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constructing, from a given iterative method with order of convergence p, efficient iterative
methods with order of convergence at least pq + 1 (q ≤ p − 1, q ∈ N).
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1. Introduction

Let
f (x) = 0 (1)

be a nonlinear equation, where f : D ⊆ R −→ R is sufficiently differentiable in a neighborhood of a simple root α of Eq. (1).
If we are interested in approximating the root α, we can do it by means of an iterative method of the form

xn+1 = φ(xn), n ≥ 0, (2)
provided that the starting point x0 is given. Two important features determine the choice of iterative method of type (2):
the total number of iterations and the computational cost. The former is measured by the order of convergence of (2) and
the latter by the necessary number of evaluations of the scalar function f and its derivatives at each step of applying (2).
In the scalar case, these two features are linked by the efficiency index [1–4], EI , which is defined by EI = p1/r , where p
is the order of convergence of iteration (2) and r is the number of evaluations of f and its derivatives that are needed per
iteration to apply (2). (For scalar equations, it is usually considered that the evaluation of f and its derivatives have a similar
computational cost.)

To improve the efficiency of iterative method (2), we can use some modifications of (2) (see [5–8]). A well-known
modification that improves the efficiency index of (2) is given by the following multipoint algorithm (see [4], Theorem 8-1,
p. 166):x0 given,

zn = φ(xn), (order of convergence p)
xn+1 = zn − f (zn)/f ′(xn), n ≥ 0,

(3)

which has order of convergence p + 1. A particular case of (3) is the two step Newton method [9]. Other situations can be
seen in [10].
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Fig. 1. Efficiency indices of methods (2) and (3).

Since (2) is a one-point iteration with order of convergence p, it is known that we need to evaluate f , f ′, f ′′, . . . , f (p−1) at
each step and its efficiency index is then EI = p1/p, whereas (3) has EI = (p+1)1/(p+1). As we can see in Fig. 1, the efficiency
index of (3) is higher than that of (2) if p = 1, 2. (Notice that the order of convergence of one-point iterations is always a
natural number.)

Following the idea of improving the efficiency of (2), the main goal of this paper is to present some modification of (2)
which improves its efficiencywhen p ≥ 3. In Section 2, taking into account iterativemethod (3) and Chebyshev’smethod,we
construct a newmodification of iterative method (2) with order of convergence at least 2p+1 (p ≥ 3) and higher efficiency
index than those of iterative methods (2) and (3). Some numerical tests that corroborate this are also given. Finally, in
Section 3, a generalization of the previous construction is presented, where iterative methods with order of convergence at
least pq + 1 (p ≥ q + 1, q ∈ N) are given.

2. Preliminary analysis

In this section, we present a first modification of Traub’s result given by (3), where the second step of (3) is changed by
a slight modification of Chebyshev’s method. Some numerical results are also included, where new iterative methods are
used and commented.

2.1. A modification of Traub’s result

From now on, we consider p ≥ 3 and following the previous original idea of Traub, where a modification of Newton’s
method (order of convergence two) is considered in the second step of (3), we now consider the following modification
of Chebyshev’s method (order of convergence three) [8]: xn+1 = zn −


1 + Lf (xn, zn)/2


u(zn), where Lf (xn, zn) = f ′′

(xn)u(zn)/f ′(zn) and u(zn) = f (zn)/f ′(zn), and we then obtain the following modification of iterative method (2):x0 given,
zn = φ(xn), (order of convergence p)
xn+1 = zn −


1 + Lf (xn, zn)/2


u(zn), n ≥ 0.

(4)

As p ≥ 3, f (xn), f ′(xn) and f ′′(xn) have been already evaluated in the first step of (4). So, we have to evaluate two more
functions, f (zn) and f ′(zn), when (4) is applied.

To sum up, Traub’s modification given in (3) implements a slight modification of a second-order iterative method
(Newton’smethod)which uses onemore evaluation of the function, f (zn), whereas themodification given in (4) implements
a slight modification of a third-order iterativemethod (Chebyshev’s method) which uses twomore evaluations of functions,
f (zn) and f ′(zn).

Next, we prove that (4) has order of convergence at least 2p+1. To do this, we consider that the error in the nth iterate of
(4) is en = xn −α, so that the relation en+1 = Cemn +O


em+1
n


is called the error equation [4,11]. By substituting en = xn −α,

for all n, in (4) and simplifying, we obtain the error equation for (4). The value of m obtained is then called the order of
method (4); see [4,11].

Theorem 2.1. Let f : D ⊆ R → R for an open interval D and suppose that f is sufficiently differentiable in D. If f has a simple
root at α ∈ D and x0 is sufficiently close to α, then iterative method (4) has order of convergence at least 2p + 1 (p ≥ 3).

Proof. From Taylor’s formulas, we have

f (zn) = f (α + En) = f ′(α)

En + A2E2

n + O(E3
n )

,

f ′(zn) = f ′(α + En) = f ′(α)

1 + 2A2En + O(E2

n )

,
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Fig. 2. Efficiency indices of methods (2)–(4).

Table 1

Computational efficiency for multi-precision arithmetic E = p
1−p−λ

r .

λ (2) with p = 3 (2) with p = 4 (4) with p = 7 (4) with p = 9

∞ 31/3
≈ 1.442 . . . 41/4

≈ 1.414 . . . 71/5
≈ 1.476 . . . 91/6

≈ 1.442 . . .
2 30.2963

≈ 1.385 . . . 40.2344
≈ 1.384 . . . 70.1958

≈ 1.464 . . . 90.1646
≈ 1.436 . . .

log2 3 30.2749
≈ 1.353 . . . 40.2222

≈ 1.361 . . . 70.1908
≈ 1.450 . . . 90.1615

≈ 1.426 . . .

where En = zn − α = C0e
p
n + O


ep+1
n


and A2 = f ′′(α)/(2f ′(α)). If we now develop 1/f ′(zn), u(zn) and u(zn)2 in powers of

En, we obtain

1
f ′(zn)

=
1

f ′(α)


1 − 2A2En + O(E2

n )

,

u(zn) =

En + A2E2

n + O(E3
n )
 

1 − 2A2En + O(E2
n )


= En − A2E2
n + O(E3

n ),

u(zn)2 = E2
n + O(E3

n ).

Moreover,

f (xn) = f ′(α)

en + A2e2n + A3e3n + O(e4n)


, f ′(xn) =

df (xn)
den

, f ′′(xn) =
df ′(xn)
den

,

u(zn)2

f ′(zn)
=

1
f ′(α)


E2
n + O(E3

n )

,

Lf (xn, zn)u(zn) =
f ′′(xn)u(zn)2

f ′(zn)
= 2A2E2

n + 6A3enE2
n + O(e2nE

2
n ),

where A3 = f ′′′(α)/(6f ′(α)).
In consequence, from (4), it follows:

en+1 = En − u(zn)− Lf (xn, zn)u(zn)/2 = −3A3enE2
n + O(e2nE

2
n ),

and iterative method (4) has order of convergence at least 2p + 1. �

Since iterative method (4) uses two evaluations of functions, f (zn) and f ′(zn), more than iterative method (2), the
efficiency index of (4) is (2p + 1)1/(p+2), so that efficiency index of (4) is better than the ones of (2) and (3). See Fig. 2.

2.2. Numerical tests

A generalization of the computational efficiency for a multi-precision arithmetic has been given recently in [12]. That is,

E = p
1−p−λ

r , where p is the order of themethod, r is the number of function evaluations per iteration required by themethod
and λ = ∞, 2, log2 3 ≈ 1.585 . . . .When we use the classical product with double precision, we set λ = ∞. Otherwise,
if we use the classical product with multi-precision (16–230 digits), we put λ = 2. And finally, when Karatsuba’s method
(230–3600 digits) is used, we take λ = log2 3. Table 1 shows the values of the efficiency for different methods and different
arithmetics.

Now, we consider the following family of iterative methods with order of convergence q + 1, q ∈ N (see [13,14]):

xn+1 = ψq(xn), n ≥ 0, where ψq(x) = x + γ1(x)f (x)+ · · · + γq(x)f (x)q, (5)
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Table 2
Test functions, their roots and the initial points.

Function α x0

f1(x) = x3−3x2+x−2 2.893289 2.5
f2(x) = x3 + cos x − 2 1.172578 1.5
f3(x) = 2 sin x + 1 − x 2.380061 2.5
f4(x) = (x+ 1) e−x

− 1 0.557146 1.0
f5(x) = ex

2
+7x−30

− 1 3.0 2.94
f6(x) = e−x

+ cos(x) 1.746140 1.5
f7(x) = x − 3 ln x 1.857184 2.0

Table 3
Iteration number (Iter) and total number of
function evaluations (TNFE).

Method ψ2 ψ3 ψ̃2 ψ̃3

f1(x) 9 7 5 5
f2(x) 8 7 5 4
f3(x) 8 6 4 4
f4(x) 8 7 5 4
f5(x) 9 7 5 5
f6(x) 8 6 5 4
f7(x) 8 6 5 4

Iter 58 46 34 30

TNFE 174 184 170 180

where γ1(x), γ2(x), . . . , γq(x) are q real differentiable functions such that

0 = 1 + γ1(x)f ′(x) = γ ′

1(x)+ 2γ2(x)f ′(x) = · · · = γ ′

q−1(x)+ qγq(x)f ′(x). (6)

Notice that (5) is reduced to Newton’s method if q = 1 and Chebyshev’s method if q = 2.
We have tested some preceding methods with seven functions using the Maple computer algebra system. We have

computed the root of each function for initial approximation x0, and we have defined at each step of the iterative method
the length of the floating point arithmetic with multi-precision by

Digits := m × [− log |en| + 1],

wherem is the order of the method which extends the length of the mantissa of the arithmetic, and [t] is the largest integer
≤ t .

The iterative methods are stopped when |xn+1 − xn| < 10−2900 and |f (xn+1)| < 10−2900. If in the last step of any iterative
method it is necessary to increase the number of digits beyond 2900, then this is done. It is necessary to beginwith one initial
approximation x0 for applying the methods. Table 2 shows the expression of the functions tested, the initial approximation
x0, which is the same for all the methods, and the root α with seven significant digits.

Table 3 shows the number of necessary iterations for every method and every function for computing the root with the
described precision for the methods. Note that ψ̃i (i = 2, 3) is the corresponding modification of the iterative function ψi
(i = 2, 3) given by (4). Observe that the efficiency index of the iterative method of order three is 31/3

≈ 1.442 . . . and that
of its modification (4) is 71/5

≈ 1.476 . . ., while the efficiency index of the iterative method of order four is 41/4
≈ 1.414 . . .

and that of its modification (4) is 91/6
≈ 1.442 . . .. As far as we know, the results seem to be excellent, the order is increased

and the total number of evaluations of functions is lower for the corresponding modifications ψ̃i (i = 2, 3) of ψi (i = 2, 3)
given by (4). Obviously, the best methods are the ones that improve from third and fourth orders (ψ2 and ψ3, respectively)
to seventh and ninth orders (ψ̃2 and ψ̃3, respectively).

As a conclusion, we can say that these new methods of seventh and ninth orders work better than the predecessors
of third and fourth orders, respectively (in accordance with the theoretical analysis of the order and the efficiency). We
therefore conclude that the new methods presented in this paper are competitive with other recognized efficient equation
solvers, such as some known methods of third and fourth orders. Finally, notice that using arithmetics that allow us to
dynamically define the number of necessary digits for the computations is relevant.

3. Main result

The next goal is to generalize the previous ideas,which consists of using amodification of the iterativemethod considered
in the second step of the algorithmx0 given,

zn = φ(xn), (order of convergence p)
xn+1 = ϕ(xn, zn), n ≥ 0,
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Fig. 3. Efficiency indices of methods (2), (7)–(9).

for obtaining iterative methods with higher efficiency indices than iterative method (2). The main idea is to implement a
slight modification of an iterative method with order of convergence q ≥ 4 (q ∈ N) in the second step of the algorithm,
xn+1 = ϕ(xn, zn), so that in this step is used f (q−1)(xn) and, at the most, the following new evaluations of functions:
f (zn), f ′(zn), . . . , f (q−2)(zn).

3.1. On the modification of Traub’s result

Firstly, to clarify the previous generalization and its later study, we start with iterative method (4) and rewrite it in the
following way:

x0 given,
zn = φ(xn), n ≥ 0, (method of order p)
yn = zn − f (zn)/f ′(zn) = N (zn) = N (φ(xn)), (method of order 2p)

xn+1 = yn −
1
2
f ′′(xn)
f ′(zn)


f (zn)
f ′(zn)

2

, n ≥ 0.

(7)

Observe that iteration (7) can be seen as a ‘‘modification’’ of the composition of iterative method (2) with order of
convergence p with Newton’s method. It is clear that (7) is more efficient than the simple composition of both methods,

xn+1 = φ(xn)−
f (φ(xn))
f ′(φ(xn))

= N (φ(xn)), n ≥ 0, (8)

since its order of convergence is 2p+1 and the number of evaluations of functions is p+2, whereas the order of convergence
of the composition is 2p and the number of evaluations of functions is p + 2. See Fig. 3.

On the other hand, if the composition of both methods is modified by classical Traub’s result [4], then the following
iterative method is obtained:

x0 given,
zn = φ(xn), n ≥ 0, (method of order p)
yn = zn − f (zn)/f ′(zn) = N (zn) = N (φ(xn)), (method of order 2p)

xn+1 = yn −
f (yn)
f ′(xn)

= yn −
f (N (φ(xn)))

f ′(xn)
, n ≥ 0.

(9)

The order of convergence of this method is also 2p + 1 and the number of evaluations of functions is p + 3, so that this
modification is less efficient than the one given by (7). See again Fig. 3.

Therefore, the ‘‘modification’’ of Traub’s result given by (7) is more efficient than the two natural alternatives: the
composition of the two methods and the classical Traub’s modification given by (9).

Following the idea of the modification of Traub’s result, we can think of generalizing this procedure from (7). Firstly, we
observe the following. To construct (7), we have considered the third-order method of Chebyshev written as the second-
order method of Newton plus a ‘‘remainder’’,

tn+1 = C(tn) = N (tn)−
1
2
f ′′(tn)
f ′(tn)


f (tn)
f ′(tn)

2

n ≥ 0,

and taking into account that p ≥ 3 and f ′′(xn)has been already evaluated to obtain zn in (7),we avoid doingmore evaluations,
which do not concern the composition N (φ), where f (zn) and f ′(zn) have been evaluated, and the highest-order derivative



2904 J.A. Ezquerro et al. / Computers and Mathematics with Applications 60 (2010) 2899–2908

which appears in the ‘‘remainder’’− 1
2
f ′′(xn)
f ′(zn)


f (zn)
f ′(zn)

2
is evaluated in xn, which has been previously evaluated. Then, from this

idea, we consider the following known fourth-order method [13], which can be written as Chebyshev’s method (method of
order three) plus a ‘‘remainder’’; i.e.:

tn+1 = C(tn)−
3f ′′(tn)2 − f ′′′(tn)f ′(tn)

6f ′(tn)2


f (tn)
f ′(tn)

3

= ψ3(tn), n ≥ 0. (10)

So, in this case, if p ≥ 4, we construct the following iterative method:

x0 given,
zn = φ(xn), n ≥ 0, (method of order p)

yn = zn −
f (zn)
f ′(zn)

−
f ′′(zn)f (zn)2

2f ′(zn)3
= C(zn) = C(φ(xn)), (method of order 3p)

xn+1 = yn −
3f ′′(zn)2 − f ′′′(xn)f ′(zn)

6f ′(zn)2


f (zn)
f ′(zn)

3

, n ≥ 0.

(11)

Note that the values f (zn), f ′(zn) and f ′′(zn) which appear in the ‘‘remainder’’ have been evaluated to define yn and the
value f ′′′(xn) has been evaluated to define zn, since zn = φ(xn), n ≥ 0, is a method of order p ≥ 4 and f ′′′(xn) has had to be
evaluated. Observe that (11) needs p+3 evaluations of functions. Next, we prove thatmethod (11) has order of convergence
at least 3p + 1.

Lemma 3.1. Let (8). Then, following Traub’s notation [4], we have
f (φ(x))
f ′(φ(x))

q

= (x − α)pq

Cφ(x)− CN (φ)(x)(x − α)p

q
, (12)

where Cφ(α) =
φ(p)(α)

p! and CN (φ)(α) =
f ′′(α)
2f ′(α)


φ(p)(α)

p!

2
are the asymptotic error constants of methods (2) and (8), respectively,

and α is a solution of the equation f (x) = 0.

Proof. Since methods (2) and (8) have respectively orders of convergence p and 2p, we have:

φ(x) = α + Cφ(x)(x − α)p,

N (φ(x)) = α + CN (φ)(x)(x − α)2p.

Therefore,

φ(x)− N (φ(x)) = (x − α)p

Cφ(x)− CN (φ)(x)(x − α)p


and Eq. (12) follows immediately. �

Theorem 3.2. Iterative method (11) has order of convergence at least 3p + 1.

Proof. Firstly, we write (11) as xn+1 = ϕ(xn), n ≥ 0, where

ϕ(x) = C(φ(x))−
3f ′′(φ(x))2 − f ′′′(x)f ′(φ(x))

6f ′(φ(x))2


f (φ(x))
f ′(φ(x))

3

.

Secondly, from Schröder’s characterization [14], we have to prove:

ϕ(α) = α, ϕ(k)(α) = 0, for k = 1, 2, . . . , 3p, ϕ(3p+1)(α) ≠ 0.

To do this, we now write the iteration function ϕ(x) as

ϕ(x) = ψ3(φ(x))+ R3(x), where R3(x) =
(−1)3

3!
f ′′′(φ(x))− f ′′′(x)

f ′(φ(x))


f (φ(x))
f ′(φ(x))

3

and ψ3 is defined in (10).
Observe that ψ3(φ(x)) is the iteration function of a method of order 4p (the composition of (10) with (2)). Then,

ψ3(φ(α)) = α,
dkψ3(φ(x))

dxk


x=α

= 0 (k = 1, 2, . . . , 4p − 1),
d4pψ3(φ(x))

dx4p


x=α

≠ 0.

Therefore, we have to study the derivatives of the product

R3(x) = T (x)


f (φ(x))
f ′(φ(x))

3

, where T (x) =
(−1)3

3!
f ′′′(φ(x))− f ′′′(x)

f ′(φ(x))
,
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since ϕ(α) = α. So, from Leibniz’s formula, it follows that

R(k)3 (x) =
dk

dxk


T (x)


f (φ(x))
f ′(φ(x))

3


=

k−
i=0


k
i


T (i)(x)

dk−i

dxk−i


f (φ(x))
f ′(φ(x))

3

.

By Lemma 3.1, it is clear that

dk−i

dxk−i


f (φ(x))
f ′(φ(x))

p 
x=α

= 0, k − i = 1, 2, . . . , 3p − 1,

and consequently, R(k)3 (α) = 0, k = 1, 2, . . . , 3p − 1. Moreover, since T (α) = 0,

R(3p)3 (α) = T (α)(3p)!

Cφ(α)− CN (φ)(α)(α − α)p

3
= 0.

Finally,

R(3p+1)
3 (α) =

3p+1−
i=0


3p + 1

i


T (i)(x)

d3p+1−i

dx3p+1−i


f (φ(x))
f ′(φ(x))

3
 

x=α



=


3p + 1

1


T ′(α)(3p)!Cφ(α)3 = (3p + 1)!


φ(p)(α)

p!

3 f ′′′′(α)

6f ′(α)
,

which in general is not zero. �

3.2. A generalization of the previous modification of Traub’s result

To generalize the previous result, we consider the iterative method given by (5) and rewrite it as

xn+1 = ψq(xn), n ≥ 0, where ψq(x) = ψq−1(x)+ γq(x)f (x)q.

Note that ψ1(x) = N (x) and ψ2(x) = C(x), so that (7) and (11) can also be written respectively as

xn+1 = ψ1(φ(xn))+ γ̄2(xn, φ(xn))f (φ(xn))2, n ≥ 0,
xn+1 = ψ2(φ(xn))+ γ̄3(xn, φ(xn))f (φ(xn))3, n ≥ 0,

where γ̄k(xn, φ(xn)) coincides with γk(xn), once f (k)(φ(xn)) has been replaced with f (k)(xn), for k = 2, 3, so that f (k)(xn) has
already been computed, since it has been used in method (2), whose order of convergence is p ≥ k + 1.

Following this interesting idea, we can then generalize the previous situation. To do this, we suppose that p ≥

q + 1, q ∈ N, so that f (q)(xn) is evaluated to define the method of order of convergence p given by (2), since it uses
f (xn), f ′(xn), . . . , f (p−1)(xn). In this case, we define

x0 given,
zn = φ(xn), n ≥ 0, (method of order p)
yn = ψq−1(zn) = ψq−1(φ(xn)), (method of order pq)
xn+1 = yn + γ̄q(xn, zn)f (zn)q,

(13)

where γ̄q(xn, zn) coincides with γq(zn), once f (q)(zn) has been replaced with f (q)(xn).
Our next goal is to prove that method (13) has order of convergence at least pq+ 1 (with p+ q evaluations of functions).

To see this, we follow in a way similar to the above for method (11). So, we first write (13) as

xn+1 = ψq−1(φ(xn))+ γ̄q(xn, φ(xn))f (φ(xn))q

= ψq(φ(xn))+

γ̄q(xn, φ(xn))− γq(φ(xn))


f (φ(xn))q

= ψq(φ(xn))+ Rq(xn),

where Rq(xn) is a ‘‘remainder’’ that has to be written in a suitable form (observe how method (11) is written in the proof of
Theorem 3.2). For this, we need the following functions (recursive definition): Let f : I ⊆ R −→ R such that f ∈ C (m)(I)

and Hk : C (m)(I)×
k
˘· · · ×C (m)(I) −→ R,m ≥ k, such that

H1(f ′(t)) = 0,

Hk

f ′(t), f ′′(t), . . . , f (k)(t)


=

f (k)(t)
f ′(t)

d
dt


1

f ′(t)k+1


+

d
dt


Hk−1


f ′(t), f ′′(t), . . . , f (k−1)(t)


f ′(t)

,

k = 2, 3, . . . , q − 1.

Now, we can define γk (k = 1, 2, . . . , q), which appear in (5), as in the next lemma.
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Lemma 3.3. If (6) is satisfied, then
γ1(t) = −1/f ′(t),

γk(t) =
(−1)k−1

k!


f (k)(t)
f ′(t)k+1

+ Hk−1

f ′(t), f ′′(t), . . . , f (k−1)(t)


, for k = 2, 3, . . . , q.

Proof. The expression of γ1(t) follows immediately from the condition given. For γ2(t):

γ2(t) = −
1
2
γ ′

1(t)
f ′(t)

= −
1
2

f ′′(t)
f ′(t)3

=
(−1)
2!


f ′′(t)
f ′(t)3

+ H1(f ′(t))

.

If we assume that

γk(t) =
(−1)k−1

k!


f (k)(t)
f ′(t)k+1

+ Hk−1

f ′(t), f ′′(t), . . . , f (k−1)(t)


, (14)

it follows in the same way that

γk+1(t) = −
1

k + 1
γ ′

k(t)
f ′(t)

=
(−1)k

(k + 1)!
1

f ′(t)


f (k)(t)

d
dt


1

f ′(t)k+1


+

f (k+1)(t)
f ′(t)k+1

+
d
dt


Hk−1


f ′(t), f ′′(t), . . . , f (k−1)(t)


=

(−1)k

(k + 1)!


f (k+1)(t)
f ′(t)k+2

+ Hk

f ′(t), f ′′(t), . . . , f (k)(t)


,

so that (14) is true for all positive integers k by mathematical induction. �

After that, it is easy to define the functions γ̄1, γ̄2, . . . , γ̄q in terms of the functions γ1, γ2, . . . , γq as
γ̄1(s, t) = γ1(t),

γ̄k(s, t) = γk(t)+
(−1)k

k!
f (k)(t)− f (k)(s)

f ′(t)k+1
, for k = 2, 3, . . . , q

and consequently,

Rk(x) =
(−1)k

k!


f (k)(φ(x))− f (k)(x)

f ′(φ(x))


f (φ(x))
f ′(φ(x))

k

, for k = 2, 3, . . . , q.

Theorem 3.4. Iterative method (13) has order of convergence at least pq + 1.

Proof. The proof also follows from Schröder’s characterization [14]. So, we have to prove:

G(α) = α, G(k)(α) = 0, for k = 1, 2, . . . , pq, G(pq+1)(α) ≠ 0,

where G(x) = ψq−1(φ(x))+ γ̄q(x, φ(x))f (φ(x))q. To do this, we first write G(x) as

G(x) = ψq(φ(x))+ Rq(x) and Rq(x) =
(−1)q

q!
f (q)(φ(x))− f (q)(x)

f ′(φ(x))


f (φ(x))
f ′(φ(x))

q

.

Now, it is easy to prove that

ψq(α) = α and ψ (k)
q (α) = 0, for k = 1, 2, . . . , pq + 1,

and

R(k)q (α) = 0, for k = 1, 2, . . . , pq.

On the other hand, since

R(pq+1)
q (x) =

(−1)q

q!

pq+1−
i=0


pq + 1

i


di

dxi


f (q)(φ(x))− f (q)(x)

f ′(φ(x))


dpq+1−i

dxpq+1−i


f (φ(x))
f ′(φ(x))

q
,
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Fig. 4. EI = (3q + 1)1/(3+q), q ≤ 2.

Fig. 5. EI = (4q + 1)1/(4+q), q ≤ 3.

we have, from the previous lemma,

R(pq+1)
q (α) =

(−1)q

q!


pq + 1

1


d
dx


f (q)(φ(x))− f (q)(x)

f ′(φ(x))


dpq

dxpq


f (φ(x))
f ′(φ(x))

q 
x=α

=
(−1)q+1

q!
(pq + 1)

f (q+1)(α)

f ′(α)


(x − α)pq


−CN (φ)(α)(x − α)p + Cφ(α)

q(pq) 
x=α

=
(−1)q+1

q!
(pq + 1)!

f (q+1)(α)

f ′(α)
Cφ(α)q.

In consequence,

G(pq+1)(α) = (−1)q+1 (pq + 1)!
q!

f (q+1)(α)

f ′(α)


φ(p)(α)

p!

q

,

which in general is not zero and the theorem then follows. �
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3.3. Numerical tests

Note that with generalization (13), we can optimize in the following sense the numerical tests presented above. Firstly,
we denote iterative method (13) as xn+1 = Φp,q(xn), n ≥ 0. According to the assumption above, if we consider that
iterative method (2) is Chebyshev’s method (order of convergence three and EI =

3√3 = 1.4422 . . .), then the next two
modifications can be obtained from (13): xn+1 = Φ3,q(xn), n ≥ 0, with q = 1, 2. Observe that if q = 2, then the last iterative
method coincides with that corresponding to the iterate function ψ̃2 given previously. As the efficiency indices of the two
modifications are

√
2 = 1.4142 . . . (q = 1) and 5√7 = 1.4757 . . . (q = 2), it is clear that the modification with q = 2 is

more efficient for solving nonlinear scalar equations than that with q = 1. See Fig. 4.
After that, we consider that (2) is the iterative method with order of convergence four that is deduced from (5) (and

EI =
4√4 = 1.4142 . . .). Then, threemodifications can be obtained from (13): xn+1 = Φ4,q(xn), n ≥ 0, with q = 1, 2, 3. Note

that if q = 2, then the last iterativemethod coincideswith that corresponding to the iterate function ψ̃3 given previously. The
efficiency indices of the three modifications are 5√5 = 1.3797 . . . (q = 1), 3√3 = 1.4422 . . . (q = 2) and 7√13 = 1.4425 . . .
(q = 3), we can say that the third modification (q = 3) is the best choice for solving nonlinear scalar equations. See Fig. 5.

Finally, following an analogous analysis, we could obtain themost efficientmodification given by (13) once any pth order
iterative method given by (2) is fixed.
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