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In this paper, we study the structure of Lie algebras which 
have free t-nilpotent Lie algebras n2,t of type 2 as nilradical 
and give a detailed construction for them. We prove that the 
dimension of any Lie algebra g of this class is dim n2,t +k. If g
is solvable, k ≤ 2; otherwise, the Levi subalgebra of g is sl2(K), 
the split simple 3-dimensional Lie algebra of 2 × 2 matrices 
of trace zero, and then k ≤ 4. As an application of the main 
results we get the classification over algebraically closed fields 
of Lie algebras with nilradical n2,1, n2,2 and n2,3.
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1. Introduction

From Levi’s Theorem, any finite-dimensional Lie algebra g decomposes as g = s ⊕ r, 
direct sum of vector spaces, where r is the solvable radical (the maximal solvable ideal 
of g) and s is a semisimple subalgebra called Levi subalgebra (or Levi factor). The Lie 
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algebra g is faithful if the adjoint representation of the subalgebra s in r is faithful 
(equivalently, g contains no nonzero semisimple ideals). Note that any Lie algebra with 
radical r can be decomposed into the direct sum (as ideals) of a semisimple Lie algebra 
and a faithful Lie algebra with the same radical. Let now consider the nilradical n of g, 
i.e. the largest nilpotent ideal inside g. The nilradical is contained in the solvable radical 
and:

[g, r] ⊆ n. (1)

In other words, the action of g on r
n

is trivial.
Concerning the problem of the classification of Lie algebras of a given radical, Mal-

cev [12] (see also [17, Theorem 4.4, Section 4]) proved the following structure result:

Theorem 1.1. Any faithful Lie algebra g with solvable radical r is isomorphic to a Lie 
algebra of the form s ⊕id r where s is a semisimple subalgebra of a Levi subalgebra s0 of the 
algebra of derivations of r, named Der r. Moreover, given s1 and s2 semisimple subalgebras 
of s0, the algebras s1⊕id r and s2 ⊕id r are isomorphic if and only if s2 = As1A

−1, where 
A is an automorphism of r. �

The product in s ⊕id r is given by considering s and r as subalgebras and [d, a] := d(a)
for d ∈ s and a ∈ r; since s ⊆ Der r, [d1, d2] = d1d2 − d2d1 is the Lie bracket for di ∈ s.

The previous theorem reduces the problem of classifying Lie algebras with a given 
solvable radical r, to the analysis of derivations and automorphisms of the solvable Lie 
algebra r. The same argument is valid if we consider the problem of classifying Lie al-
gebras with a given nilradical. According to [13], solvable Lie algebras can be classified 
through nilpotent ones and, from [19], any nilpotent Lie algebra is a quotient of a free 
nilpotent Lie algebra of the same type and nilindex. So, as the former problem reduces 
to the latter one, it seems to be quite natural to start studying the classification of Lie 
algebras with a given nilradical. This is the starting point in [2] where Malcev’s decompo-
sitions of Lie algebras are studied, or in [16] where the problem of classifying Lie algebras 
whose radical is just the nilradical of a parabolic subalgebra of a semisimple Lie algebra 
is treated. In this paper we classify Lie algebras with nilradical a free nilpotent Lie al-
gebra n2,t of type 2 and nilindex t (i.e. nt+1

2,t = 0, nt2,t �= 0 and dim n2,t − dim n2
2,t = 2). 

Following [19], the Levi subalgebra of Der n2,t is sl2(K), the split 3-dimensional simple 
Lie algebra of 2 ×2 matrices of trace zero. So, our main idea in this paper is to apply basic 
representation theory of sl2(K) to attack the problem. This technique has been used pre-
viously in [21] to get the classification of the 9-dimensional nonsolvable indecomposable 
Lie algebras.

This paper is organized as follows. Section 2 gives some basic definitions and facts 
on free nilpotent Lie algebras n2,t and includes a complete description of Der n2,t, the 
Lie algebra of derivations of n2,t. Sections 3 and 4 deal with the structure and general 
construction of Lie algebras with nilradical n2,t. It turns out that the solvable radical of 
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Lie algebras of this class is an extension of n2,t by a suitable vector subspace of Dern2,t of 
dimension at most two. The results in Sections 3 and 4 will be used in Section 5 to review 
and present in a unified way the classifications of Lie algebras with nilradical n2,2 and 
n2,3 given in [18] (where only solvable extensions are considered) and [1]. The Lie algebra 
n2,2 is a 3-dimensional Heisenberg algebra and n2,3 is a 5-dimensional quasi-classical Lie 
algebra denoted as L5,3 in [1]. Here quasi-classical means endowed with a symmetric 
non-degenerate invariant form according to [14, Definition 2.1]. In [3], the authors es-
tablish that n2,3 and n3,2 (free nilpotent of type 3) are the unique quasi-classical free 
nilpotent Lie algebras. Following [15], quasi-classical Lie algebras are related to consis-
tent Yang–Mills gauge theories, so the results in this paper are interesting for theoretical 
physics.

Throughout the paper all the vector spaces are finite dimensional over a field K of 
characteristic zero. We follow [9] and [10] for basic definitions and results on Lie algebras.

2. Lie algebras of type 2

(The results in this section are partially included in [5, Section 3], where free nilpotent 
Lie algebras of characteristic zero and arbitrary type are treated.)

A nilpotent Lie algebra n is said to be t-nilpotent in case nt �= 0 and nt+1 = 0 and of 
type d if d = dim n − dim n2. So type 2 implies dim n = 2 + dim n2.

The free nilpotent Lie algebra n2,t is defined as the quotient:

n2,t = FL2

FL
t+1
2

(2)

of the free Lie algebra FL2 on {x1, x2} by the ideal

FL
t+1
2 =

∑
j≥t+1

span
〈[
. . . [xi1xi2 ] . . . xij

]
: is ∈ {1, 2}

〉
.

We consider right-normalized iterated commutators denoted by [xi1 , ..., xis ]. From [19, 
Proposition 4, Proposition 2] and [6, Proposition 1.4] we have:

Proposition 2.1. The algebra n2,t is a quasicyclic t-nilpotent Lie algebra of type 2 and 
any other t-nilpotent Lie algebra of type 2 is a homomorphic image of n2,t. Moreover, 
the Lie algebra of derivations of n2,t is:

Der n2,t =
{
δ̂ : δ ∈ Hom(m,m)

}
⊕

{
δ̂ : δ ∈ Hom

(
m, n2

2,t
)}

,

where m = span〈x1, x2〉 and, for δ ∈ Hom(m, m) or δ ∈ Hom(m, n2
2,t) and s ≥ 2:

δ̂
(
[xi1 , xi2 , . . . , xij , . . . , xis ]

)
=

s∑
j=1

[
xi1 , xi2 , . . . , δ(xij ), . . . , xis

]
. � (3)
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According to [11], a nilpotent Lie algebra n is called quasicyclic if there exists a 
subspace u such that n = n2 ⊕ u (direct sum as vector spaces) and n decomposes as a 
(finite) direct sum of subspaces uk = [u, uk−1]. So, from Proposition 2.1, we can assume 
w.l.o.g.:

n2,t = m⊕m2 ⊕ . . .⊕mt, (4)

for k ≥ 2, mk = span〈[. . . [xi1xi2 ] . . . xik ] : ij ∈ {1, 2}〉. The direct sum in (4) provides a 
graded decomposition of n2,t and, the dimension of each component ms, is given in terms 
of the Möebius function μ:

dimms = 1
s

∑
d|s

μ(d)2 s
d . (5)

We denote by gl(m) the general linear Lie algebra of K-linear maps δ : m → m and, 
for j ≥ 1, Derj n2,t = {δ̂ : δ ∈ Hom(m, mj)}. So Der1 n2,t = {δ̂ : δ ∈ gl(m)}, is a Lie 
subalgebra of Der n2,t isomorphic to gl(m) = sl(m) ⊕ K · idm (the 3-dimensional simple 
Lie algebra sl(m) on m plus the identity map) and

Der n2,t =
t⊕

j=1
Derj n2,t (6)

with the multiplication rule [di, dk] = didk − dkdi ∈ Deri+k−1 n2,t, ds ∈ Ders n2,t. More-
over, the derived algebra Der01 n2,t = [Der1 n2,t, Der1 n2,t] is just Der01 n2,t = {δ̂ : δ ∈
sl(m)}, a Levi subalgebra of Der n2,t which is isomorphic to sl2(K). In this way,

Der1 n2,t = Der01 n2,t ⊕K · id2,t (7)

where id2,t = îdm is the extended derivation of idm. Note that id2,t|ms = s · idms for 
s ≥ 1. The solvable radical R2,t and the nilradical N2,t of Der n2,t are given by:

N2,t =
t⊕

j≥2
Derj n2,t (8)

R2,t = K · id2,t ⊕N2,t. (9)

We also note that the elements of N2,t are nilpotent maps and [id2,t, ̂δ] = (s − 1)δ̂ for 
any δ̂ ∈ Ders n2,t (s ≥ 1).

Concerning the classification problem of Lie algebras having n2,t as solvable radical 
we have (cf. of [5, Proposition 3.2] and Theorem 1.1):

Theorem 2.2. Up to isomorphism, g2,t = Der01 n2,t⊕idn2,t is the unique faithful Lie algebra 
with solvable radical the free nilpotent Lie algebra n2,t. In particular, apart from g2,t, any 
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nonsolvable Lie algebra with radical n2,t is a direct sum of ideals of the form s ⊕ n2,t or 
s ⊕ g2,t, where s is an arbitrary semisimple Lie algebra. �

By using irreducible modules V (n) of sl2(K) ∼= Der01 n2,t (see [9, Section II.7]) we 
can get, in an algorithmic way, explicit bases for n2,t and g2,t with rational structure 
constants. The bases are obtained through the natural action of Der01 n2,t on m ∼= V (1)
and the induced action on the j-tensor vector space ⊗jm (for a computational approach 
see [4]), and they are closely related to Hall bases [8]. The next result shows how this 
method works:

Proposition 2.3. Up to isomorphism, the nonsolvable Lie algebras with solvable radical a 
free nilpotent algebra of type 2 and nilindex t ≤ 5 are:

i) The 5-dimensional algebra g2,1 with basis {e, f, h, v0, v1} and nonzero products 
[e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, [e, v1] = v0 and 
[f, v0] = v1. In this case, n2,1 = Kv0 ⊕Kv1 is a V (1)-module of the Levi subalgebra 
Ke ⊕Kf ⊕Kh (∼= Der01 n2,1).

ii) The 6-dimensional algebra g2,2 with basis {e, f, h, v0, v1, w0} and non-zero products 
[e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, [e, v1] = v0, [f, v0] =
v1 and [v0, v1] = w0. In this case, n2,2 = Kv0 ⊕Kv1 ⊕Kw0 is a V (1) ⊕ V (0)-module 
of the Levi subalgebra Ke ⊕Kf ⊕Kh (∼= Der01 n2,2).

iii) The 8-dimensional algebra g2,3 with basis {e, f, h, v0, v1, w0, z0, z1} and nonzero prod-
ucts [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, [e, v1] = v0, 
[f, v0] = v1, [h, z0] = z1, [h, z0] = −z0, [e, z1] = z0, [f, z0] = z1, [v0, v1] = w0, 
[v0, w0] = z0 and [v1, w0] = z1. In this case, n2,3 = Kv0 ⊕Kv1 ⊕Kw0 ⊕Kz0 ⊕Kz1 is 
a V (1) ⊕ V (0) ⊕ V (1)-module of the Levi subalgebra Ke ⊕Kf ⊕Kh (∼= Der01 n2,3).

iv) The 11-dimensional algebra g2,4 with basis {e, f, h, v0, v1, w0, z0, z1, x0, x1, x2} and 
nonzero products [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, 
[e, v1] = v0, [f, v0] = v1, [h, z0] = z1, [h, z0] = −z1, [e, z1] = z0, [f, z0] = z1, 
[h, x0] = 2x0, [h, x2] = −2x2, [e, x1] = 2x0, [e, x2] = x1, [f, x0] = x1, [f, x1] = 2x2, 
[v0, v1] = w0, [v0, w0] = z0, [v1, w0] = z1, [v0, z0] = x0, [v0, z1] = [v1, z0] = 1

2x1 and 
[v1, z1] = x2. In this case, n2,4 = Kv0⊕Kv1⊕Kw0⊕Kz0⊕Kz1⊕Kx0⊕Kx1⊕Kx2 is a 
V (1) ⊕V (0) ⊕V (1) ⊕V (2)-module of the Levi subalgebra Ke ⊕Kf⊕Kh (∼= Der01 n2,4).

v) The 17-dimensional algebra g2,5 with basis {e, f, h, v0, v1, w0, z0, z1, x0, x1, x2, y0, y1,

y2, y3, u0, u1} and nonzero products [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, 
[h, v1] = −v1, [e, v1] = v0, [f, v0] = v1, [h, z0] = z1, [h, z0] = −z1, [e, z1] = z0, 
[f, z0] = z1, [h, x0] = 2x0, [h, x2] = −2x2, [e, x1] = 2x0, [e, x2] = x1, [f, x0] = x1, 
[f, x1] = 2x2, [v0, v1] = w0, [v0, w0] = z0, [v1, w0] = z1, [v0, z0] = x0, [v0, z1] =
[v1, z0] = 1

2x1 and [v1, z1] = x2. In this case, n2,5 = Kv0 ⊕Kv1 ⊕Kw0 ⊕Kz0 ⊕Kz1 ⊕
Kx0 ⊕Kx1 ⊕Kx2Ky0 ⊕Ky1 ⊕Ky2 ⊕Ky3 ⊕Ku0 ⊕Ku1 is a V (1) ⊕ V (0) ⊕ V (1) ⊕
V (2) ⊕ V (3) ⊕ V (2)-module of the Levi subalgebra Ke ⊕Kf ⊕Kh (∼= Der01 n2,5).
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vi) s ⊕ n2,t and s ⊕ g2,t, where s is an arbitrary semisimple Lie algebra and ⊕ denotes 
here direct sum of ideals.

Proof. Let L = s ⊕ n2,t with s a Levi subalgebra. By using the adjoint (restricted) 
representation ρ = adn2,t of L, the radical n2,t becomes an s-module. If ρ is nontrivial, 
ρ(s) is a semisimple subalgebra of the Levi subalgebra of Dern2,t. So, s = Ker ρ ⊕ s1, 
where s1 is a 3-dimensional split simple ideal of s and s1 ⊕ n2,t is a faithful Lie algebra. 
From Theorem 2.2, up to isomorphism, we can assume s1 ⊕ n2,t = Der01 n2,t ⊕id n2,t. 
From now on, we fixed a standard basis {e, f, h} of the 3-dimensional split simple algebra 
Der01 n2,t so: [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . Note that m is a faithful module by 
declaring d · x = [d, x] = d(x). Thus m is irreducible of type V (1) and we can take 
a standard basis {v0, v1} of m as in [9]. If t = 1, i) follows immediately. For s ≥ 2
the homogeneous components ms given in (4) are Der01 n2,t-submodules contained in 
the tensor product m ⊗ ms−1 (the Lie product [·,·] : m ⊗ ms−1 → ms is a surjective 
homomorphism of Der01 n2,t-modules). So, from Clebch–Gordan formula and a counting 
dimension argument based on (5) we have:

• m2 ⊆ m ⊗m = V (1) ⊗ V (1) = V (2) ⊕ V (0); so m2 = V (0) is a trivial module. Thus 
m2 = span〈[v0, v1]〉 and for t = 2, defining w0 = [v0, v1] we have ii).

• m3 ⊆ m ⊗m2 = V (1) ⊗ V (0) = V (1); so m3 = V (1) is a 2-irreducible module. Since 
m3 = [m, m2] = span〈[v0, w0] = z0, [v1, w0] = z1〉, for t = 3 we obtain iii).

• m4 ⊆ m ⊗ m3 = V (1) ⊗ V (1) = V (2) ⊕ V (0); so m4 = V (2) is a 3-irreducible 
module. Since m4 = [m, m3] and [v1, z0] = [v0, z1], the set {[v0, z0] = x0, 2[v1, z0] =
x1, [v1, z0] = x2} turns out a standard basis of V (2) inside m4. So, we have iv).

• m5 is 6-dimensional and m5 ⊆ m ⊗ m4 = V (1) ⊗ V (2) = V (3) ⊕ V (1), so m5 =
V (3) ⊕V (1). In this case, the set {y0 = [v0, x0], y1 = [v0, x1] +[v1, x0], y2 = [v1, x1] +
[v0, x2], y3 = [v1, x2]} spans a module of type V (3) (in fact it is a standard basis) 
and the set {u0 = [v0, x1] − 2[v1, x0], u1 = −[v1, x1] + 2[v0, x2]} spans a V (1) module 
(standard basis). In this case, [mi, mj ] = 0 for i, j ≥ 3 or i = 2 and j ≥ 4, and 
the product relation [w0, zi] = 1

2ui follows easily by using Jacobi identity. Then, 
{y0, y1, y2, y3, u0, u1} is a basis of m5 and we have v).

The final item vi) covers the non-faithful Lie algebras with solvable radical n2,t. �
Now, from Proposition 2.3, [6, Proposition 1.5] and [5, Theorem 3.5] we get the whole 

list of nilpotent Lie algebras of type 2 and nilindex ≤ 4:

Corollary 2.4. Up to isomorphism, the nilpotent Lie algebras of type 2 and nilindex t ≤ 4
are:

a) n2,t for t = 1, 2, 3, 4;
b) the quotient Lie algebra n2,3

I , where I is any 1-dimensional subspace of n3
2,3 =

span〈z0, z1〉;
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c) the quotient Lie algebra n2,4
I where I is one of the following ideals:

i) any 1 or 2-dimensional subspace of n4
2,3 = span〈x0, x1, x2〉,

ii) I = span〈z1 + αx0, x1, x2〉, α ∈ K or
iii) I = span〈z0 + αz1 + βx2, 2x0 + αx1, x1 + 2αx2〉, α, β ∈ K.

Moreover, the algebras in the previous list that admit a nontrivial Levi extension are 
those given in item a).

Proof. From [6, Proposition 1.5], these algebras are of the form n2,t
I where the ideal I is 

contained in n2
2,t and such that nt2,t � I. Now, the result for t ≤ 4 is a straightforward 

computation. �
Remark 1. Corollary 2.4 provides the classification of filiform Lie algebras of nilindex ≤ 4. 
Apart from n2,1 and n2,2 the algebras in this class are given in items b), c)-ii), c)-iii). By 
considering 2-subspaces I, item c)-i) and n2,3 give us all quasifiliform algebras of type 2 
and nilindex ≤ 4. �
3. Solvable Lie algebras with nilradical n2,t

Given a general Lie algebra g, and any abelian subalgebra t of Der g (so t2 = [t, t] = 0), 
from [10, Section 5, Chapter I] we can define the split extension g(t) = t ⊕idg by declaring 
g and t as subalgebras of g(t) and [d, x] = d(x) for any d ∈ t. Then, by using derivations, 
we can get new Lie algebras easily.

We denote r and n the solvable and the nilpotent radicals of g respectively. Because 
of the Levi theorem, g = s ⊕ r where s is a Levi subalgebra and [g, r] ⊆ n. Moreover the 
nilradical can be described as:

n = {x ∈ r : adr x is nilpotent} = {x ∈ r : adg x is nilpotent}

(see [7, Proposition 2.3.6, Chapter 2]). So adr x is a non-nilpotent derivation of n for 
any x ∈ r − n. Thus we have the direct sum decomposition r = n ⊕ t, where t is a 
vector subspace such that t2 ⊆ n, and adr t are non-nilpotent derivations of n. Moreover, 
[adr t, adr t] = adr t

2 is contained in Inner n, the ideal of inner derivations of n.
In this section we prove that any solvable Lie algebra r with nilradical n2,t satisfies

dim r ≤ dim n2,t + 2,

which agrees with [20, Theorem 1]. We also show that the bound dim r = dim n2,t + 2
can always be obtained. Even more, we will prove that the solvable Lie algebras with 
nilradical n2,t arise from vector spaces of derivations closely related to the subalgebra 
Der1 n2,t = Der01 n2,t ⊕K · id2,t described in (7).

Theorem 3.1. Let r be a solvable and non-nilpotent Lie algebra with nilradical n2,t. Then:
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a) either r is the split extension r(δ) = K · δ ⊕id n2,t where δ is any non-nilpotent
derivation of n2,t,

b) or there are derivations μ1, μ2 of n2,t, μ1 = id2,t + η1, μ2 = δ + η2 where 0 �= δ ∈
Der01 n2,t is semisimple, η1, η2 ∈ N2,t, the bracket [μ1, μ2] = μ1μ2 − μ2μ1 = adn2,t x

for some x ∈ n2,t, and the set of derivations K ·μ1⊕K ·μ2 has no nilpotent elements; in 
this case, r is the Lie algebra with underlying vector space r(μ1, μ2; x) = n2,t⊕K ·μ1⊕
K · μ2 and Lie product for a, b ∈ n2,t 〈a, b〉μ1,μ2 the product in n2,t, 〈μ1, μ2〉μ1,μ2 = x

and 〈μi, y〉μ1,μ2 = μi(y) for any y ∈ n2,t.

Moreover, two Lie algebras in item a) are isomorphic if and only if

θδθ−1 − αδ′ ∈ Inner n2,t,

for some 0 �= α ∈ K and θ ∈ Aut n2,t; two Lie algebras in item b) are isomorphic if and 
only if there exist αi,j ∈ K, y1, y2 ∈ n2,t and θ ∈ Aut n2,t such that

0 �= Δij = α11α22 − α12α21,
θμiθ

−1 − αi1μ
′
1 − αi2μ

′
2 = adn2,t yi and

θ(x) = Δijx
′ + α11μ

′
1(y2) + α12μ

′
2(y2) − α21μ

′
1(y1) − α22μ

′
2(y1) + 3[y1, y2].

Proof. It is a straightforward computation that r(δ) and r(μ1, μ2; x) are Lie algebras. 
Now, let t be an arbitrary complement of n2,t in the solvable Lie algebra r. From (1), we 
have the relation t2 ⊆ r2 ⊆ n2,t. Note that, since the nilradical of r is n2,t, the vector linear 
space adn2,t t is a subspace of non-nilpotent derivations of n2,t. Consider now the adjoint 
representation adn2,t : r → Der n2,t and the projection homomorphism π0 : Der n2,t →
Der1 n2,t. Then, Kerπ0 ◦ adn2,t = {a ∈ r : adn2,t a ∈ N2,t} = n2,t. Thus the quotient r

n2,t

is an abelian Lie algebra with the same dimension as t and isomorphic to Imπ0 ◦ adn2,t . 
Since Der1 n2,t ∼= gl2(K), up to isomorphism, Im π0 ◦adn2,t is a set of commutative linear 
transformations over a 2-dimensional vector space. For any α · idm �= f ∈ Im π0 ◦ adn2,t , 
the centralizer of f , Cgl2(K)(f) is a 2-dimensional subspace and it contains Imπ0 ◦adn2,t . 
So, dim t = 1, 2. In case t = K · x, we get r ∼= r(adn2,t x) and item a) follows. For a 
2-dimensional extension t, Im π0◦adn2,t t = Cgl2(K)(δ) = K ·id2,t⊕K ·δ and w.l.o.g., we can 
assume that δ is traceless and semisimple because adn2,t t has not nilpotent maps. Thus 
there exists a basis {x1, x2} of t with adn2,t xi = μi and x = [x1, x2] ∈ n2,t as described in 
item b). In this case, r is isomorphic to the Lie algebra r(adn2,t x1, adn2,t x2; x). The final 
assertion on isomorphisms is easily checked taking into account that any isomorphism 
between Lie algebras preserve the nilradical. �
Example 1. For any arbitrary t ≥ 1, let m = K ·v0⊕K ·v1 and h2,t be the derivation of n2,t

obtained by extension of the linear map h ∈ gl(m) such that h(v0) = v0 and h(v1) = −v1. 
Consider the abelian subalgebra t = K · id2,t ⊕K · h2,t of derivations of Der1 n2,t. Then, 
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the split extensions r(id2,t) = K ·id2,t⊕idn2,t and r(id2,t, h2,t; 0) = span〈id2,t, h2,t〉 ⊕idn2,t

are solvable Lie algebras with nilradical the free nilpotent Lie algebra n2,t.

Remark 2. Note that Z(n2,t) = mt, id2,t|mt = t · idmt and any derivation of N2,t acts 
trivially on Z(n2,t). In Theorem 3.1, item b), if the derivations μ1 and μ2 commute, the 
bracket derivation [μ1, μ2] = μ1μ2 − μ2, μ1 = 0 is equal to adn2,t z for any z ∈ Z(n2,t). 
So we have Lie algebras r(μ1, μ2; z) ∀z∈Z(n2,t), but all of them are isomorphic to the 
split extension r(μ1, μ2; 0) = span〈μ1, μ2〉 ⊕id n2,t, taking Φ(n) = n ∀z∈n2,t , Φ(μ1) = μ1

and Φ(μ2) = μ2 − 1
t z, we get an isomorphism Φ : r(μ1, μ2; 0) → r(μ1, μ2; z). Thus, from 

commutative 2-dimensional subspaces of derivations, up to isomorphism we get split 
extensions (i.e., extensions through abelian subalgebras of derivations).

3.1. Derivations and automorphisms

From [19, Proposition 2.1], the set of derivations of any Lie algebra n2,t is completely 
determined by Hom(m, m) and Hom(m, n2

d,t) = ⊕2≤j≤t Hom(m, mj). Moreover, any auto-
morphism appears as an extension of a map of the general linear group GL(m) according 
to [19, Proposition 3]. Along this section, the algebras of derivations and groups of au-
tomorphisms of free nilpotent Lie algebras will be represented through matrices (αij)
relative to the bases given in Proposition 2.3 (m = K · v0 ⊕K · v1, only nonzero products 
are displayed). The sets Der n2,3 and Aut n2,3 appear in [3]; here we present an alternative 
method for computing them.

n2,1: Abelian 2-dimensional.
Der n2,1 = gl2(K) = Der1 n2,1:

Dβ
u =

(
α1 + β α2
α3 −α1 + β

)
, u = (α1, α2, α3);

extended derivation of the identity map I2 is I2,1 = I2 = D1
0;

N2,1 = Inner n2,1 = 0;
Aut n2,1 = GL2(K):

θv =
(
α1 α2
α3 α4

)
, v = (α1, . . . , α4) and ε = α1α4 − α2α3 �= 0.

n2,2: Heisenberg 3-dimensional, [v0, v1] = w0.

Der n2,2 : Dβ
u =

⎛⎜⎝ α1 + β α2 0
α3 −α1 + β 0
α α 2β

⎞⎟⎠ , u = (α1, . . . , α5);

4 5
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Der1 n2,2 : Dβ
(α1,α2,α3,0,0) =

⎛⎜⎝ α1 + β α2 0
α3 −α1 + β 0
0 0 2β

⎞⎟⎠ ;

extended derivation of I2 is the 3 × 3 matrix I2,2 = D1
0;

N2,2 = Inner n2,2 : D0
(0,0,0,α4,α5) =

⎛⎜⎝ 0 0 0
0 0 0
α4 α5 0

⎞⎟⎠ ;

Aut n2,2 : θv =

⎛⎜⎝ α1 α2 0
α3 α4 0
α5 α6 ε

⎞⎟⎠ , v = (α1, . . . , α5).

n2,3: [v0, v1] = w0, [vi, w0] = zi, i = 0, 1.
Der n2,3:

Dβ
u =

⎛⎜⎜⎜⎜⎜⎝
α1 + β α2 0 0 0
α3 −α1 + β 0 0 0
α4 α5 2β 0 0
α6 α7 α5 α1 + 3β α2
α8 α9 −α4 α3 −α1 + 3β

⎞⎟⎟⎟⎟⎟⎠ , u = (α1, . . . , α9);

Der1 n2,3:

Dβ
(α1,α2,α3,0,0,0,0,0,0) =

⎛⎜⎜⎜⎜⎜⎝
α1 + β α2 0 0 0
α3 −α1 + β 0 0 0
0 0 2β 0 0
0 0 0 α1 + 3β α2
0 0 0 α3 −α1 + 3β

⎞⎟⎟⎟⎟⎟⎠ ;

extended derivation of I2 is the 5 × 5 matrix I2,3 = D1
0;

N2,3 : D0
(0,0,0,α4,...,α9) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
α4 α5 0 0 0
α6 α7 α5 0 0
α8 α9 −α4 0 0

⎞⎟⎟⎟⎟⎟⎠ ;

Inner n2,3 : D0
(0,0,0,α4,α5,α6,0,0,0) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
α4 α5 0 0 0
α6 0 α5 0 0
0 α −α 0 0

⎞⎟⎟⎟⎟⎟⎠ ;
6 4
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Aut n2,3 : θv =

⎛⎜⎜⎜⎜⎜⎝
α1 α2 0 0 0
α3 α4 0 0 0
α5 α6 ε 0 0
α7 α8 α1α6 − α2α5 εα1 εα2
α9 α10 α3α6 − α4α5 εα3 εα4

⎞⎟⎟⎟⎟⎟⎠ , v = (α1, . . . , α10).

3.2. Solvable 1-extensions of n2,t for t = 1, 2, 3

(Along Sections 3.2.1, 3.2.2 and 3.2.3 we assume that K is algebraically closed.)
Solvable 1-extensions r(δ) = n2,t⊕K ·δ follows from a no nilpotent derivation δ = D+O

where D ∈ Der1 n2,t and O ∈ N2,t. Since θ Inner n2,tθ
−1 = Inner n2,t, we can consider 

w.l.o.g. extensions by derivations with zero projection on the ideal of inner derivations 
(see comment on isomorphisms in Theorem 3.1).

3.2.1. 1-extensions in case n2,1

From Inner n2,1 = 0, the solvable 1-extensions of n2,1 are determined by Jordan forms 
of 2 × 2 matrices. So, up to isomorphism, δ is one of following derivations:

1. D1
(0,0,1) =

( 1 0
1 1

)
.

2. D
1+α

2
( 1−α

2 ,0,0) =
( 1 0

0 α

)
, α ∈ K.

(r(D1
(0,0,1)), r(D

1+α
2

( 1−α
2 ,0,0)), for any α ∈ K are not isomorphic.)

3.2.2. 1-extensions in case n2,2

Since Inner n2,2 = N2,2, the solvable 1-extensions of n2,2: are also given by Jordan 
forms of 2 × 2 matrices. As in the previous case, we have two possibilities for δ:

1. D1
(0,0,1,0,0) =

( 1 0 0
1 1 0
0 0 2

)
.

2. D
1+α

2
( 1−α

2 ,0,0,0,0) =
( 1 0 0

0 α 0
0 0 1+α

)
, α ∈ K.

(r(D1
(0,0,1,0,0)), r(D

1+α
2

( 1−α
2 ,0,0,0,0)), for any α ∈ K are not isomorphic.)

3.2.3. 1-extensions in case n2,3

Note that derivations with no projection on Inner n2,3 are of the form:

⎛⎜⎝ A 02,1 02,2
01,2 trA 01,2
M 0 A + 2βI

⎞⎟⎠ =

⎛⎜⎝ A 02,1 02,2
01,2 trA 01,2
0 0 A + 2βI

⎞⎟⎠ +

⎛⎜⎝ 02,2 02,1 02,2
01,2 0 01,2
M 0 0

⎞⎟⎠ ,
2,1 2 2,2 2,1 2 2,1 2,2
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0m,n m × n zero matrix, A and M =
( α6 α7
α8 0

)
2 × 2 matrices. According to (6), the 

second summand in previous matrix decomposition corresponds to a derivation δ : n2,3 →
Z(n2,3) = n3

2,3 inside the abelian subalgebra Der3 n2,3 without projection on Inner n2,3. 
This subalgebra is invariant by conjugation (i.e., θDer3 n2,3θ

−1 = Der3 n2,3) and the 
general form of its derivations is:⎛⎜⎝ 02,2 02,1 02,2

01,2 01,1 01,2
τ1 τ2
τ3 τ4

02,1 02,2

⎞⎟⎠ .

Then, up to isomorphism, the extensions we are looking for depend on the Jordan form 
of the matrix A and we have one of the following possibilities:

(a) The derivation matrix D1
u where u = (0, 0, 1, 0, 0, α6, α7, α8, 0), i.e.:

D1
u =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
1 1 0 0 0
0 0 2 0 0
α6 α7 0 3 0
α8 0 0 1 3

⎞⎟⎟⎟⎟⎟⎠ .

Denoting v = (1, 0, 0, 1, 0, 0, 14(2α6+α7), α7
2 , −α6

4 − α7
4 + α8

2 , −α7
4 ), the automorphism 

θv transforms previous derivation by conjugation into:

θ−1
v ·D1

u · θv = D1
u1

where u1 = (0, 0, 1, 0, 0, 0, 0, 0, 0). Then, we get:

D1
u1

=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
1 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 1 3

⎞⎟⎟⎟⎟⎟⎠ .

(b) The derivation matrix D
1+α

2u with u = (1−α
2 , 0, 0, 0, 0, α6, α7, α8, 0), i.e.:

D
1+α

2u =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 α 0 0 0
0 0 1 + α 0 0
α6 α7 0 2 + α 0
α8 0 0 0 1 + 2α

⎞⎟⎟⎟⎟⎟⎠ .

Now three subcases can be considered:
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(b.1) α = −1: By conjugation through the automorphism θv, with v = (1, 0, 0, 1, 0, 0,
0, α7

2 , α8
2 , 0), the derivation D

1+α
2u = D0

u becomes:

θ−1
v ·D0

u · θv = D0
w,

where w = (1, 0, 0, 0, 0, α6, 0, 0, 0). If α6 �= 0, by using θv′ with v′ =
( 1√

α6
, 0, 0, 1√

α6
, 0, 0, 0, 0, 0, 0), we get:

θ−1
v′ ·D0

w · θv′ = D0
u3
,

u3 = (1, 0, 0, 0, 0, 1, 0, 0, 0). So, up to isomorphism, two new possible deriva-
tions appear (u2 = (1, 0, 0, 0, 0, 0, 0, 0, 0) is related to α6 = 0):

D0
u2

=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ and D0
u3

=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ .

(b.2) α = 0: Let v = (1, 0, 0, 1, 0, 0, α6, α7
2 , 0, 0) be. The automorphism θv, trans-

forms D
1+α

2u = D
1
2u into:

θ−1
v ·D

1
2u · θv = D

1
2w,

where w = (1
2 , 0, 0, 0, 0, 0, 0, α8, 0). Now, in case α8 �= 0, taking v′ =

( 1√
α8

, 0, 0, 1√
α8

, 0, 0, 0, 0, 0, 0) we have:

θ−1
v′ ·D

1
2w · θv′ = D

1
2u5 ,

u5 = (1
2 , 0, 0, 0, 0, 0, 0, 1, 0). So, up to isomorphism, two additional derivations 

appear (u4 = (1
2 , 0, 0, 0, 0, 0, 0, 0, 0) is related to α8 = 0):

D
1
2u4 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ and D
1
2u5 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 2 0
1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

(b.3) α �= 0, −1: From v = (1, 0, 0, 1, 0, 0, α6
1+α , 

α7
2 , α8

2α , 0), we have:

θ−1
v ·D

1+α
2u · θv = D

1+α
2u6 ,
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u6 = (1−α
2 , 0, 0, 0, 0, 0, 0, 0, 0). So, we get the derivation:

D
1+α

2u6 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 α 0 0 0
0 0 1 + α 0 0
0 0 0 2 + α 0
0 0 0 0 1 + 2α

⎞⎟⎟⎟⎟⎟⎠ .

Summarizing: Up to isomorphism, the solvable 1-extensions of n2,3 are r(δ) where δ is 
one of the following derivations:

1. D1
u1

, where u1 = (0, 0, 1, 0, 0, 0, 0, 0, 0);
2. D0

u3
, where u3 = (1, 0, 0, 0, 0, 1, 0, 0, 0);

3. D
1
2u5 , where u5 = (1

2 , 0, 0, 0, 0, 0, 0, 1, 0);
4. D

1+α
2u6 , where u6 = (1−α

2 , 0, 0, 0, 0, 0, 0, 0, 0) and α ∈ K.

(r(D1
u1

), r(D0
u3

), r(D
1
2u5) and r(D

1+α
2u6 ) for any α ∈ K are not isomorphic.)

3.3. Solvable 2-extensions

(Along Sections 3.3.1, 3.3.2 and 3.3.3 we assume K is algebraically closed.)
According to Theorem 3.1, the solvable 2-extensions are of the form r(μ1, μ2; x) =

n2,t⊕K ·μ1 ⊕K ·μ2, μ1 = I2,t +O1, and μ2 = D+O2 where D ∈ Der01 n2,t is semisimple 
and traceless, Oi ∈ N2,t without projection on Inner n2,t. Moreover

[I2,t + O1, D + O2] = [I2,t, O2] + [O1, D] + [O1, O2] ∈ Inner n2,t

and the span〈I2,t + O1, D + O2〉 has no nilpotent derivations.

3.3.1. 2-extensions in case n2,1

Since N2,1 = 0, the solvable extensions are just given by using abelian subalgebras 
of derivations K · I2,1 ⊕K ·D, where D is a traceless semisimple 2 × 2 matrix with two 
different nonzero eigenvalues α and −α. So we can assume w.l.o.g. (n2,1 is just a vector 
space with trivial product):

D = D0
(1,0,0) =

(
1 0
0 −1

)
.

From Remark 2, up to isomorphism we get the extension r(I2,1, D0 ; 0).
(1,0,0)
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3.3.2. 2-extensions in case n2,2
Now, I2,2 = D1

0 and N2,2 = Inner n2,2. Thus, the solvable extensions are also given by 
abelian subalgebras K ·I2,2⊕K ·D, D = D0

(α1,α2,α3,0,0) semisimple and traceless derivation 
with eigenvalues 0 �= α, −α and 0. Up to isomorphism, we can take D = D0

(1,0,0,0,0), i.e.:

D =

⎛⎜⎝ 1 0 0
0 −1 0
0 0 0

⎞⎟⎠
which provides r(I2,1, D0

(1,0,0,0,0); 0) as unique extension from Remark 2.

3.3.3. 2-extensions in case n2,3
Derivations inside N2,3 without projection on Inner n2,3 belong to

Der3 n2,3 =
{
d ∈ Der n2,3 : d(n2,3) ⊆ Z(n2,3)

}
,

which is invariant by conjugation through Autn2,3. So, up to isomorphism, we can assume 
μ1 = I2,3 + O1 = D1

u and μ2 = D + O2 = D0
w where u = (0, 0, 0, 0, 0, α6, α7, α8, 0) and 

w = (1, 0, 0, 0, 0, β6, β7, β8, 0), i.e.:

D1
u =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
α6 α7 0 3 0
α8 0 0 0 3

⎞⎟⎟⎟⎟⎟⎠ and D1
w =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
β6 β7 0 1 0
β8 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ .

Now,

[
D1

u, D
1
w
]

=

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2β6 2(β7 − α7) 0 0 0
2(α8 + β8) 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
is an inner derivation if and only if β6 = 0, β7 = α7 and β8 = −α8, so 
K · μ1 ⊕ K · μ2 is an abelian subalgebra. Taking the automorphism θv, where v =
(1, 0, 0, 1, 0, 0, −α6

2 , −α7
2 , −α8

2 , 0), we get the derivations:

θ−1
v ·D1

u · θv =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎟⎠ = I2,3 and
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θ−1
v ·D1

w · θv =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ = D0
u1
,

where u1 = (1, 0, 0, 0, 0, 0, 0, 0, 0). From Remark 2, up to isomorphism r(I2,3, D0
u1

; 0) is 
the unique 2-extension.

4. Non-solvable Lie algebras with nilradical n2,t

From Theorems 2.1 and 2.2 in [21] (see also [5, Proposition 2.2]) and Theorem 2.2, 
the faithful nonsolvable Lie algebras with nilradical n2,t are of the form,

g = g2,t ⊕ t0 (10)

where g2,t = Der01 n2,t⊕id n2,t is as described in Theorem 2.2, r = n2,t⊕ t0 is the solvable 
radical of g, t0 is a trivial adg Der01 n2,t-module and adg x is a not nilpotent map ∀x∈t0 . 
So, in the Lie algebra g with product 〈a, b〉, we have 〈Der01 n2,t, t0〉 = 0. Let (n2,t)0 be 
the sum of all trivial adg Der01 n2,t modules in n2,t and note that this vector space is a 
subalgebra of n2,t. Since t20 ⊆ (n2,t)0, the direct sum:

r0 = t0 ⊕ (n2,t)0 (11)

is a subalgebra of r that contains the (solvable) subalgebra generated by t0. From the 
Jacobi identity in (10) and for d ∈ Der01 n2,t, x ∈ r0 and a ∈ n2,t, we have:

d
(
adg x(a)

)
=

〈
d, 〈x, a〉

〉
=

〈
〈d, x〉, a

〉
+
〈
x, 〈d, a〉

〉
=

〈
x, 〈d, a〉

〉
= adg x

(
d(a)

)
,

i.e., the set of derivations of the form adn2,t r0 centralizes Der01 n2,t in Der n2,t. These 
basic ideas yield to the following result:

Theorem 4.1. Let g be a nonsolvable Lie algebra with nilradical n2,t. Then g is one of the 
following Lie algebras:

a) g = s ⊕ r, a direct sum as ideals of a semisimple algebra s and a solvable Lie algebra 
r with nilradical n2,t;

b) g = s ⊕ g2,t, a direct sum as ideals where s is either the null algebra or any arbitrary 
semisimple algebra;
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c) g = s ⊕ g2,t(δ), a direct sum as ideals where s is either the null algebra or any 
arbitrary semisimple Lie algebra and g2,t(δ) = (Der01 n2,t ⊕ K · (id2,t + δ)) ⊕id n2,t

where δ ∈ CDer n2,t(Der01 n2,t) ∩N2,t and Der01 n2,t ⊕ K · (id2,t + δ) is viewed as Lie 
subalgebra of Der n2,t.

Proof. Let g = s ⊕ r be a Levi decomposition of g. In case [s, r] = 0 or t0 = 0 we get 
items a) and b). Otherwise, we have t0 �= 0 and [s, n2,t] �= 0 and, from Theorem 2.2
and preliminary comments in this section, g decomposes as a direct sum of ideals, g =
s1 ⊕ (Der01 n2,t ⊕id n2,t ⊕ t0), s1 being either the null Lie algebra or a semisimple one. 
Without loss of generality, we can assume g is faithful (s1 = 0). Let r0 the subalgebra 
defined in (11) and consider the (restricted) adjoint representation adn2,t : r0 → Der n2,t, 
which is both a homomorphism of Lie algebras and a Der01 n2,t-module homomorphism. 
Since n2,t is the nilradical of g, the kernel of adn2,t is the centralizer Cr0(n2,t) which 
coincides with Z(n2,t)0, the trivial module living inside the center of the nilradical. So, 
we can decompose (n2,t)0 as a direct sum of subspaces: (n2,t)0 = Z(n2,t)0 ⊕ v0. Then, 
the quotient Lie algebra r0

Z(n2,t)0 (∼= v0 ⊕ t0) is isomorphic to adn2,t(r0), a subalgebra of 
Der n2,t contained in CDer n2,t(Der01 n2,t) = k · id2,t ⊕ (N2,t)0, where (N2,t)0 is the sum 
of trivial Der01 n2,t-modules inside N2,t via the adjoint representation [δ, μ] = δμ − μδ. 
But adn2,t t0 has no nilpotent derivations so, any element inside adn2,t(t0) has nontrivial 
projection in k · id2,t. Let x, y ∈ t0 be two nonzero elements; scaling, we can assume 
adn2,t x = id2,t ⊕ δ and adn2,t y = id2,t ⊕ μ, where δ, μ ∈ (N2,t)0. Then adn2,t(x − y) ∈
(N2,t)0 and therefore, x − y is a nilpotent element in t0; so x = y, and part c) follows. It 
is immediate to check that items a), b) and c) provides Lie algebras. �
Example 2. For any arbitrary t ≥ 1, Der1 n2,t ⊕id n2,t is a nonsolvable Lie algebra with 
nilradical the free nilpotent Lie algebra n2,t and solvable radical K · id2,t ⊕id n2,t.

Corollary 4.2. For t ≤ 4 and up to isomorphism, the faithful nonsolvable Lie algebras 
with nilradical n2,t are g2,t = Der01 n2,t ⊕id n2,t and Der1 n2,t ⊕id n2,t.

Proof. For free nilpotent of low index, the centralizer CDer n2,t(Der01 n2,t) can be easily 
computed. In fact, we have:

• For t = 1, 2, CDer n2,t(Der01 n2,t) = K · id2,t;
• For t = 3, 4, CDer n2,t(Der01 n2,t) = K · id2,t ⊕K · adω0, where ω0 = [v0, v1] according 

to Proposition 2.3.

The result follows trivially from Theorem 4.1 in cases t = 1, 2, and for t = 2, 3 we note 
that the elements inside CDer n2,t(Der01 n2,t) are of the form α · id2,t⊕β ·adω0. But adω0

is an inner derivation of n2,t and therefore it can be removed. �
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5. Conclusion: Lie algebras with nilradical n2,t for t = 1, 2, 3

From previous results and comments, the classification of Lie algebras with nilradical 
n2,t, reduces to determine suitable sets of derivations containing no nilpotent elements 
as described in Lemmas 3.1 and 4.1. These sets are completely determined for t = 1, 2, 3
in Section 3 (solvable extensions) by using explicit matrix expressions for derivations, 
inner derivations and automorphisms of n2,t, and in Section 4 (nonsolvable extensions) by 
computing centralizers inside the Lie algebra of derivations Dern2,t. In this final section 
we summarize the results in one theorem, where the complete list of Lie algebras with 
nilradical n2,1, n2,2 or n2,3 is given by their multiplication tables.

Theorem 5.1. Up to isomorphism, the Lie algebras over an algebraically closed field K
with nilradical a free nilpotent Lie algebra of type 2 and nilindex t ≤ 3 are (only nonzero 
products involving elements not in the nilradical are given):

i) The abelian 2-dimensional n2,1;
ii) r12,1 = n2,1 ⊕K · x: [x, v0] = v0 + v1, [x, v1] = v1;
iii) r

1,α
2,1 = n2,1 ⊕K · x: [x, v0] = v0 and [x, v1] = αv1, α ∈ K;

iv) r22,1 = n2,1 ⊕K · x ⊕K · y: [x, v0] = [y, v0] = v0, [x, v1] = −[y, v1] = v1;
v) g2,1 = sl2(K) ⊕n2,1: [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, 

[e, v1] = v0, [f, v0] = v1;
vi) g1

2,1 = sl2(K) ⊕r
1,1
2,1: [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, 

[e, v1] = v0, [f, v0] = v1, [x, v0] = v0, [x, v1] = v1;
vii) The Heisenberg 3-dimensional n2,2: [v0, v1] = w0;
viii) r12,2 = n2,2 ⊕K · x: [x, v0] = v0 + v1, [x, v1] = v1, [x, w0] = 2w0;
ix) r

1,α
2,2 = n2,2 ⊕K · x: [x, v0] = v0, [x, v1] = αv1, [x, w0] = (1 + α)w0, α ∈ K;

x) r22,2 = n2,2⊕K ·x ⊕K ·y: [x, v0] = [y, v0] = v0, [x, v1] = −[y, v1] = v1, [x, w0] = 2w0;
xi) g2,2 = sl2(K) ⊕n2,2: [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, 

[e, v1] = v0, [f, v0] = v1;
xii) g1

2,2 = sl2(K) ⊕r
1,1
2,2: [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, 

[e, v1] = v0, [f, v0] = v1, [x, v0] = v0, [x, v1] = v1; [x, w0] = 2w0;
xiii) The 5-dimensional n2,3: [v0, v1] = w0, [vi, w0] = zi, i = 0, 1;
xiv) r12,3 = n2,3 ⊕K · x: [x, v0] = v0 + v1, [x, v1] = v1, [x, w0] = 2w0, [x, z0] = 3z0 + z1, 

[x, z1] = 3z1;
xv) r

1,α
2,3 = n2,3⊕K ·x: [x, v0] = v0, [x, v1] = αv1, [x, w0] = (1 +α)w0, [x, z0] = (2 +α)z0, 

[x, z1] = (1 + 2α)z1, α ∈ K;
xvi) r22,3 = n2,3 ⊕K · x: [x, v0] = v0 + z1, [x, w0] = w0, [x, z0] = 2z0, [x, z1] = z1;
xvii) r32,3 = n2,3 ⊕K · x: [x, v0] = v0 + z0, [x, v1] = −v1, [x, z0] = z0, [x, z1] = −z1;
xviii) r42,3 = n2,3⊕K ·x ⊕K ·y: [x, v0] = [y, v0] = v0, [x, v1] = −[y, v1] = v1, [x, w0] = 2w0, 

[x, z0] = 3z0, [x, z1] = 3z1, [y, z0] = z0, [y, z1] = −z1;
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xix) g2,3 = sl2(K) ⊕n2,3: [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, 
[e, v1] = v0, [f, v0] = v1, [h, z0] = z0, [h, z1] = −z1, [e, z1] = z0, [f, z0] = z1, 
[v0, v1] = w0, [v0, w0] = z0 and [v1, w0] = z1;

xx) g1
2,3 = sl2(K) ⊕r

1,1
2,3: [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , [h, v0] = v0, [h, v1] = −v1, 

[e, v1] = v0, [f, v0] = v1, [h, z0] = z0, [h, z1] = −z1, [e, z1] = z0, [f, z0] = z1, 
[v0, v1] = w0, [v0, w0] = z0, [v1, w0] = z1, [x, v0] = v0, [x, v1] = v1, [x, w0] = 2w0, 
[x, z0] = 3z0, [x, z1] = 3z1;

xxi) the direct sum of ideals s ⊕ g, where s is a semisimple Lie algebra and g is one of 
the Lie algebras in i)–xx). �

Remark 3. Theorem 5.1 provides the complete classification of complex Lie algebras with 
nilradical the 3-dimensional Heisenberg algebra n2,2. The classification problem in case 
of solvable extensions was studied in [18] including the case K = R. Our list provides 
the (unique) nonsolvable extensions g2,2 and g1

2,2. We note that the techniques used here 
can also be extended to provide a solution to the analogous classification problem over 
the field of real numbers for n2,t, t = 1, 2, 3, 4. �

Remark 4. Extensions of n2,3 are treated in [1, Section 3, Section 3.2]. In that paper, n2,3

is denoted as L5,3 and introduced in Theorem 1, Section 2.2, by the multiplication table 
[X0, X1] = X2, [X0, X2] = X3, [X1, X2] = X4. Note that the basis {X0, X1, X2, X3, X4}
is just our basis {v0, v1, w0, z1, z2}. The extended Lie algebras are listed in Propositions 2, 
3 and 4. Proposition 2 provides the 1-solvable extensions g6,1

5,3, g
6,2
5,3, g

6,3
5,3 and g6,4

5,3. The first 
and third are just r1,α2,3 and r22,3. The second algebra is equal to r32,3 by rescaling the basis 
of g6,2

5,3 given in [1] in the following way: {−Y ; X0, X1, X2, X3, −X4}. The multiplication 
table for g6,4

5,3 contains a misprint: [Y, X4] must be declared as 3X4 instead of 4X4, 
otherwise, adY is not a derivation (in other words, Jacobi identity J(a, b, c) = [[a, b], c] +
[[a, b], c] + [[a, b], c] = 0 fails for (a, b, c) = (Y, X1, X2)); by doing the correction, g6,4

5,3 is 
just r12,3. Proposition 3 provides the unique 2-solvable extension g7,1

5,3, which is equal to 
our r42,3 if we consider the new basis {Y + Z, Y − Z; X0, X1, X2, X3, X4}.

In Proposition 4, the authors give the nonsolvable extensions g8,1
5,3 and g9,1

5,3. The former 
algebra is just our g2,3 taking into account that {Y, Z, X} spans a split 3-dimensional 
simple Lie algebra with standard basis {h, e, f} and products [h, e] = 2e, [h, f ] = −2f , 
[e, f ] = h. But g9,1

5,3 has been erroneously included in the classification, because it is not 
a Lie algebra: J(Y − Y ′, Z, X1) = −X0 �= 0 and J(Y − Y ′, Z, X4) = −X3 �= 0. This 
is just not a misprint but a structural error: s = span〈Y − Y ′, Z, X〉 is a 3-split simple 
Lie algebra and L5,3 is ad s-invariant, so L5,3 decomposes as s-irreducible modules. But 
the Cartan subalgebra K · (Y − Y ′) acts with 5 different eigenvalues on L5,3 (namely 
1, −2, −1, 0, −3) with corresponding eigenvectors X0, X1, X2, X3, X4; this fails to be an
s-module decomposition of L5,3. The last algebra in the classification is our Lie algebra 
g1
2,3 described in item xx) of Theorem 5.1. �
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