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Abstract

In this paper, we construct a modification of Newton’s method to accelerate the convergence of this method to
the approximation of the positive square root of a positive real number. From this modification, we can define a new
iterative process with prefixed orderq ∈ N, q �2.
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1. Introduction

The problem of approximating the positive square root of a positive real numberR has been widely
studied by different authors[2,7]. This problem is equivalent to solve the equation

f (t) = 0,

where

f (t) = t2 − R. (1)
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To solve this problem, the famous Heron’s formula (75 b.C approx.),tn+1 = (tn + R/tn)/2,n�0, is well
known.
Moderncalculus texts treat this algorithmasaspecial caseofNewton’smethod,tn+1=tn−f (tn)/f

′(tn),
n�0. It is an established fact that the convergence of Newton’s method is quadratic, at least fort0
sufficiently close to the solution� = √

R.
Therearenumerousstudies toaccelerate theconvergenceofNewton’smethod[1,5].Amodernapproach

is given in[3], who applies Newton’s method to the functionF(t) = t�−2f (t), where� ∈ R is looked
for in order to get cubic convergence. In fact, the value� = 3

2 is obtained as the appropriate one for
this purpose. The natural extension of this idea is to modifyf (t) by the functionF(t) = g(t)f (t), and
determineg(t) such that the order of convergence of Newton’s method applied toF(t) is increased. So,
Gerlach[5], for a general real functionf, obtains that, forg(t) = C/

√
f ′(t), C ∈ R, the Newton method

has cubic convergence. Notice that, forC =1, this method is a well-known third-order iteration: Halley’s
method or the method of tangent hyperbolas[4].
In this paper, we modify the algorithm of Newton’s process instead of the function. So, we consider

the modified algorithm

tn+1 = G(tn) = tn − h(tn)
f (tn)

f ′(tn)
, n�0, (2)

and we determine the functionh such that we obtain an iterative process ofqth order of convergence,
q ∈ N, q�2, for approximating�. This construction is realized in Section 2.
In Section 3, we analyze the monotonous convergence of these new iterative processes to the solution.

Finally, in Section 4, some of these new iterative processes are compared numerically.

2. A newqth-order method for approximating square roots, q�2

It is known, that the iterative process given in (2) is ofqth order of convergence ifG(�) = �, and
G(k)(�)=0, fork =1,2, . . . , q −1, andG(q)(�) �= 0. Then, if we consider the situation whereG(t)= �,
for all t ∈ R, we obtain an iterative process of “infinite” order of convergence. Is this possible? To do
that, we consider

G(t) = t − h(t)
f (t)

f ′(t)
= �. (3)

Therefore, we can write

f ′(t)(t − �) = h(t)f (t). (4)

Then, by Taylor’s approximation, we obtainf ′(t)(t − �) = f (t) + f ′′(t)(� − t)2/2!. Moreover, using
(4), it follows that:f ′′(t)f (t)2h(t)2/2! − f (t)f ′(t)2h(t) + f (t)f ′(t)2 = 0, which is a second degree
polynomial inh(t). Therefore, the solutions are

h−(Lf (t)) = 1− √
1− 2Lf (t)

Lf (t)
(5)

andh+(Lf (t))=(1+√
1− 2Lf (t))/Lf (t),whereLf (t)=f (t)f ′′(t)/f ′(t)2 is the degree of logarithmic

convexity[8]. Notice that, forf given in (1), it follows thatLf (t)� 1
2 for all t ∈ R.
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In consequence, the answer of the previous question is affirmative, but we cannot apply algorithm (2),
with h+(Lf (t)), to approximate the positive square root� because the function has a singularity in the
root �. Then, we consider the Taylor’s approximation of the functionh−(Lf (t)) given in (5), to define
algorithm (2), and it is easy to obtain that

h(Lf (t)) = h−(Lf (t)) =
∑
j �0

( 1
2

j + 1

)
(−1)j2j+1Lf (t)j .

In these conditions, we can define algorithm (2) in the following form:

tn+1 = G(tn) = tn −

q−2∑

j=0

( 1
2

j + 1

)
(−1)j2j+1Lf (tn)

j


 f (tn)

f ′(tn)
, n�0, (6)

for q�2. The question is then: Does this algorithm haveq-order? The answer of this question is also
affirmative. Notice that, from (6), it is easy to prove that

G′(t) = 1− A0 +
q−2∑
j=1

((2j − 1)Aj−1 − (j + 1)Aj )Lf (t)j + (2q − 3)Aq−2Lf (t)q−1,

whereAj = (
1/2
j+1)(−1)j2j+1, 0�j �q − 2. Then, asA0 = 1 and(2j − 1)Aj−1 = (j + 1)Aj , for

j = 1,2, . . . , q − 2, it follows thatG′(t) = (2q − 3)Aq−2Lf (t)q−1. Therefore, since thatLf (�) = 0,
we obtain

G(�) = �, G′(�) = · · · = G(q−1)(�) = 0, and G(q)(�) = (2q − 3)Aq−2(q − 1)!�1−q �= 0.

So, the algorithm given by (6), is ofqth order, forq�2. Thus, we have constructed a new algorithm
with any prefixed order of convergenceq�2. Notice that, forq = 2, we obtain the Newton method and,
for q = 3, we obtain a famous iterative process of third order, the Chebyshev method[6].

Remark 1. Note that if we want to increase the order of convergence in one unity, as consequence of the
new sumappearing in the summatory, we only need to add the following term,Aj+1Lf (tn)

j+1.Moreover,
the powerLf (tn)

j has already been evaluated andAj+1 = Aj(2j + 1)/(j + 2) is easily calculated.
Therefore, the operational cost increases by two multiplications and one addition. The procedure is
effective as far as concerns to the relation between the operational cost and the order of convergence.

3. Monotonous convergence

In this section, we study the monotonous convergence of the new algorithm given in (6). As other
authors[7], we considert0> �. Then, it is easy to check that

t1 − t0 = −

q−2∑

j=0

AjLf (t0)
j


 f (t0)

f ′(t0)
�0,

sinceAj , Lf (t0), f (t0) andf ′(t0) are positive numbers,j = 0,1, . . . , q − 2.
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Table 1
Computation of values|tn − √

35|
n Dubeau’s method,q = 3 Method (6),q = 3 Dubeau’s method,q = 4 Method (6),q = 4

1 0.169· · · · ×10−4 0.817· · · · ×10−5 0.454· · · · ×10−6 0.142· · · · ×10−6

2 0.140· · · · ×10−15 0.781· · · · ×10−17 0.385· · · · ×10−27 0.123· · · · ×10−29

3 0.782· · · · ×10−49 0.682· · · · ×10−53 0.199· · · · ×10−111 0.709· · · · ×10−122

4 0.137· · · · ×10−148 0.454· · · · ×10−161 0.144· · · · ×10−448 0.763· · · · ×10−491

5 0.732· · · · ×10−448 0.134· · · · ×10−485 0.397· · · · ×10−1797 0.102· · · · ×10−1967

3 4 5 6 7 8 9 10

0.002

0.004

0.006

0.008

0.01

kq( 35)

Kq( 35)√

√

Fig. 1. Asymptotic constants.

Besides, asG′(t) >0 in (�, t0), it follows thatt1−�=G′(�0)(t0−�) >0, �0 ∈ (�, t0), and thent1> �.
By induction, iftn−1> tn andtn > �, by an analogous reasoning as before, we obtain thattn+1< tn and

tn+1> �. Then there existsl = limn tn, and, by lettingn → +∞ in (6), it follows f (l) = 0, since that
h−(Lf (t)) >0 for all t ∈ R, and thereforel = �.
In consequence, from the previous reasoning, the following result is obtained.

Theorem 1. If t0> �, then the sequence{tn}, given in(6), is monotonically decreasing and converges to
the positive solution� of f (t) = 0,with f given from(1).

4. Numerical tests

When we want to apply the algorithm ofqth order given in (6), it is interesting to note that, since

Lf (t) = 1

2

(
1− R

t2

)
,

f (t)

f ′(t)
= t

2

(
1− R

t2

)
,
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we can write the algorithm given by (6) in the following simple form:

tn+1 = G(tn) = tn

q−1∑
j=0

( 1
2
j

)
(−1)j

(
1− R

t2n

)j

, n�0,

with q�2. Next, we consider the application of algorithm (6) to the functionf (t) = t2 − 35 and we
observe the improvement with regard to Dubeau’s method[2]. In Table 1, the values|tn − 351/2| are
shown for the computation of

√
35 with t0 = 6.

Fig. 1, shows that the asymptotic constant of method (6):Kq(�) = (2q − 3)Aq−2�1−q/q is smaller
than the one of Dubeau’s method:kq(�) = −(q − 1)2q(

1/2
q

)�1−q whereq is on the horizontal axis.
Moreover, if the two asymptotic constants are compared, we observe that

|Kq(�)| < |kq(�)| ⇐⇒ 1

q − 1
<1 ⇐⇒ q >2.

Therefore, fromq = 3 (Chebyshev’s method), processes (6) are faster than the other one given in[2].
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