(2 x)^{1 / 2}\left|J_{\alpha+1}\left(s_{n}\right)\right|^{-1} J_{\alpha}\left(s_{n} x\right)$, which are orthonormal with respect to the measure $d x$ on $(0,1)$. Passing from one orthogonality to another consists basically in changing the weights. Then, from the weighted $L^{p}$ boundedness of any of these systems we easily deduce a corresponding weighted $L^{p}$ boundedness for any of the other systems.

In the case of the Fourier-Dunkl series on $(-1,1)$ we feel, however, that the natural setting is to start from $J_{\alpha}(z) z^{-\alpha}$, since these functions, defined by (1), are holomorphic on $\mathbb{C}$; in particular, they are well defined on the interval $(-1,1)$.

## 3. Auxiliary results

We will need to control some basic operator in weighted $L^{p}$ spaces on $(-1,1)$. For a function $g:(0,2) \rightarrow$ $\mathbb{R}$, the Calderón operator is defined by

$$
A g(x)=\frac{1}{x} \int_{0}^{x}|g(y)| d y+\int_{x}^{2} \frac{|g(y)|}{y} d y
$$

that is, the sum of the Hardy operator and its adjoint. The weighted norm inequality

$$
\|A g\|_{L^{p}((0,2), u)} \leq C\|g\|_{L^{p}((0,2), v)}
$$

holds for every $g \in L^{p}((0,2), v)$, provided that $(u, v) \in A_{p}^{\delta}(0,2)$ for some $\delta>1$, and $\delta=1$ is enough if $u=v$ (see $[12,13]$ ). Let us consider now the operator $J$ defined by

$$
J f(x)=\int_{-1}^{1} \frac{f(y)}{2-x-y} d y
$$

for $x \in(-1,1)$ and suitable functions $f$. With the notation $f_{1}(t)=f(1-t)$, we have

$$
|J f(x)|=\left|\int_{0}^{2} \frac{f(1-t)}{1-x+t} d t\right| \leq A\left(f_{1}\right)(1-x)
$$

and a simple change of variables proves that the weighted norm inequality

$$
\|J f\|_{L^{p}((-1,1), u)} \leq C\|f\|_{L^{p}((-1,1), v)}
$$

holds for every $f \in L^{p}((-1,1), v)$, provided that $(u, v) \in A_{p}^{\delta}(-1,1)$ for some $\delta>1$ (or $\delta=1$ if $u=v$ ).
The Hilbert transform on the interval $(-1,1)$ is defined as

$$
H g(x)=\int_{-1}^{1} \frac{g(y)}{x-y} d y
$$

The above weighted norm inequality holds also for the Hilbert transform with the same $A_{p}^{\delta}(-1,1)$ condition (see [10, 13]). In both cases, the norm inequalities hold with a constant $C$ depending only on the $A_{p}^{\delta}$ constant of the pair $(u, v)$.

Our first objective is to obtain a suitable estimate for the kernel $K_{n}(x, y)$. With this aim, we will use some well-known properties of Bessel (and related) functions, that can be found on [17]. For the Bessel functions we have the asymptotics

$$
\begin{equation*}
J_{\nu}(z)=\frac{z^{\nu}}{2^{\nu} \Gamma(\nu+1)}+O\left(z^{\nu+2}\right) \tag{5}
\end{equation*}
$$

if $|z|<1,|\arg (z)| \leq \pi$; and

$$
\begin{equation*}
J_{\nu}(z)=\sqrt{\frac{2}{\pi z}}\left[\cos \left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)+O\left(e^{\operatorname{Im}(z)} z^{-1}\right)\right] \tag{6}
\end{equation*}
$$

if $|z| \geq 1,|\arg (z)| \leq \pi-\theta$. The Hankel function of the first kind, denoted by $H_{\nu}^{(1)}$, is defined as

$$
H_{\nu}^{(1)}(z)=J_{\nu}(z)+i Y_{\nu}(z)
$$

where $Y_{\nu}$ denotes the Weber function, given by

$$
\begin{aligned}
& Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}, \text { if } \nu \notin \mathbb{Z} \\
& Y_{n}(z)=\lim _{\nu \rightarrow n} \frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}, \text { if } n \in \mathbb{Z}
\end{aligned}
$$

From these definitions, we have

$$
\begin{aligned}
& H_{\nu}^{(1)}(z)=\frac{J_{-\nu}(z)-e^{-\nu \pi i} J_{\nu}(z)}{i \sin \nu \pi}, \text { if } \nu \notin \mathbb{Z}, \\
& H_{n}^{(1)}(z)=\lim _{\nu \rightarrow n} \frac{J_{-\nu}(z)-e^{-\nu \pi i} J_{\nu}(z)}{i \sin \nu \pi}, \text { if } n \in \mathbb{Z} .
\end{aligned}
$$

For the function $H_{\nu}^{(1)}$, the asymptotic

$$
\begin{equation*}
H_{\nu}^{(1)}(z)=\sqrt{\frac{2}{\pi z}} e^{i(z-\nu \pi / 2-\pi / 4)}\left[C+O\left(z^{-1}\right)\right] \tag{7}
\end{equation*}
$$

holds for $|z|>1,-\pi<\arg (z)<2 \pi$, with some constant $C$.
As usual for the $L^{p}$ convergence of orthogonal expansions, the results are consequences of suitable estimates for the kernel $K_{n}(x, y)$. The next lemma contains an estimate for the difference between the kernel $K_{n}(x, y)$ and an integral containing the product of two $E_{\alpha}$ functions. This integral can be evaluated using Lemma 1 in [5]. Next, to obtain the estimate we consider an appropriate function in the complex plane having poles in the points $s_{j}$ and integrate this function along a suitable path.

Lemma 1. Let $\alpha>-1$. Then, there exists some constant $C>0$ such that for each $n \geq 1$ and $x, y \in(-1,1)$,

$$
\left|K_{n}(x, y)-\int_{-M_{n}}^{M_{n}} E_{\alpha}(i z x) \overline{E_{\alpha}(i z y)} d \mu_{\alpha}(z)\right| \leq C\left(\frac{|x y|^{-(\alpha+1 / 2)}}{2-x-y}+1\right),
$$

where $M_{n}=\left(s_{n}+s_{n+1}\right) / 2$.
Proof. Using elementary algebraic manipulations, the kernel $K_{n}(x, y)$ can be written as

$$
\begin{equation*}
K_{n}(x, y)=2^{\alpha+1} \Gamma(\alpha+2)+\frac{2^{\alpha+1} \Gamma(\alpha+1)}{(x y)^{\alpha}} \sum_{j=1}^{n} \frac{J_{\alpha}\left(s_{j} x\right) J_{\alpha}\left(s_{j} y\right)+J_{\alpha+1}\left(s_{j} x\right) J_{\alpha+1}\left(s_{j} y\right)}{J_{\alpha}\left(s_{j}\right)^{2}} . \tag{8}
\end{equation*}
$$

Let us find a function whose residues at the points $s_{j}$ are the terms in the series, so that this series can be expressed as an integral. The identities

$$
-J_{\alpha+1}^{\prime}(z) H_{\alpha+1}^{(1)}(z)+J_{\alpha+1}(z)\left(H_{\alpha+1}^{(1)}\right)^{\prime}(z)=\frac{2 i}{\pi z}
$$

(see [19, p. 76]), and

$$
z J_{\alpha+1}^{\prime}(z)+(\alpha+1) J_{\alpha+1}(z)=-z J_{\alpha}(z)
$$

give

$$
-J_{\alpha+1}^{\prime}\left(s_{j}\right) H_{\alpha+1}^{(1)}\left(s_{j}\right)=\frac{2 i}{\pi s_{j}}
$$

and

$$
J_{\alpha+1}^{\prime}\left(s_{j}\right)=-J_{\alpha}\left(s_{j}\right)
$$

for every $j \in \mathbb{N}$. Then,

$$
\begin{aligned}
-\frac{2 i}{\pi}|x y|^{1 / 2} & \frac{J_{\alpha}\left(s_{j} x\right) J_{\alpha}\left(s_{j} y\right)+J_{\alpha+1}\left(s_{j} x\right) J_{\alpha+1}\left(s_{j} y\right)}{J_{\alpha}\left(s_{j}\right)^{2}} \\
& =-\frac{2 i}{\pi}|x y|^{1 / 2} \frac{J_{\alpha}\left(s_{j} x\right) J_{\alpha}\left(s_{j} y\right)+J_{\alpha+1}\left(s_{j} x\right) J_{\alpha+1}\left(s_{j} y\right)}{J_{\alpha+1}^{\prime}\left(s_{j}\right)^{2}} \\
& =|x y|^{1 / 2} s_{j} H_{\alpha+1}^{(1)}\left(s_{j}\right) \frac{J_{\alpha}\left(s_{j} x\right) J_{\alpha}\left(s_{j} y\right)+J_{\alpha+1}\left(s_{j} x\right) J_{\alpha+1}\left(s_{j} y\right)}{J_{\alpha+1}^{\prime}\left(s_{j}\right)} \\
& =\lim _{z \rightarrow s_{j}}\left(z-s_{j}\right) H_{x, y}(z)=\operatorname{Res}\left(H_{x, y}, s_{j}\right),
\end{aligned}
$$

where we define

$$
H_{x, y}(z)=|x y|^{1 / 2} z H_{\alpha+1}^{(1)}(z) \frac{J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)}{J_{\alpha+1}(z)}
$$

(the factor $|x y|^{1 / 2}$ is taken for convenience). The fact that $J_{\nu}(-z)=e^{\nu \pi i} J_{\nu}(z)$ gives $\operatorname{Res}\left(H_{x, y}, s_{j}\right)=$ $\operatorname{Res}\left(H_{x, y},-s_{j}\right)$.

Since the definition of $H_{\alpha+1}^{(1)}(z)$ differs in case $\alpha \in \mathbb{Z}$, for the rest of the proof we will assume that $\alpha \notin \mathbb{Z}$; the other case can be deduced by considering the limit.

The function $H_{x, y}(z)$ is analytic in $\mathbb{C} \backslash\left(\left(-\infty,-M_{n}\right] \cup\left[M_{n}, \infty\right) \cup\left\{ \pm s_{j}: j=1,2, \ldots\right\}\right)$. Moreover, the points $\pm s_{j}$ are simple poles. So, we have

$$
\begin{equation*}
\int_{\mathbf{S} \cup \mathbf{I}(\varepsilon)} H_{x, y}(z) d z=0 \tag{9}
\end{equation*}
$$

where $\mathbf{I}(\varepsilon)$ is the interval $\left[-M_{n}, M_{n}\right]$ warped with upper half circles of radius $\varepsilon$ centered in $\pm s_{j}$, with $j=1, \ldots, n$ and $\mathbf{S}$ is the path of integration given by the interval $M_{n}+i[0, \infty)$ in the direction of increasing imaginary part and the interval $-M_{n}+i[0, \infty)$ in the opposite direction. The existence of the integral is clear for the path $\mathbf{I}(\varepsilon)$; for $\mathbf{S}$ this fact can be checked by using (5), (6) and (7). Indeed, on $\mathbf{S}$ we obtain that $\left|\frac{H_{\alpha+1}^{(1)}(z)}{J_{\alpha+1}(z)}\right| \leq C e^{-2 \operatorname{Im}(z)}$. Similarly, on $\mathbf{S}$ one has

$$
\left||x y|^{1 / 2} z J_{\alpha}(z x) J_{\alpha}(z y)\right| \leq C e^{\operatorname{Im}(z)(x+y)} h_{x, y}^{\alpha}(|z|)
$$

where

$$
h_{x, y}^{\alpha}(|z|)=\max \left\{|x z|^{\alpha+1 / 2}, 1\right\} \max \left\{|y z|^{\alpha+1 / 2}, 1\right\}
$$

for $-1<\alpha<-1 / 2$, and

$$
h_{x, y}^{\alpha}(|z|)=1
$$

for $\alpha \geq-1 / 2$. Thus

$$
\begin{equation*}
\left|H_{x, y}(z)\right| \leq C\left(h_{x, y}^{\alpha}(|z|)+h_{x, y}^{\alpha+1}(|z|)\right) e^{-\operatorname{Im}(z)(2-x-y)} \tag{10}
\end{equation*}
$$

and the integral on $\mathbf{S}$ is well defined.
From the definition of $H_{x, y}(z)$, we have

$$
\begin{aligned}
\int_{\mathbf{I}(\varepsilon)} H_{x, y}(z) d z=\int_{\mathbf{I}(\varepsilon)} \frac{|x y|^{1 / 2} z J_{-\alpha-1}(z)}{i \sin (\alpha+1) \pi} \cdot \frac{J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)}{J_{\alpha+1}(z)} d z \\
-|x y|^{1 / 2} \frac{e^{-(\alpha+1) \pi i}}{i \sin (\alpha+1) \pi} \int_{\mathbf{I}(\varepsilon)} z\left(J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)\right) d z
\end{aligned}
$$

The function in the first integral is odd, and the function in the second integral has no poles at the points $s_{j}$. Then, the first integral equals the integral over the symmetric path $-\mathbf{I}(\varepsilon)=\{z:-z \in \mathbf{I}(\varepsilon)\}$. Putting $\left|z-s_{j}\right|=\varepsilon$ for the positively oriented circle, this gives

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{\mathbf{I}(\varepsilon)} H_{x, y}(z) d z= & \lim _{\varepsilon \rightarrow 0} \frac{-1}{2} \sum_{\left|s_{j}\right|<M_{n}} \int_{\left|z-s_{j}\right|=\varepsilon} \frac{|x y|^{1 / 2} z J_{-\alpha-1}(z)}{i \sin (\alpha+1) \pi} \cdot \frac{J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)}{J_{\alpha+1}(z)} d z \\
& -|x y|^{1 / 2} \frac{e^{-(\alpha+1) \pi i}}{i \sin (\alpha+1) \pi} \int_{-M_{n}}^{M_{n}} z\left(J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)\right) d z \\
= & -\pi i \sum_{\left|s_{j}\right|<M_{n}} \operatorname{Res}\left(H_{x, y}, s_{j}\right) \\
& \quad-|x y|^{1 / 2} \frac{e^{-(\alpha+1) \pi i}}{i \sin (\alpha+1) \pi}\left(1-e^{2 \pi i \alpha}\right) \int_{0}^{M_{n}} z\left(J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)\right) d z
\end{aligned}
$$

$$
\begin{aligned}
=- & 4|x y|^{1 / 2} \sum_{j=1}^{n} \frac{J_{\alpha}\left(s_{j} x\right) J_{\alpha}\left(s_{j} y\right)+J_{\alpha+1}\left(s_{j} x\right) J_{\alpha+1}\left(s_{j} y\right)}{J_{\alpha}\left(s_{j}\right)^{2}} \\
& +2|x y|^{1 / 2} \int_{0}^{M_{n}} z\left(J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)\right) d z
\end{aligned}
$$

This, together with (9), gives

$$
\begin{aligned}
& \sum_{j=1}^{n} \frac{J_{\alpha}\left(s_{j} x\right) J_{\alpha}\left(s_{j} y\right)+}{}+J_{\alpha+1}\left(s_{j} x\right) J_{\alpha+1}\left(s_{j} y\right) \\
& J_{\alpha}\left(s_{j}\right)^{2} \\
&=\frac{1}{4|x y|^{1 / 2}} \int_{\mathbf{S}} H_{x, y}(z) d z+\frac{1}{2} \int_{0}^{M_{n}} z\left(J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)\right) d z
\end{aligned}
$$

Then, it follows from (8) that

$$
\begin{aligned}
& K_{n}(x, y)=2^{\alpha+1} \Gamma(\alpha+2)+\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(x y)^{\alpha}|x y|^{1 / 2}} \int_{\mathbf{S}} H_{x, y}(z) d z \\
& \quad+\frac{2^{\alpha} \Gamma(\alpha+1)}{(x y)^{\alpha}} \int_{0}^{M_{n}} z\left(J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)\right) d z .
\end{aligned}
$$

Now, it is easy to check the identity

$$
\frac{2^{\alpha} \Gamma(\alpha+1)}{(x y)^{\alpha}} \int_{0}^{M_{n}} z\left(J_{\alpha}(z x) J_{\alpha}(z y)+J_{\alpha+1}(z x) J_{\alpha+1}(z y)\right) d z=\int_{-M_{n}}^{M_{n}} E_{\alpha}(i z x) \overline{E_{\alpha}(i z y)} d \mu_{\alpha}(z)
$$

so that

$$
\left|K_{n}(x, y)-\int_{-M_{n}}^{M_{n}} E_{\alpha}(i z x) \overline{E_{\alpha}(i z y)} d \mu_{\alpha}(z)\right| \leq 2^{\alpha+1} \Gamma(\alpha+2)+\frac{2^{\alpha-1} \Gamma(\alpha+1)}{|x y|^{\alpha+1 / 2}}\left|\int_{\mathbf{S}} H_{x, y}(z) d z\right| .
$$

We conclude showing that

$$
\begin{equation*}
\left|\int_{\mathbf{S}} H_{x, y}(z) d z\right| \leq C\left(\frac{1}{2-x-y}+|x y|^{\alpha+1 / 2}\right) \tag{11}
\end{equation*}
$$

for $-1<x, y<1$. For $\alpha \geq-1 / 2$, the bound (11) follows from (10). Indeed, in this case

$$
\left|\int_{\mathbf{S}} H_{x, y}(z) d z\right| \leq C \int_{0}^{\infty} e^{-t(2-x-y)} d t=\frac{C}{2-x-y}
$$

For $-1<\alpha<-1 / 2$, we have $\left|H_{x, y}(z)\right| \leq C|x y|^{\alpha+1 / 2} e^{-\operatorname{Im}(z)(2-x-y)}$ if $z \in \mathbf{S}$. With this inequality we obtain (11) as follows:

$$
\left|\int_{\mathbf{S}} H_{x, y}(z) d z\right| \leq C|x y|^{\alpha+1 / 2} \int_{0}^{\infty} e^{-t(2-x-y)} d t=C \frac{|x y|^{\alpha+1 / 2}}{2-x-y} \leq C\left(|x y|^{\alpha+1 / 2}+\frac{1}{2-x-y}\right)
$$

From the previous lemma and the identity (see [5])

$$
\int_{-1}^{1} E_{\alpha}(i x z) \overline{E_{\alpha}(i y z)} d \mu_{\alpha}(z)=\frac{1}{2^{\alpha+1} \Gamma(\alpha+2)} \frac{x \mathcal{I}_{\alpha+1}(i x) \mathcal{I}_{\alpha}(i y)-y \mathcal{I}_{\alpha+1}(i y) \mathcal{I}_{\alpha}(i x)}{x-y},
$$

which holds for $\alpha>-1, x, y \in \mathbb{C}$, and $x \neq y$, we obtain that

$$
\begin{equation*}
\left|K_{n}(x, y)-B\left(M_{n}, x, y\right)-B\left(M_{n}, y, x\right)\right| \leq C\left(\frac{|x y|^{-(\alpha+1 / 2)}}{2-x-y}+1\right) \tag{12}
\end{equation*}
$$

with

$$
B\left(M_{n}, x, y\right)=\frac{M_{n}^{2(\alpha+1)}}{2^{\alpha+1} \Gamma(\alpha+2)} \frac{x \mathcal{I}_{\alpha+1}\left(i M_{n} x\right) \mathcal{I}_{\alpha}\left(i M_{n} y\right)}{x-y}
$$

or, by the definition of $\mathcal{I}_{\alpha}$ and the fact that $\frac{J_{\alpha}(z)}{z^{\alpha}}$ is even,

$$
B\left(M_{n}, x, y\right)=2^{\alpha} \Gamma(\alpha+1) \frac{M_{n} x J_{\alpha+1}\left(M_{n}|x|\right) J_{\alpha}\left(M_{n}|y|\right)}{|x|^{\alpha+1}|y|^{\alpha}(x-y)} .
$$

## 4. Proof of Theorem 1

We can split the partial sum operator $S_{n}$ into three terms suitable to apply (12):

$$
\begin{align*}
S_{n} f(x)= & \int_{-1}^{1} f(y) B\left(M_{n}, x, y\right) d \mu_{\alpha}(y)+\int_{-1}^{1} f(y) B\left(M_{n}, y, x\right) d \mu_{\alpha}(y) \\
& +\int_{-1}^{1} f(y)\left[K_{n}(x, y)-B\left(M_{n}, x, y\right)-B\left(M_{n}, y, x\right)\right] d \mu_{\alpha}(y) \\
= & T_{1, n} f(x)+T_{2, n} f(x)+T_{3, n} f(x) . \tag{13}
\end{align*}
$$

With this decomposition, the theorem will be proved if we see that

$$
\left\|U T_{j, n} f\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}^{p} \leq C\|V f\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}^{p}, \quad j=1,2,3,
$$

for a constant $C$ independent of $n$ and $f$.

### 4.1. The first term

We have

$$
\begin{aligned}
T_{1, n} f(x) & =\frac{1}{2^{\alpha+1} \Gamma(\alpha+1)} \int_{-1}^{1} f(y) B\left(M_{n}, x, y\right)|y|^{2 \alpha+1} d y \\
& =\frac{M_{n}^{1 / 2} x J_{\alpha+1}\left(M_{n}|x|\right)}{2|x|^{\alpha+1}} \int_{-1}^{1} \frac{f(y) M_{n}^{1 / 2} J_{\alpha}\left(M_{n}|y|\right)|y|^{\alpha+1}}{x-y} d y .
\end{aligned}
$$

According to (5) and (6) and the assumption that $\alpha \geq-1 / 2$, we have

$$
\left|J_{\alpha}(z)\right| \leq C z^{-1 / 2}, \quad\left|J_{\alpha+1}(z)\right| \leq C z^{-1 / 2}
$$

for every $z>0$. Using these inequalities and the boundedness of the Hilbert transform under the $A_{p}$ condition (2) gives

$$
\begin{aligned}
& \left\|U T_{1, n} f\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}^{p} \\
& \quad=C \int_{-1}^{1}\left|\int_{-1}^{1} \frac{f(y) M_{n}^{1 / 2} J_{\alpha}\left(M_{n}|y|\right)|y|^{\alpha+1}}{x-y} d y\right|^{p} U(x)^{p} M_{n}^{p / 2}\left|J_{\alpha+1}\left(M_{n}|x|\right)\right|^{p}|x|^{2 \alpha+1-\alpha p} d x \\
& \quad \leq C \int_{-1}^{1}\left|\int_{-1}^{1} \frac{f(y) M_{n}^{1 / 2} J_{\alpha}\left(M_{n}|y|\right)|y|^{\alpha+1}}{x-y} d y\right|^{p} U(x)^{p}|x|^{\left(\alpha+\frac{1}{2}\right)(2-p)} d x \\
& \quad \leq\left.\left. C \int_{-1}^{1}\left|f(x) M_{n}^{1 / 2} J_{\alpha}\left(M_{n}|x|\right)\right| x\right|^{\alpha+1}\right|^{p} V(x)^{p}|x|^{\left(\alpha+\frac{1}{2}\right)(2-p)} d x \\
& \quad \leq C \int_{-1}^{1}|f(x)|^{p} V(x)^{p}|x|^{2 \alpha+1} d x=C\|V f\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}^{p} .
\end{aligned}
$$

### 4.2. The second term

This term is given by

$$
\begin{aligned}
T_{2, n} f(x) & =\frac{1}{2^{\alpha+1} \Gamma(\alpha+1)} \int_{-1}^{1} f(y) B\left(M_{n}, y, x\right)|y|^{2 \alpha+1} d y \\
& =\frac{M_{n}^{1 / 2} J_{\alpha}\left(M_{n}|x|\right)}{2|x|^{\alpha}} \int_{-1}^{1} \frac{f(y) y M_{n}^{1 / 2} J_{\alpha+1}\left(M_{n}|y|\right)|y|^{\alpha}}{y-x} d y
\end{aligned}
$$

and everything goes as with the first term.

### 4.3. The third term

According to (12),

$$
\left|T_{3, n} f(x)\right| \leq C|x|^{-(\alpha+1 / 2)} \int_{-1}^{1} \frac{f(y)|y|^{\alpha+1 / 2}}{2-x-y} d y+C \int_{-1}^{1}|f(y)||y|^{2 \alpha+1} d y
$$

so it is enough to have both

$$
\begin{equation*}
\int_{-1}^{1}\left|\int_{-1}^{1} \frac{f(y)|y|^{\alpha+1 / 2}}{2-x-y} d y\right|^{p} U(x)^{p}|x|^{2 \alpha+1-p(\alpha+1 / 2)} d x \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{-1}^{1}\right| f(x)\left||x|^{2 \alpha+1} d x\right|^{p} \int_{-1}^{1} U(x)^{p}|x|^{2 \alpha+1} d x \tag{15}
\end{equation*}
$$

bounded by

$$
C \int_{-1}^{1}|f(x)|^{p} V(x)^{p}|x|^{2 \alpha+1} d x
$$

For the boundedness of (14) it suffices to impose

$$
\left(U(x)^{p}|x|^{2 \alpha+1-p(\alpha+1 / 2)}, V(x)^{p}|x|^{2 \alpha+1-p(\alpha+1 / 2)}\right) \in A_{p}^{\delta}(-1,1),
$$

but this is exactly (2). By duality, the boundedness of (15) is equivalent to

$$
\left(\int_{-1}^{1} U(x)^{p}|x|^{2 \alpha+1} d x\right)\left(\int_{-1}^{1} V(x)^{-p /(p-1)}|x|^{2 \alpha+1} d x\right)^{p-1}<\infty .
$$

Now, it is easy to check that

$$
\begin{aligned}
\left(\int_{-1}^{1} U(x)^{p}|x|^{2 \alpha+1} d x\right) & \left(\int_{-1}^{1} V(x)^{-p /(p-1)}|x|^{2 \alpha+1} d x\right)^{p-1} \\
& \leq\left(\int_{-1}^{1} U(x)^{p}|x|^{\left(\alpha+\frac{1}{2}\right)(2-p)} d x\right)\left(\int_{-1}^{1}\left(V(x)^{p}|x|^{\left(\alpha+\frac{1}{2}\right)(2-p)}\right)^{-\frac{1}{p-1}} d x\right)^{p-1} \leq C,
\end{aligned}
$$

the last inequality following from the $A_{p}$ condition (2).

## 5. Proof of Theorem 2

We begin with a simple lemma on $A_{p}$ weights.
Lemma 2. Let $1<p<\infty,(u, v) \in A_{p}(-1,1),\left(u_{1}, v_{1}\right) \in A_{p}(-1,1)$. Let $w, \zeta$ be weights on $(-1,1)$ such that either

$$
w \leq C\left(u+u_{1}\right) \quad \text { and } \quad \zeta \geq C_{1}\left(v+v_{1}\right)
$$

or

$$
w^{-1} \geq C\left(u^{-1}+u_{1}^{-1}\right) \quad \text { and } \quad \zeta^{-1} \leq C_{1}\left(v^{-1}+v_{1}^{-1}\right)
$$

for some constants $C, C_{1}$. Then $(w, \zeta) \in A_{p}(-1,1)$ with a constant depending only on $C, C_{1}$ and the $A_{p}$ constants of $(u, v)$ and $\left(u_{1}, v_{1}\right)$.

Proof. Assume that $w \leq C\left(u+u_{1}\right)$ and $\zeta \geq C_{1}\left(v+v_{1}\right)$. For any interval $I \subseteq(-1,1)$,

$$
\left(\frac{1}{|I|} \int_{I} \zeta^{-\frac{1}{p-1}}\right)^{p-1} \leq \frac{1}{C_{1}} \min \left\{\left(\frac{1}{|I|} \int_{I} v^{-\frac{1}{p-1}}\right)^{p-1},\left(\frac{1}{|I|} \int_{I} v_{1}^{-\frac{1}{p-1}}\right)^{p-1}\right\}
$$

Therefore,

$$
\left(\frac{1}{|I|} \int_{I} w\right)\left(\frac{1}{|I|} \int_{I} \zeta^{-\frac{1}{p-1}}\right)^{p-1} \leq \frac{C}{C_{1}}\left(\frac{1}{|I|} \int_{I} u\right)\left(\frac{1}{|I|} \int_{I} v^{-\frac{1}{p-1}}\right)^{p-1}+\frac{C}{C_{1}}\left(\frac{1}{|I|} \int_{I} u_{1}\right)\left(\frac{1}{|I|} \int_{I} v_{1}^{-\frac{1}{p-1}}\right)^{p-1}
$$

This proves that $(w, \zeta) \in A_{p}(-1,1)$ with a constant depending on $C, C_{1}$ and the $A_{p}$ constants of $(u, v)$ and $\left(u_{1}, v_{1}\right)$.

Assume now that $w^{-1} \geq C\left(u^{-1}+u_{1}^{-1}\right)$ and $\zeta^{-1} \leq C_{1}\left(v^{-1}+v_{1}^{-1}\right)$. Then

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} w \leq \frac{1}{C} \min \left\{\frac{1}{|I|} \int_{I} u, \frac{1}{|I|} \int_{I} u_{1}\right\} \tag{16}
\end{equation*}
$$

for any interval $I \subseteq(-1,1)$. On the other hand, the inequality

$$
\begin{equation*}
\frac{1}{2}\left(a^{\lambda}+b^{\lambda}\right) \leq(a+b)^{\lambda} \leq 2^{\lambda}\left(a^{\lambda}+b^{\lambda}\right), \quad a, b \geq 0, \lambda>0 \tag{17}
\end{equation*}
$$

gives

$$
\zeta^{-\frac{1}{p-1}} \leq C_{1}^{\frac{1}{p-1}}\left(v^{-1}+v_{1}^{-1}\right)^{\frac{1}{p-1}} \leq C_{1}^{\frac{1}{p-1}} 2^{\frac{1}{p-1}}\left(v^{-\frac{1}{p-1}}+v_{1}^{-\frac{1}{p-1}}\right)
$$

and

$$
\left(\frac{1}{|I|} \int_{I} \zeta^{-\frac{1}{p-1}}\right)^{p-1} \leq 2^{p} C_{1}\left(\frac{1}{|I|} \int_{I} v^{-\frac{1}{p-1}}\right)^{p-1}+2^{p} C_{1}\left(\frac{1}{|I|} \int_{I} v_{1}^{-\frac{1}{p-1}}\right)^{p-1}
$$

This, together with (16), proves that $(w, \zeta) \in A_{p}(-1,1)$ with a constant depending on $C, C_{1}$ and the $A_{p}$ constants of $(u, v)$ and $\left(u_{1}, v_{1}\right)$.

Now, we use the following estimate for the Bessel functions, which is a consequence of (5), (6) and $-1<\alpha<-1 / 2$ :

$$
\left|z^{1 / 2} J_{\alpha}(z)\right| \leq C\left(1+z^{\alpha+1 / 2}\right), \quad z \geq 0
$$

and

$$
\left|z^{1 / 2} J_{\alpha+1}(z)\right| \leq C\left(1+z^{\alpha+1 / 2}\right)^{-1}, \quad z \geq 0
$$

In particular, there exists a constant $C$ such that, for $x \in(-1,1)$ and $n \geq 0$, we have

$$
M_{n}^{1 / 2}\left|J_{\alpha}\left(M_{n}|x|\right)\right| \leq C|x|^{-1 / 2}\left(1+\left|M_{n} x\right|^{\alpha+1 / 2}\right)
$$

and

$$
M_{n}^{1 / 2}\left|J_{\alpha+1}\left(M_{n}|x|\right)\right| \leq C \frac{|x|^{-1 / 2}}{1+\left|M_{n} x\right|^{\alpha+1 / 2}}
$$

Moreover, the inequality (17) gives

$$
2^{\alpha+1 / 2}|x|^{\alpha+1 / 2}\left(|x|+M_{n}^{-1}\right)^{-(\alpha+1 / 2)} \leq 1+\left|M_{n} x\right|^{\alpha+1 / 2} \leq 2|x|^{\alpha+1 / 2}\left(|x|+M_{n}^{-1}\right)^{-(\alpha+1 / 2)}
$$

so that we get

$$
\begin{equation*}
M_{n}^{1 / 2}\left|J_{\alpha}\left(M_{n}|x|\right)\right| \leq C|x|^{\alpha}\left(|x|+M_{n}^{-1}\right)^{-(\alpha+1 / 2)} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{n}^{1 / 2}\left|J_{\alpha+1}\left(M_{n}|x|\right)\right| \leq C|x|^{-(\alpha+1)}\left(|x|+M_{n}^{-1}\right)^{\alpha+1 / 2} . \tag{19}
\end{equation*}
$$

To handle these expressions, the following result will be useful:
Lemma 3. Let $1<p<\infty$, a sequence $\left\{M_{n}\right\}$ of positive numbers that tends to infinity, two nonnegative functions $U$ and $V$ defined on the interval $(-1,1),-1<\alpha<-1 / 2$ and $\delta>1(\delta=1$ if $U=V)$. If (3) and (4) are satisfied, then

$$
\begin{gather*}
\left(U(x)^{p}\left(|x|+M_{n}^{-1}\right)^{p(\alpha+1 / 2)}|x|^{(2 \alpha+1)(1-p)}, V(x)^{p}\left(|x|+M_{n}^{-1}\right)^{p(\alpha+1 / 2)}|x|^{(2 \alpha+1)(1-p)}\right) \in A_{p}^{\delta}(-1,1),  \tag{20}\\
\left(U(x)^{p}\left(|x|+M_{n}^{-1}\right)^{-p(\alpha+1 / 2)}|x|^{2 \alpha+1}, V(x)^{p}\left(|x|+M_{n}^{-1}\right)^{-p(\alpha+1 / 2)}|x|^{2 \alpha+1}\right) \in A_{p}^{\delta}(-1,1) \tag{21}
\end{gather*}
$$

"uniformly", i.e., with $A_{p}^{\delta}$ constants independent of $n$.
Proof. As a first step, let us observe that (3) and (4) imply

$$
\left(U(x)^{p}|x|^{(2 \alpha+1)\left(1-\frac{1}{2} p\right)}, V(x)^{p}|x|^{(2 \alpha+1)\left(1-\frac{1}{2} p\right)}\right) \in A_{p}^{\delta}(-1,1)
$$

To prove this, just put

$$
U(x)^{p}|x|^{(2 \alpha+1)\left(1-\frac{1}{2} p\right)}=\left[U(x)^{p}|x|^{(2 \alpha+1)(1-p)}\right]^{1 / 2}\left[U(x)^{p}|x|^{(2 \alpha+1)}\right]^{1 / 2}
$$

(the same with $V$ ) and check the $A_{p}^{\delta}$ condition using the Cauchy-Schwarz inequality and (3), (4).
Now, (17) yields

$$
\begin{aligned}
& {\left[U(x)^{p}\left(|x|+M_{n}^{-1}\right)^{p\left(\alpha+\frac{1}{2}\right)}|x|^{(2 \alpha+1)(1-p)}\right]^{-\delta}} \\
& \quad \geq \frac{1}{2}\left[U(x)^{p}|x|^{(2 \alpha+1)\left(1-\frac{1}{2} p\right)}\right]^{-\delta}+\frac{1}{2}\left[U(x)^{p} M_{n}^{-p\left(\alpha+\frac{1}{2}\right)}|x|^{(2 \alpha+1)(1-p)}\right]^{-\delta}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[V(x)^{p}\left(|x|+M_{n}^{-1}\right)^{p\left(\alpha+\frac{1}{2}\right)}|x|^{(2 \alpha+1)(1-p)}\right]^{-\delta}} \\
& \quad \leq 2^{-p \delta\left(\alpha+\frac{1}{2}\right)}\left[V(x)^{p}|x|^{(2 \alpha+1)\left(1-\frac{1}{2} p\right)}\right]^{-\delta}+2^{-p \delta\left(\alpha+\frac{1}{2}\right)}\left[V(x)^{p} M_{n}^{-p\left(\alpha+\frac{1}{2}\right)}|x|^{(2 \alpha+1)(1-p)}\right]^{-\delta}
\end{aligned}
$$

Thus, Lemma 2 gives (20) with an $A_{p}^{\delta}$ constant independent of $n$, since the $A_{p}^{\delta}$ constant of the pair

$$
\left(U(x)^{p} M_{n}^{-p\left(\alpha+\frac{1}{2}\right)}|x|^{(2 \alpha+1)(1-p)}, V(x)^{p} M_{n}^{-p\left(\alpha+\frac{1}{2}\right)}|x|^{(2 \alpha+1)(1-p)}\right)
$$

is the same constant of the pair

$$
\left(U(x)^{p}|x|^{(2 \alpha+1)(1-p)}, V(x)^{p}|x|^{(2 \alpha+1)(1-p)}\right)
$$

i.e., it does not depend on $n$. The proof of (21) follows the same argument, since

$$
\begin{aligned}
& {\left[U(x)^{p}\left(|x|+M_{n}^{-1}\right)^{-p\left(\alpha+\frac{1}{2}\right)}|x|^{2 \alpha+1}\right]^{\delta}} \\
& \quad \leq 2^{-p \delta\left(\alpha+\frac{1}{2}\right)}\left[U(x)^{p}|x|^{(2 \alpha+1)\left(1-\frac{1}{2} p\right)}\right]^{\delta}+2^{-p \delta\left(\alpha+\frac{1}{2}\right)}\left[U(x)^{p} M_{n}^{p\left(\alpha+\frac{1}{2}\right)}|x|^{2 \alpha+1}\right]^{\delta}
\end{aligned}
$$

and

$$
\left[V(x)^{p}\left(|x|+M_{n}^{-1}\right)^{-p\left(\alpha+\frac{1}{2}\right)}|x|^{2 \alpha+1}\right]^{\delta} \geq \frac{1}{2}\left[V(x)^{p}|x|^{(2 \alpha+1)\left(1-\frac{1}{2} p\right)}\right]^{\delta}+\frac{1}{2}\left[V(x)^{p} M_{n}^{p\left(\alpha+\frac{1}{2}\right)}|x|^{2 \alpha+1}\right]^{\delta}
$$

We already have all the ingredients to start with the proof of Theorem 2. Let us take the same decomposition $S_{n} f=T_{1, n} f+T_{2, n}+T_{3, n} f$ as in (13) in the previous section and consider each term separately.

### 5.1. The first term

As in the proof of Theorem 1, by using (19) we have

$$
\begin{aligned}
& \left\|U T_{1, n} f\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}^{p}=\int_{-1}^{1}\left|\int_{-1}^{1} \frac{f(y) M_{n}^{1 / 2} J_{\alpha}\left(M_{n}|y|\right)|y|^{\alpha+1}}{x-y} d y\right|^{p} U(x)^{p} M_{n}^{p / 2}\left|J_{\alpha+1}\left(M_{n}|x|\right)\right|^{p}|x|^{2 \alpha+1-\alpha p} d x \\
& \quad \leq C \int_{-1}^{1}\left|\int_{-1}^{1} \frac{f(y) M_{n}^{1 / 2} J_{\alpha}\left(M_{n}|y|\right)|y|^{\alpha+1}}{x-y} d y\right|^{p} U(x)^{p}\left(|x|+M_{n}^{-1}\right)^{p(\alpha+1 / 2)}|x|^{(2 \alpha+1)(1-p)} d x
\end{aligned}
$$

Now, by the $A_{p}$ condition (20), this is bounded by

$$
\left.\left.C \int_{-1}^{1}\left|f(x) M_{n}^{1 / 2} J_{\alpha}\left(M_{n}|x|\right)\right| x\right|^{\alpha+1}\right|^{p} V(x)^{p}\left(|x|+M_{n}^{-1}\right)^{p(\alpha+1 / 2)}|x|^{(2 \alpha+1)(1-p)} d x
$$

which, by (18) is in turn bounded by

$$
C \int_{-1}^{1}|f(x)|^{p} V(x)^{p}|x|^{2 \alpha+1} d x=C\|V f\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}^{p} .
$$

### 5.2. The second term

The definition of $T_{2, n}$ and (18) yield

$$
\begin{aligned}
& \left\|U T_{2, n} f\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}^{p}=\int_{-1}^{1}\left|\int_{-1}^{1} \frac{f(y) y M_{n}^{1 / 2} J_{\alpha+1}\left(M_{n}|y|\right)|y|^{\alpha}}{y-x} d y\right|^{p} U(x)^{p} M_{n}^{p / 2}\left|J_{\alpha}\left(M_{n}|x|\right)\right|^{p}|x|^{2 \alpha+1-\alpha p} d x \\
& \quad \leq C \int_{-1}^{1}\left|\int_{-1}^{1} \frac{f(y) y M_{n}^{1 / 2} J_{\alpha+1}\left(M_{n}|y|\right)|y|^{\alpha}}{y-x} d y\right|^{p} U(x)^{p}\left(|x|+M_{n}^{-1}\right)^{-p(\alpha+1 / 2)}|x|^{2 \alpha+1} d x
\end{aligned}
$$

Now, by the $A_{p}$ condition (21), this is bounded by

$$
\left.\left.C \int_{-1}^{1}\left|f(x) x M_{n}^{1 / 2} J_{\alpha+1}\left(M_{n}|x|\right)\right| x\right|^{\alpha}\right|^{p} V(x)^{p}\left(|x|+M_{n}^{-1}\right)^{-p(\alpha+1 / 2)}|x|^{2 \alpha+1} d x
$$

which, by (19) is in turn bounded by

$$
C \int_{-1}^{1}|f(x)|^{p} V(x)^{p}|x|^{2 \alpha+1} d x=C\|V f\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}^{p}
$$

### 5.3. The third term

Taking limits when $n \rightarrow \infty$ in (20) we get (2), so the proof of the boundedness of the third summand in Theorem 1 is still valid for Theorem 2.

## 6. Proof of Theorem 3

The following lemma is a small variant of a result proved in [8]. We give here a proof for the sake of completeness.

Lemma 4. Let $\nu>-1$. Let $h$ be a Lebesgue measurable nonnegative function on $[0,1],\left\{\rho_{n}\right\}$ a positive sequence such that $\lim _{n \rightarrow \infty} \rho_{n}=+\infty$ and $1 \leq p<\infty$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|\rho_{n}^{1 / 2} J_{\nu}\left(\rho_{n} x\right)\right|^{p} h(x) d x \geq M \int_{0}^{1} h(x) x^{-p / 2} d x \tag{22}
\end{equation*}
$$

(in particular, that limit exists), where $M$ is a positive constant independent of $h$ and $\left\{\rho_{n}\right\}$.
Proof. We can assume that $h(x) x^{\nu p}$ is integrable on $(0, \delta)$ for some $\delta \in(0,1)$, since otherwise

$$
\int_{0}^{1}\left|\rho_{n}^{1 / 2} J_{\nu}\left(\rho_{n} x\right)\right|^{p} h(x) d x=\infty
$$

for each $n$, as follows from (5), and (22) is trivial. Assume also for the moment that $h(x) x^{-p / 2}$ is integrable on $(0,1)$. For each $x \in(0,1)$ and $n$, let us put

$$
\varphi(x, n)=\left(\rho_{n} x\right)^{1 / 2} J_{\nu}\left(\rho_{n} x\right)-\sqrt{\frac{2}{\pi}} \cos \left(\rho_{n} x-\frac{\nu \pi}{2}-\frac{\pi}{4}\right) .
$$

The estimate (6) gives

$$
\lim _{n \rightarrow \infty} \varphi(x, n)=0
$$

for each $x \in(0,1)$. Moreover, in case $\rho_{n} x \geq 1$ the same estimate gives

$$
\begin{equation*}
|\varphi(x, n)| \leq \frac{C}{\rho_{n} x} \leq C \tag{23}
\end{equation*}
$$

with a constant $C$ independent of $n$ and $x$, while for $\rho_{n} x \leq 1$ it follows from (5) that

$$
\begin{equation*}
|\varphi(x, n)| \leq C\left(\left(\rho_{n} x\right)^{\nu+1 / 2}+1\right) \tag{24}
\end{equation*}
$$

Without loss of generality we can assume that $\rho_{n} \geq 1$. Then, (23) and (24) give $|\varphi(x, n)| \leq C\left(x^{\nu+1 / 2}+1\right)$ with a constant $C$ independent of $x$ and $n$, so that, by the dominate convergence theorem,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|\left(\rho_{n} x\right)^{1 / 2} J_{\nu}\left(\rho_{n} x\right)-\sqrt{\frac{2}{\pi}} \cos \left(\rho_{n} x-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)\right|^{p} h(x) x^{-p / 2} d x=0 \tag{25}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|\rho_{n}^{1 / 2} J_{\nu}\left(\rho_{n} x\right)\right|^{p} h(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1}\left|\sqrt{\frac{2}{\pi}} \cos \left(\rho_{n} x-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)\right|^{p} h(x) x^{-p / 2} d x \tag{26}
\end{equation*}
$$

Now we use Fejér's lemma: if $f \in L^{1}(0,2 \pi)$, and $g$ is a continuous, $2 \pi$-periodic function, then

$$
\lim _{\lambda \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} g(\lambda t) f(t) d t=\widehat{g}(0) \widehat{f}(0)=\frac{1}{2 \pi} \int_{0}^{\pi} g(t) d t \frac{1}{2 \pi} \int_{0}^{\pi} f(t) d t
$$

where $\widehat{f}, \widehat{g}$ denote the Fourier transforms of $f, g$. After a change of variables, Fejér's lemma applied to the right hand side of (26) gives

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|\rho_{n}^{1 / 2} J_{\nu}\left(\rho_{n} x\right)\right|^{p} h(x) d x=M \int_{0}^{1} h(x) x^{-p / 2} d x
$$

for some constant $M$, thus proving (22).
Finally, in case $h(x) x^{-p / 2}$ is not integrable on $(0,1)$, let us take the sequence of increasing measurable sets

$$
K_{j}=\left\{x \in(0,1): h(x) x^{-p / 2} \leq j\right\}, \quad j \in \mathbb{N}
$$

and define $h_{j}=h$ on $K_{j}$ and $h_{j}=0$ on $(0,1) \backslash K_{j}$. Applying (22) to each $h_{j}$ and then the monotone convergence theorem proves that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|\rho_{n}^{1 / 2} J_{\nu}\left(\rho_{n} x\right)\right|^{p} h(x) d x=\infty
$$

which is (22).
We can now prove Theorem 3.
Proof of Theorem 3. The first partial sum of the Fourier expansion is

$$
S_{0} f=e_{0} \int_{-1}^{1} f \overline{e_{0}} d \mu_{\alpha}=(\alpha+1) \int_{-1}^{1} f(x)|x|^{2 \alpha+1} d x
$$

so that the inequality $\left\|S_{0}(f) U\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)} \leq C\|f V\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}$ gives, by duality,

$$
U(x)^{p}|x|^{2 \alpha+1} \in L^{1}((-1,1), d x), \quad V(x)^{-p^{\prime}}|x|^{2 \alpha+1} \in L^{1}((-1,1), d x)
$$

In fact, this is needed just to ensure that the partial sums of the Fourier expansions of all functions in $L^{p}\left(V^{p} d \mu_{\alpha}\right)$ are well defined and belong to $L^{p}\left(U^{p} d \mu_{\alpha}\right)$. These are the last two integrability conditions of Theorem 3.

Now, if

$$
\left\|S_{n}(f) U\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)} \leq C\|f V\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}
$$

then the difference

$$
\begin{aligned}
S_{n} f-S_{n-1} f & =e_{n} \int_{-1}^{1} f \overline{e_{n}} d \mu_{\alpha}+e_{-n} \int_{-1}^{1} f \overline{e_{-n}} d \mu_{\alpha} \\
& =e_{n} \int_{-1}^{1} f \overline{e_{n}} d \mu_{\alpha}+\overline{e_{n}} \int_{-1}^{1} f e_{n} d \mu_{\alpha}
\end{aligned}
$$

is bounded in the same way. Taking even and odd functions, and using that $\operatorname{Re} e_{n}$ is even and $\operatorname{Im} e_{n}$ is odd, gives

$$
\begin{equation*}
\left\|U \operatorname{Re} e_{n}\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)}\left\|V^{-1} \operatorname{Re} e_{n}\right\|_{L^{p^{\prime}}\left((-1,1), d \mu_{\alpha}\right)} \leq C \tag{27}
\end{equation*}
$$

and the same inequality with $\operatorname{Im} e_{n}$. Recall that

$$
\operatorname{Re} e_{n}(x)=2^{\alpha / 2} \Gamma(\alpha+1)^{1 / 2} \frac{\left|s_{n}\right|^{\alpha}}{\left|J_{\alpha}\left(s_{n}\right)\right|} \frac{J_{\alpha}\left(s_{n} x\right)}{\left(s_{n} x\right)^{\alpha}}
$$

Taking into account that $\left|J_{\nu}(x)\right|$ is an even function (recall that $J_{\alpha}(z) / z^{\alpha}$ is taken as an even function) and $\left|J_{\alpha}\left(s_{n}\right)\right| \leq C s_{n}^{-1 / 2}$ (this follows from (6)), Lemma 4 gives

$$
\liminf _{n \rightarrow \infty} \int_{-1}^{1}\left|\frac{1}{J_{\alpha}\left(s_{n}\right)} J_{\nu}\left(s_{n} x\right)\right|^{p} h(x) d x \geq C \int_{-1}^{1} h(x)|x|^{-p / 2} d x
$$

for every measurable nonnegative function $h$. Therefore,

$$
\liminf _{n \rightarrow \infty}\left\|U \operatorname{Re} e_{n}\right\|_{L^{p}\left((-1,1), d \mu_{\alpha}\right)} \geq C\left(\int_{-1}^{1} U(x)^{p}|x|^{-p \alpha-\frac{p}{2}+2 \alpha+1} d x\right)^{\frac{1}{p}}
$$

and the corresponding lower bound for $\lim \inf _{n}\left\|V^{-1} \operatorname{Re} e_{n}\right\|_{L^{p^{\prime}\left((-1,1), d \mu_{\alpha}\right)}}$ holds. The same bounds hold for $\operatorname{Im} e_{n}$. Thus, (27) implies

$$
\left(\int_{-1}^{1} U(x)^{p}|x|^{-p \alpha-\frac{p}{2}+2 \alpha+1} d x\right)^{\frac{1}{p}}\left(\int_{-1}^{1} V(x)^{-p^{\prime}}|x|^{-p^{\prime} \alpha-\frac{p^{\prime}}{2}+2 \alpha+1} d x\right)^{\frac{1}{p^{\prime}}} \leq C
$$

or, in other words, the first two integrability conditions of Theorem 3.
Take now $f=U /(1+V+U V)$ and any measurable set $E \subseteq(-1,1)$. Then $f \in L^{2}\left(d \mu_{\alpha}\right)$ by Hölder's inequality, the obvious inequality $|f| \leq U V^{-1}$ and the integrability conditions $U \in L^{p}\left(d \mu_{\alpha}\right), V^{-1} \in L^{p^{\prime}}\left(d \mu_{\alpha}\right)$, already proved. Since $\left\{e_{j}\right\}_{j \in \mathbb{Z}}$ is a complete orthonormal system in $L^{2}\left((-1,1), d \mu_{\alpha}\right)$, we have $S_{n}\left(f \chi_{E}\right) \rightarrow$ $f \chi_{E}$ in the $L^{2}\left(d \mu_{\alpha}\right)$ norm. Therefore, there exists some subsequence $S_{n_{j}}\left(f \chi_{E}\right)$ converging to $f \chi_{E}$ almost everywhere. Fatou's lemma then gives

$$
\int_{-1}^{1}\left|f \chi_{E}\right|^{p} U^{p} d \mu_{\alpha} \leq \liminf _{j \rightarrow \infty} \int_{-1}^{1}\left|S_{n_{j}}\left(f \chi_{E}\right)\right|^{p} U^{p} d \mu_{\alpha}
$$

Under the hypothesis of Theorem 3, each of the integrals on the right hand side is bounded by

$$
C^{p} \int_{-1}^{1}\left|f \chi_{E}\right|^{p} V^{p} d \mu_{\alpha}
$$

(observe, by the way, that $f V \in L^{p}\left(d \mu_{\alpha}\right)$, since $|f V| \leq 1$ ). Thus,

$$
\int_{-1}^{1}\left|f \chi_{E}\right|^{p} U^{p} d \mu_{\alpha} \leq C^{p} \int_{-1}^{1}\left|f \chi_{E}\right|^{p} V^{p} d \mu_{\alpha}
$$

for every measurable set $E \subseteq(-1,1)$. This gives $f U \leq C f V$ almost everywhere, and $U \leq C V$.

## Acknowledgment

We thank the referee for his valuable suggestions, which helped us to make the paper more readable.

## References

[1] N. B. Andersen and M. de Jeu, Elementary proofs of Paley-Wiener theorems for the Dunkl transform on the real line, Int. Math. Res. Not. 30 (2005), 1817-1831.
[2] A. Benedek and R. Panzone, On mean convergence of Fourier-Bessel series of negative order, Studies in Appl. Math. 50 (1971), 281-292.
[3] A. Benedek and R. Panzone, Mean convergence of series of Bessel functions, Rev. Un. Mat. Argentina 26 (1972/73), 42-61.
[4] J. J. Betancor, Ó. Ciaurri and J. L. Varona, The multiplier of the interval $[-1,1]$ for the Dunkl transform on the real line, J. Funct. Anal. 242 (2007), 327-336.
[5] Ó. Ciaurri and J. L. Varona, A Whittaker-Shannon-Kotel'nikov sampling theorem related to the Dunkl transform, Proc. Amer. Math. Soc. 135 (2007), 2939-2947.
[6] C. F. Dunkl, Integral kernels with reflections group invariance, Canad. J. Math. 43 (1991), 1213-1227.
[7] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), 147-162.
[8] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Two notes on convergence and divergence a.e. of Fourier series with respect to some orthogonal systems, Proc. Amer. Math. Soc. 116 (1992), 457-464.
[9] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Mean and weak convergence of Fourier-Bessel series, J. Math. Anal. Appl. 173 (1993), 370-389.
[10] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
[11] H. Mejjaoli and K. Trimèche, A variant of Cowling-Price's theorem for the Dunkl transform on $\mathbb{R}$, J. Math. Anal. Appl. 345 (2008), 593-606.
[12] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[13] C. J. Neugebauer, Inserting $A_{p}$ weights, Proc. Amer. Math. Soc. 87 (1983), 644-648.
[14] A. Nowak and K. Stempak, Relating transplantation and multipliers for Dunkl and Hankel transforms, Math. Nachr. 281 (2008), 1604-1611.
[15] A. Nowak and K. Stempak, Riesz transforms for the Dunkl harmonic oscillator, Math. Z. 262 (2009), 539-556.
[16] M. Rösler and M. Voit, An uncertainty principle for Hankel transforms, Proc. Amer. Math. Soc. 127 (1999), 183-194.
[17] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1944.
[18] G. M. Wing, The mean convergence of orthogonal series, Amer. J. Math. 72 (1950), 792-808.
[19] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 1952.


[^0]:    *Corresponding author
    Email addresses: oscar.ciaurri@unirioja.es (Óscar Ciaurri), mperez@unizar.es (Mario Pérez), reyes.juanmanuel@gmail.com (Juan Manuel Reyes), jvarona@unirioja.es (Juan Luis Varona)
    ${ }^{1}$ Supported by grant MTM2009-12740-C03-03, Ministerio de Ciencia e Innovación, Spain
    ${ }^{2}$ Supported by grant E-64, Gobierno de Aragón, Spain

