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a b s t r a c t

We study the dynamics of a higher-order family of iterative
methods for solving non-linear equations. We show that these
iterative root-finding methods are generally convergent when
extracting radicals. We examine the Julia sets of these methods
with particular polynomials. The examination takes place in the
complex plane.
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1. Introduction

One of the most important applications of an iterative fixed-point method is the search for roots
of a non-linear equation

f (x) = 0. (1)
An iterative method starts from an initial guess x0 which is subsequently improved by means of an
iteration function Φ(x), that is, xn+1 = Φ(xn). Conditions are imposed on x0 (and, eventually, on f ,
or Φ , or both) to ensure the convergence of the sequence of iterates (xn)n≥0 to a solution ζ of the
equation f (x) = 0 and establish the order of convergence of the iterative method defined by Φ .

The processes most used for solving Eq. (1) are iterative methods. Among these, the most well-
known is the classical Newton iterative method given by

xn+1 = Nf (xn) = xn −
f (xn)
f ′(xn)

(2)
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where x0 is given and n ∈ N. Newton’s method is the iteration of the Newton map Nf (x) =

x − f (x)/f ′(x). The importance of Newton’s method comes from the following fact: if ξ ∈ C is a
root of multiplicitym ≥ 1, then Nf (ξ) = ξ and N ′

f (ξ) = 1 − 1/m. Hence, in neighborhoods of simple
roots, that is, roots with multiplicitym = 1, Newton’s method converges quadratically, and ifm > 1,
we only have linear convergence. Conversely, every finite fixed point of Nf is attracting and a root of
f . In fact, this property characterizes Newton’s map.

In order to increase the order of convergence, in [9], a family of Newton typemethods is introduced
as a characterization of iterative methods of R-order at least 3 as follows. Let Ω ⊂ C be an open set,
and let f : Ω → C be an analytic complex function; then the following family of iterative methods is
considered:

given x0 ∈ Ω,

xn+1 = xn −


1 +

1
2
Lf (xn) +

−
k≥2

AkLf (xn)k

f ′(xn)−1f (xn), {Ak} ⊂ R+,

(3)

provided that f ′(xn) ≠ 0 at each step, {Ak}k≥0 is a real sequence such that
∑

k≥2 Aktk < +∞ for |t| < r ,
and condition |Lf (xn)| < r is required for the valid definition of (3). On the other hand, Lf is known
as the degree of logarithmic convexity [11] and it is given by the expression Lf (z) = f (z)f ′′(z)/f ′(z)2.
Notice that Newton’s map satisfies that Lf (z) = N ′

f (z).
For a more detailed study and properties of this family of iterative methods, see [9]. Note that

family (3) includes the Newton method and the well-known one-point iterative processes of R-order
of convergence 3, Chebyshev’s method, Halley’s method, and the super-Halley method, among others
(see [1,2,9]).

Family (3) may be written in a more general and compact form. Indeed, we define the iterative
function

Gf (xn) = xn + (Nf (xn) − xn)H(Lf (xn)),

H(x) = 1 +
1
2
x +

−
k≥2

Akxk, {Ak} ⊂ R+, (4)

provided that f ′(xn) ≠ 0 at each step, {Ak}k≥0 is a real sequence such that
∑

k≥2 Aktk < +∞ for
|t| < r , and condition |Lf (xn)| < r is satisfied. Using this notation, we consider xn+1 = Gf (xn) where
x0 is given and n ∈ N. It is not difficult to see that every root of f is a finite fixed point of Gf . We will
prove that the roots of f withmultiplicitym ≥ 1 are (super)attracting fixed points for each element of
the family of iterative methods under study. For the study of semi-local convergence and properties
of family (4), see for example [9].

In this paper, we give the local characterization of the convergence of family (4) in terms of the
derivatives of the iterative function Gf at the fixed points corresponding to the roots of Eq. (1), where
f is an analytic complex function. In addition, we study the general convergence of a family of iterative
methods obtained by truncation of the power series defining function H in (4) when extracting
radicals, because in this situation the iterative method obtained is given by a rational map of the
extended complex plane into itself. Note that we can also write zn = G◦n

f (z0), where G◦n
f stands for the

composition of Gf with itself n times. Thus studying the family of iterative methods (4) is equivalent
to studying the map Gf as a dynamical system.

2. Preliminaries

We are interested in understanding convergence properties of the family of root-finding iterative
methods given by (4) when applying it to a complex polynomial. The local convergence of an iterative
method is determined by the derivative of the associated meromorphic function at the fixed points
which correspond to the roots of the polynomial.

Before presenting our results for the iterative methods that we are interested in, we recall basic
notions as regards the iteration of a map. Let F be a meromorphic function on a domain D of the
complex plane C. We say that ξ is a fixed point of F if F(ξ) = ξ . The multiplier of the fixed point ξ of
F is the number λ(ξ) = |F ′(ξ)|. We say that a fixed point ξ of F is, respectively, attracting, repelling,
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or indifferent if its multiplier λ = |F ′(ξ)| is less than, greater than, or equal to 1. We say that ξ is a
super-attracting fixed point if λ = 0.

Let ζ be a (super)attracting fixed point of F . Its basin of attraction or convergence region is the set
B(ζ ) = {z ∈ C : F ◦n(z) → ζ as n → ∞}

and its immediate basin of attraction, denoted as B∗(ζ ), is the connected component of B(ζ )
containing ζ .

For z ∈ C, we define its orbit as the set
orb(z) = {z, F(z), F ◦2(z), . . . , F ◦k(z), . . .}.

A cycle of length n is an orbit of cardinality exactly equal to n. In the case where orb(z0) is an n-cycle,
its multiplier is defined as λ(orb(z0)) = |(F ◦n)′(zj)| for any zj ∈ orb(z0). By the chain rule, this value
does not depend on a chosen point on the cycle. An n-cycle orb(z0) is said to be attracting, repelling,
or indifferent if z0 as a fixed point of F ◦n is, respectively, attracting, repelling, or indifferent. An
n-cycle orb(z0) is said to be a super-attracting cycle of F if z0 as a fixed point of F ◦n is super-attracting.
In the case where orb(z0) is an attracting n-cycle of F , the basin of attraction of orb(z0) is the set
B(orb(z0)) = ∪

n−1
j=0 F ◦j(B(z0)), where B(z0) is the basin of attraction of z0 as a fixed point of F ◦n.

The concept of normal families partitions the complex plane into completely invariant sets. Let
D ⊂ C be a domain, and let g : D −→ C be an analytic map. We say that a point z ∈ C is in the
Fatou set F (g) if the sequence of iterates {g◦n

: n ∈ N} forms a normal family there, or in other words
z ∈ F (g) if it has a neighborhood on which the sequence of iterates has a uniformly convergent
subsequence. Otherwise, z is in the Julia set J(g).

It is well-known that if F is a meromorphic function, then the Julia set is the closure of the set of
repelling cycles. Another well-known fact is as follows. If F has an attracting fixed point ζ , then the
basin of attraction B(ζ ) is contained in the Fatou set. For a comprehensive review of the theory of
iteration of meromorphic functions see [3] and for rational maps see [4,14,16].

From the discussion above, we see that an important part of the convergence properties of
our iterative root-finding processes is determined by the values the derivative of the associated
meromorphic function at fixed points which correspond to the roots of the polynomial that we are
considering.

3. Main results

When we study the convergence regions of an iterative root-finding method, we want to give a
description for a broad class of functions. For example, if a function g is obtained fromanother function
f , through a change of variables, it is desirable that the convergence regions of bothmaps be essentially
the same, except for a change of coordinates. This is the content of the following.

Theorem 1 (Scaling Theorem). Let f be an analytic function on the Riemann sphere, and let A(z) = αz+β ,
withα ≠ 0, be an affinemap. If g(z) = λ(f ◦A)(z), whereλ ∈ C∗

= C−{0}, then A◦Gg◦A−1(z) = Gf (z).
In other words, Gf is analytically conjugated to Gg by A.
Proof. We may assume that g(z) = f ◦ A(z) (that is, λ = 1). According to the Scaling Theorem for
Newton’s method (see [17]), and taking into account that Lf (z) = N ′

f (z), we have that αf ′(A(z)) =

g ′(z), A(Ng(z)) = Nf (A(z)) and N ′
g(z) = N ′

f (A(z)), i.e., Lg = Lf ◦ A. Hence,

Gf (A(z)) = A(z) − H(Lf (A(z)))
f (A(z))
f ′(A(z))

= A(z) − αH(Lg(z))
g(z)
g ′(z)

= α


z − H(Lg(z))

g(z)
g ′(z)


+ β

= A(Gg(z)).

If g(z) = λf (z), a straightforward calculation yields Ng = Nf , which completes the proof. �
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In order to describe the convergence regions of an iterative root-finding method, we must first
describe the character, as attractor, repeller or indifferent, of the fixed points corresponding to the
roots that we are trying to approximate. It is not difficult to see that for a polynomial p and for any
finite fixed point ξ , we have that N ′

p(z) = Lp(z) = (k − 1)/k, where k is the multiplicity of ξ as a
zero of p, and N ′

p(∞) = d/(d− 1), where d is the degree of p. For the converse, the following result is
well-known (see [20]).

Theorem 2. A rational function R : C −→ C of degree d ≥ 2 is the Newton map of a polynomial of
degree at least 2 if and only if the point at infinity is the unique repelling fixed point and for all other fixed
points α1, . . . , αd ∈ C, there exists a number nj ∈ N such that R′(αj) = (nj − 1)/nj < 1.

This result characterizes the rational functions which underlie Newton’s method for a polynomial
in terms of multipliers of the fixed points of the rational function.

We note that this result was also proved by Heat in 1987 and by Nishisama and Fujimura in
1992. On the other hand, Buff and Henriksen (see [5]) extended this result to the König root-finding
algorithms applied to a polynomialwith simple roots; also Rückert and Schleicher extended this result
to entire functions (see [18]).

For the family of algorithms under study, we have the following result, which is the first step in
the direction of the characterization of these algorithms.

Theorem 3. Let Ω ⊂ C be an open set and f : Ω → C be an analytic complex function and α a root of
f with multiplicity n and let Gf : Ω → C be the map given in (4). Then α is a (super)attracting fixed point
of Gf with multiplier

λ(α) = 1 −
1
n
H

n − 1
n


. (5)

Moreover, if f is a polynomial of degree d ≥ 2 (Ω = C in this case), then Gf has a repelling fixed point at
∞ with multiplier

λ(∞) =
1

1 −
1
dH
 d−1

d

 . (6)

In particular, if H((n − 1)/n) < 2n for all n ≥ 1, then the roots of f are attracting fixed points of Gf
and ∞ is a repelling fixed point of Gf .

Proof. Since Lf (z) = N ′

f (z), where Nf is Newton’s method associated with f , we have:
(a) If f has a zero α of multiplicity n ≥ 1, then it is well-known that α is a (super)attracting fixed

point of Newton’s method with multiplier Lf (α) = (n − 1)/n, and therefore

G′

f (α) = 1 −
1
n
H

n − 1
n


.

For n = 1 we have G′

f (α) = 0, since H(0) = 1, i.e., simple roots are super-attracting fixed points
of Gf . On the other hand, |G′

f (α)| < 1 for n ≥ 2, and then the multiple roots are attracting fixed
points of Gf .

(b) Using the coordinate change w → 1/w defined on a neighborhood of the point z = ∞, we see
that

λ(∞) = G′

f (∞) =
1

1 −
1
dH
 d−1

d

 .
It is easy to check that the multiplier λ(∞) is larger than 1.

Moreover, it is clear that if H((n − 1)/n) < 2n for all n ≥ 1, then the roots of f are attracting fixed
points of Gf and ∞ is a repelling fixed point of Gf . �

Note that the simple roots of f are critical points of Gf . On the other hand, there may exist critical
points which are not roots of f . We call these points free critical points. They are solutions, other than
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the roots of f , of the equation

1 + H ′(Lf (z))L′

f (z)(Nf (z) − z) + H(Lf (z))(Lf (z) − 1) = 0. (7)

Notice that these points depend on the chosen method in (4).
Free critical points are important due to the following classical result.

Theorem 4 (Fatou–Julia). Let G be an analytic map. If z0 is an attracting periodic point, then the
immediate basin of attraction B∗(z0) contains at least one critical point.

Consequently, the existence of attracting periodic orbits interferes with our search for roots of the
equation f (z) = 0 when we apply the iterative method Gf . In fact, in this case, the orbit of each free
critical point must be computed and its set of limit points determined. If the set of limit points of the
orbit of some free critical point is not a root of f (z), then either it is an attracting periodic orbit, or its
structure is more complicated. For example, the limit set could be either in the boundary of a Siegel
disk, or in the boundary of a Herman ring, or recurrent (see [13]). Note that the existence of attracting
periodic orbits interferes with the basins of attraction of the roots of f (z). Further, in some cases there
may exist fixed points other than the roots of f (z).

A fixed point ξ of Gf is called extraneous if it is not a root of f . Since the unique fixed points of
Nf are the roots of f and the point z = ∞, it follows from the expression for Gf given by (4) that
ξ is an extraneous fixed point when H(Lf (ξ)) = 0. On the other hand, the critical points of Gf are
the solutions of Eq. (7) other than the roots of f . Using the one-parameter family of cubic polynomials
pA(z) = z3+(A−1)z−A, Curry et al. [7] show the patterns of non-convergentNewton sequences in the
complex domain, that is, they give a description of the set of parametersλ forwhich the corresponding
Newton sequence Nn

pλ
(0) converges to a (super)attracting periodic orbit. Similar phenomena for the

same family of cubic polynomials are observed for both the Schröder and the König iteration functions.
(See [22,23].)

4. General convergence for extracting radicals

In this sectionwe show that family (4) for particular coefficients Ak is generally convergent when it
is applied for extracting radicals. It is well-known that Newton’s method is not generally convergent
for polynomials of higher degree in any reasonable sense. To see this, it suffices to find a polynomial
f such that Nf has an attracting cycle of order at least 2. For example, Smale [20] constructs the
polynomial f (z) = z3 − 2z + 2 for which Nf has the super-attracting cycle {0, 1}. The same
situation will prevail for every polynomial or analytic map g near f . On the other hand, notice that
Newton’s method is generally convergent for quadratic polynomials. The following theorem was
proved independently by Schröder (1870) in [19] and by Cayley (1879) in [6].

Theorem 5 (Schröder [19]; Cayley [6]). Let f be a quadratic polynomial with distinct roots. Then Nf and
the map Q : C −→ C given by Q (z) = z2 are conjugated by the Möbius map T (z) =

z−α
z−β

, where α and
β are the roots of f . In addition, let L be the bisector of the segment joining the roots α and β of f . Then
the attraction region of α (respectively, β) is given by the region of the complex plane determined by L
and contains α (respectively, β). Moreover, the behavior of the iterations of Nf for points in L is chaotic. In
other words, all points in the complex plane, except those on the bisector L, converge under iteration Nf to
the nearest root of f .

From the work of McMullen [15] concerning the general convergence of iterations of rational
functions we know that the family of iterative processes (4) is not generally convergent in the space
of all polynomials of fixed degree. However, we will show that the family of the iterative root-
finding methods under study is generally convergent for a special class of polynomials, namely the
polynomials of the form q(z) = zn − c where c ∈ C, that is, when we extract radicals. Moreover,
it is proved in [8] that the iterative methods of family (4) are generally convergent for quadratic
polynomials.

We first recall some definitions. (See [12,20].)
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Definition 1. Let p be a polynomial of degree d greater than or equal to 2. A rationalmap Tp : C −→ C
of degree k(d) whose coefficients are rational functions of the coefficients of p is an iteration function
for the polynomial if each root of p is a (super)attracting fixed point of Tp. If this property holds for all
polynomials of degree d, we say that the map T : p −→ Tp is a purely iterative algorithm.

Definition 2. An iterative function Tp associatedwith a polynomial p is said to be generally convergent
if for almost all z ∈ C, its orbit converges to a root of p.

We have the following well-known results; see [14].

Theorem 6. Let R be a rational map. If every critical orbit of R is either finite or converges to an attracting
cycle, then the Lebesgue measure of the Julia set of R is zero. Moreover, the iterations by R of any z not in
the Julia set of R converge to an attracting cycle of R.

Theorem 7. Let Tp be an iteration function associated with a polynomial p. If every critical orbit of Tp is
either finite or converges to a root of p under iteration by the map Tp, then Tp is generally convergent.

The following result is an immediate consequence of Theorem 1 with λ = c and A(z) = c−1/nz.
It follows from the Scaling Theorem for the family (4) that Gq and Gp are conjugated for the

polynomials p(z) = zn − 1 and q(z) = zn − c , where c ∈ C with c ≠ 0. Thus the description of
convergence regions of the roots of the polynomial q(z) = zn − c under iterations by Gq is equivalent
to describing the convergence regions of the roots of the polynomial p(z) = zn−1 under iterations by
Gp. Therefore, we consider the polynomial p. To obtain the best order of convergence for the method,
we consider the iteration function obtained from the family (4) by truncation, that is,

Gm,f (z) = z −


1 +

1
2
Lf (z) +

m−2−
k=2

AkLf (z)k


f (z)
f ′(z)

, for Ak ∈ R+ and k ≥ 2 (8)

in other words, all Aj equal zero for all j ≥ m−1. Note that whenwe apply the iterativemethod Gn,f to
a polynomial f , we obtain a rational map. Next we look for the parameters A2, A3, . . . , Am−2 in order
to obtain an order of convergence m, with m ≥ 2. In [10], it is shown that to obtain the best possible
order of convergence, the coefficients Aj, with j = 2, . . . ,m − 2, must be given by

Aj =

 1
n

j + 1


(−1)j

nj+1

(n − 1)j
.

Now, from Lp(z) =
(n−1)(zn−1)

nzn , family (8) applied to the polynomial p(z) = zn − 1 is reduced to

Gm,p(z) = z −


m−2−
j=0

 1
n

j + 1


(−1)jn

(zn − 1)j

znj


zn − 1
nzn−1

, (9)

and hence it follows (see [10]) that

G′

m,p(z) =


(m − 2)n
n − 1

+ 1

Am−2Lp(z)m−1. (10)

We now show that the iterative function Gm,· is generally convergent when extracting radicals.

Theorem 8. The iterative function Gm,p, with m ≥ 2, defined in (9) has n forward invariant Fatou
components which are super-attracting and m(J(Gm,p)) = 0, where m is the Lebesgue measure on C.

Proof. Let ξ be a root of zn − 1. Then Gm,p(ξz) = ξGm,p(z). Furthermore, if limk→∞ Gk
m,p(z) = θ , then

limk→∞ Gk
m,p(ξz) = ξθ .

Now, from (10) we have that the critical points of Gm,p are the zeros of Lp(z) and its poles. We have
that Lp(z) = 0 if and only if either p(z) = 0 (the roots of p) or p′′(z) = 0. But p′′(z) = 0 if and
only if z = 0. The poles of Lp are the critical points of p. Now p′(z) = 0 if and only if z = 0. It is not
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Fig. 1. Method (9) with n = 3 and m = 3.

difficult to verify that Gm,p(0) = ∞, and we know that the point z = ∞ is a repelling fixed point of
Gm,p. Therefore, z = 0 belongs to J(Gm,p) and from Theorem 6, the Lebesgue measure of J(Gm,p) is
zero. �

Finally, we show the attraction basins that methods (9) generate when they are applied to extract
radicals. The attraction basins clarify the structures of the universal Julia sets associated with the
corresponding iterative methods. This allows us to observe graphically the dynamical behavior of the
rational maps Gm,p for different values of m and n and compare the regions of the convergence of the
methods.

We apply methods (9) with different orders of convergence,m = 3, 4, to obtain the n-roots of the
polynomial p(z) = zn − 1 with n = 3, 4, and we paint their attraction basins. For that, we put the
dynamically interesting regions into a rectangle R = [−2, 2]× [−2, 2] ⊂ C that contains the roots of
p, and use a variation of a Mathematica code due to Varona; see [21]. In practice, we consider a grid of
1024×1024 points in R andwe choose these points as z0. In all the cases, we use a tolerance 10−4 and
the maximum of 100 iterations. We assign a color to each attraction basin of an n-root and we make
the color darker according to the number of iterations needed to reach the n-root. If we do not obtain
the desired tolerance with the fixed iterations, we do not continue and we decide that the iterative
method starting at z0 does not converge to any root and assign black color to those points.

As we observe in Figs. 1 and 2, the iterative functions G3,p and G4,p with third and fourth order of
convergence, respectively, applied to approximate the roots of the polynomial p(z) = z3 − 1, have
three forward invariant Fatou components which are super-attracting where the iterates converge to
the corresponding roots.

Similarly, in Figs. 3 and 4 we show the four super-attracting forward Fatou components obtained
from G3,p and G4,p when are applied to approximate the roots of the polynomial p(z) = z4 − 1.

Notice that in the pictures above there is a symmetry: they are invariant under a rotation by the
angle 2π/n, where n is the degree of the polynomial p.

5. Conclusions

In this paper we have described the character of the fixed points which correspond to the roots of
polynomial equations in the complex plane whose solutions we are looking for, using our family of
iterative root-findingmethods (4). The foregoing describes locally the behavior of the iterations under
the corresponding family of methods. In particular, this gives an idea of what the basins of attraction
of fixed points corresponding to the roots of a polynomial look like. The fixed point at infinity is
of interest since, as it is a repeller, we stay in the finite part of the extended complex plane under
iterations of our family applied to a polynomial. However, this does not mean that we have ensured
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Fig. 2. Method (9) with n = 3 and m = 4.

Fig. 3. Method (9) with n = 4 and m = 3.

Fig. 4. Method (9) with n = 4 and m = 4.
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the convergence of the iterations to the fixed points which correspond to the roots of a polynomial. As
is well-known, theremay be either (super)attracting cycles or (super)attracting fixed points which do
not correspond to the roots of a polynomial. Theremay also exist indifferent cycles and/or fixed points
for some methods. In addition, we have established the general convergence of methods defined in
(9) when they are applied to extracting radicals.
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