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Abstract: The kinematic behavior of models that are based on the finite element method (FEM)
for modeling the human body depends greatly on an accurate estimate of the parameters that
define such models. This task is complex, and any small difference between the actual biomaterial
model and the simulation model based on FEM can be amplified enormously in the presence of
nonlinearities. The current paper attempts to demonstrate how a combination of the FEM and the
MRS methods with desirability functions can be used to obtain the material parameters that are
most appropriate for use in defining the behavior of Finite Element (FE) models of the healthy
human lumbar intervertebral disc (IVD). The FE model parameters were adjusted on the basis
of experimental data from selected standard tests (compression, flexion, extension, shear, lateral
bending, and torsion) and were developed as follows: First, three-dimensional parameterized FE
models were generated on the basis of the mentioned standard tests. Then, 11 parameters were
selected to define the proposed parameterized FE models. For each of the standard tests, regression
models were generated using MRS to model the six stiffness and nine bulges of the healthy IVD
models that were created by changing the parameters of the FE models. The optimal combination of
the 11 parameters was based on three different adjustment criteria. The latter, in turn, were based on
the combination of stiffness and bulges that were obtained from the standard test FE simulations.
The first adjustment criteria considered stiffness and bulges to be equally important in the adjustment
of FE model parameters. The second adjustment criteria considered stiffness as most important,
whereas the third considered the bulges to be most important. The proposed adjustment methods
were applied to a medium-sized human IVD that corresponded to the L3–L4 lumbar level with
standard dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm. Agreement between
the kinematic behavior that was obtained with the optimized parameters and that obtained from the
literature demonstrated that the proposed method is a powerful tool with which to adjust healthy IVD
FE models when there are many parameters, stiffnesses, and bulges to which the models must adjust.

Keywords: Finite Elements Method; Multi Response Surface; optimization; biomechanics; human
intervertebral lumbar disc

1. Introduction

The human intervertebral disc (IVD) is a fibrocartilage structure that is located between the
vertebrae of the spine and absorbs the shock and pressure that are associated with daily movement.
The healthy intervertebral disc provides mobility and spine flexibility during body movement and
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prevents excessive wear of the facet joints during daily movement of the spine. The behavior of
the IVD is analogous to a ball full of water. The IVD is usually considered to be incompressible,
similar to elastomers, due to its soft tissue and high water content. It permits limited motion while
transmitting loads from one vertebra to another. Its complex structure permits significant mobility
between adjacent vertebrae while transmitting considerable compressive loads. The IVD has three
distinct regions [1]. These are the nucleus pulposus, the annulus fibrosus and the cartilage endplates.
The endplate is composed of hyaline cartilage with a thin structure that covers the entire nucleus
pulposus and about one third of the annulus fibrosus. The composition of the endplate is similar
to a particular cartilage, but with a lower water content. The firm outer region, which is called
annulus fibrosus, maintains the shape of the intervertebral disc. The annulus fibrosus is a complex
ring structure that surrounds and protects the nucleus pulposus. It can be found between each pair
of adjacent vertebrae. It is composed of concentric layers of fibrous tissue that have an approximate
thickness of 1 mm. The fibers are an aggregate of collagen fibers and are alternatively oriented to
the transverse plane at an angle of approximately ±30◦ [2]. The annulus fibrosus serves to resist the
nucleus pressure in the radial and tangential directions [3]. The fibers are surrounded by a hydrated
proteoglycam gel, or annulus ground substance [4]. The inner portion of the annulus is fibrocartilage,
which gradually blends into the nucleus pulposus. The inner portion, which is called the nucleus
pulposus, is the soft spongy tissue that enables the disc. It functions as a shock absorber, absorbing
the impact of the body’s daily movements. The disc may be subjected to a complex combination of
loads, but the nucleus pulposus helps to distribute the pressure evenly across the disc. This prevents
the development of stress concentrations that could cause damage to the underlying vertebrae or their
endplates. Many researchers have experimentally studied the behavior of the intervertebral disc of
human cadavers by standardized tests (e.g., compression, flexion, extension, shear, torsion, and lateral
bending) based on stiffness and disc bulges [5–11]. Today, due to medical ethics, the study of human
cadavers is declining. Instead, many researchers carry out their studies with animals whose behavior
is similar to that of humans [12]. Other researchers conduct their studies by modeling the behavior of
the human body’s biomechanics by numerical methods (e.g., Finite Element Method, Finite Volume
method, Finite-Difference method, etc.). FEM is known to be a powerful tool to design and optimize
mechanical devices, as well as different human body parts or even human prostheses for foot, knee or
hip. This is especially true when their behavior is nonlinear [13–20]. Over the years, several researchers
have used the FEM to study the mechanical behavior of the human IVD. However, the parameters that
define its complex structures differ entirely in each of these studies. Also, the process of achieving
the best parameters to correctly define the behavior of the IVD FE models according to the standard
test by trial-error method is difficult. This may result in an unacceptable cost. A large number of FE
studies have proposed methodologies to adjust the deformations [21], the reaction forces [22] and
the intradiscal pressure [23] of the proposed FE models were developed essentially by the trial-error
method. However, an optimization algorithm was developed to determine the relationship among
the components of the collagen fibers, annulus fibrosus and ground substance of an FE model using
the biomaterial properties that were extracted from the literature [24]. In this case, the stiffness of
the fibers was varied to approximate Young’s modulus of the ground substance in order to fulfil the
required range of motions possible with the properties found in the literature. A method that was
based on differential evolution was proposed by Ezquerro [25] to calibrate the FE model of a functional
spinal unit that consisted of ligaments, nucleus pulposus, vertebral arch, and facet joints. In this case,
the standard loads that were used were: flexion, extension, lateral bending and torsion. More recently,
some researchers have used FEM and regression models based on support vector machine (SVM)
combined with genetic algorithms (GA) to adjust the IVD FE model parameters [26]. Eleven material
parameters were considered in this paper to define the behavior of the human IVD FE model. They were
adjusted with nine different variations of stiffness and bulges from some of the previously mentioned
standardized tests. These were two parameters for the nucleus pulposus (C10 and C0); two parameters
for the cartilage endplate (E, µ); five parameters for the annulus fibers (Fiber12, Fiber34, Fiber56,
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Fiber78, and Fiber910), and two for the annulus ground substance (E, µ). The lowest value of error
(around 6%) between the stiffness and bulges that were obtained from the proposed FE models and
those obtained from the selected standardized test indicated that the proposed methodology was very
effective. To date, no further references have been found in the literature for adjustment of parameters
that define the non-linear behavior of human IVD FE models. However, some researchers have used
the MRS method combined with FEM in order to study and optimize mechanical problems [27–29].
The current paper attempts to show how the combination of the FEM and the MRS methods with
desirability functions can be used to obtain the most appropriate material parameters to use in defining
the behavior of FE models of the human intervertebral lumbar disc. The proposed adjustment methods
were applied to a medium-sized human IVD corresponding to the L3–L4 lumbar level with standard
dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm and developed as follows: First,
a three-dimensional parameterized FE model that consisted of nucleus pulposus, cartilage endplate,
annulus fibers, and annulus ground substance was developed and simulated with different standard
tests. As in Somovilla Gómez et al. [26], and based on standard tests (e.g., compression, torsion, shear,
flexion, extension, and lateral bending), three-dimensional parameterized FE models were generated
that consisted of nucleus pulposus, cartilage endplate, annulus fibers, and annulus ground substance.
Eleven parameters were used to define the parameterized FE models. Then, for each of the standard
tests, regression models were generated to model six stiffness and nine bulges of the healthy IVD
models as the parameters of the FE models were changed. Finally, an optimal combination of the
eleven parameters was achieved by applying MRS based on desirability functions according to three
different adjustment criteria. The first considered stiffness and bulges to be equally important for
adjustment of FE model parameters. The second considered stiffness as most important, whereas the
third considered bulges to be most important. An agreement between the kinematic behavior that
was obtained with the optimized parameters and those obtained experimentally from the literature
demonstrated that the proposed method is a powerful tool to use in adjusting healthy IVD-FE models
when the latter have a high number of parameters, stiffness values, and bulges to which the models
must adjust.

2. Use of FEM for Modeling the Lumbar Intervertebral Disc

A majority of the authors consider the nucleus pulposus to be an incompressible material.
Its behavior has been modeled with FEM. It is considered to be a non-linear incompressible solid [30] as
well as an incompressible fluid [11]. This non-linear behavior is due to its soft tissue condition and high
water content [31,32]. In contrast, other authors have modeled the nucleus pulposus considering it to
be a linear isotropic incompressible solid, with a Young’s modulus of 0.1 MPa [2,33–35], 1 MPa [36–40]
and in a range of 0.5 to 1 MPa [41,42] or in a range of 1 to 4 MPa [43], whereas its Poisson’s module
was 0.4999 or 0.5. Other authors have considered the incompressible elastomer formulation based
on the Mooney-Rivlin model for modeling nucleus pulposus behavior. In this case, C10 and C0
are the empirical constants parameters that are most frequently used. For example, Smit et al. [41]
considered the nucleus pulposus as incompressible and used the Mooney-Rivlin model with the
parameters C10 = 0.12 and C0 = 0.09 and µ = 0.4999 to model it. Some authors also have considered
the Mooney-Rivlin model with values of C10 = 0.12 and C0 = 0.03 [3,30,44], whereas others have
used values of C10 = 0.10 and C0 = 0.09 [45,46]. Similarly, Ibarz et al. [47] considered parameters of
C10 = 0.0343 MPa and C0 = 0.1369 MPa (E = 1.0 MPa and µ = 0.49).

On the other hand, Lu et al. [48], Martínez et al. [49], and González Gutiérrez et al. [42] considered
the endplates’ cartilage behavior. They assumed an isotropic formulation with an elastic modulus E and
a Poisson ratio µ of 20 MPa and 0.3, respectively. In a similar fashion, Kim et al. [36] and Dicko et al. [37],
used the values for the endplates cartilage of E = 24 MPa and µ = 0.4, whereas Rohlmann et al. [46] and
Schmidt et al. [44] used values of E = 23.8 MPa and µ = 0.8. However, Denozière [2] considered values
of E = 12 MPa and µ = 0.3. The literature provides a Young’s modulus for the annulus ground substance of
2 MPa to 10 MPa. However, the most commonly used value is 4.2 MPa. Denozière [50], Dietrich et al. [51],
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and Baroud et al. [30] selected values of 4.2 and 10 MPa, respectively, for Young’s modulus. For Poisson’s
ratio, they used values of 0.45 to 0.35. Other researchers considered the annulus ground substance as
an incompressible, and used the Mooney-Rivlin model with the parameters of C10 = 0.348, C0 = 0.3,
and µ = 0.45 [45,46,52]. Schmidt et al. [44] used values of C10 = 0.10, C0 = 0.05 and µ = 0.45. Dicko et al. [37]
considered C10 = 0.18, C0 = 0.04, and µ = 0.45. Ayturk et al. [38] considered the annulus ground substance
as a Yeoh hookean hyperelastic material that is a model for the deformation of nearly incompressible
nonlinear realistic materials such a rubber. For the collagen fiber layers, most researchers have chosen
linear properties in their studies, which provide an average Young’s modulus of approximately 360 to
550 MPa and a Poisson’ ratio of 0.3 to 0.45 [2,30,33,35,36,38]. However, Grauer et al. [39] considered values
of 175 MPa for all fiber layers. Other authors assumed a nonlinear stress-strain behavior of the annulus
collagen fiber layers based on a nonlinear function [37,44–46,52] that was obtained from previous
reports that were based on the stress-strain curve of Shirazi-Adl et al. [11]. Ayturk et al. [38] considered
the annulus fibers as Yeoh hyperelastic material with C10 = 0.0146, C20 =−0.0189, C30 = 0.04; a3 = 0.03,
and b3 = 120. Table 1 shows the large number of parameters that some researchers have used during
the last 30 years to develop intervertebral disc FE models. The latter adjusted the intervertebral disc FE
models according to standard tests by trial and error, although this is difficult and very costly. To date,
no author has made a methodical adjustment of these parameters. Only Somovilla Gómez et al. [26]
have used FEM and Data Mining Techniques to adjust intervertebral disc FE models. In this paper,
the authors propose the adjustment of the parameters that best define the behavior of the intervertebral
disc. They propose the use of FEM and MRS with desirability functions and consider three different
adjustment criteria. The first considers stiffness and bulges to be equally important, the second
considers stiffness as most important, and the third considers bulges as most important.
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Table 1. Range of the material parameters proposed to define the behavior of human intervertebral lumbar disc models based on the finite element method (FEM).

Nucleus Pulposus Cartilage Endplate Annulus Ground Annulus Fibers

Authors
FE Parameters FE Parameters FE Parameters FE Parameters FE Parameters

Mooney-Rivlin Max. Isotropic Isotropic Mooney-Rivlin Isotropic F1 F2 F3 F4 F5

C10 C0 E M E µ C10 C0 E µ E µ

Kim and Chun (2015) [36] - - 1 0.4999 24 0.40 - - 4.2 0.45 550–358 0.3
Dicko et al. (2015) [37] - - 1 0.4999 24 0.40 0.18 0.045 - 0.45 Non-linear stress-strain curve

González et al. (2015) [42] 0.12 0.03 0.5 < E < 1 0.4 < µ < 0.5 20 0.3 - - 0.75–5 0.35–0.5 - -
Ibarz, Elena et al. (2014) [47] 0.0343 0.1369 - - - - - - 4.2 0.45 550 503 455 408 360 0.3
Tsouknidas et al (2012) [35] - - 0.2 0.4999 - - - - 4.2 0.45 550 485 440 420 360 0.45

Ayturk, U.M. (2010) [38] - - 1 0.4999 23.8 0.8 C10 = 0.0146; C20 = −0.0189; C30 = 0.041 a3 = 0.03; b3 = 120
Schmidt, Kettler (2007) [44] 0.12 0.03 - 0.4999 23.8 0.8 0.10 0.05 0.45 * Stress-strain curve by Shirazi: σ = 23,000 × ε1.9

Rohlmann et al. (2006) [46] 0.10 0.09 - 0.4999 23.8 0.8 0.348 0.3 0.42 0.45 * Stress-strain curve by Shirazi: σ = 23,000 × ε1.9

Rohlmann, Zander (2006) [45] 0.10 0.09 - 0.4999 - - 0.348 0.3 0.42 0.45 * Stress-strain curve by Shirazi: σ = 23,000 × ε1.9

Grauer et al. (2006) [39] - - 1 0.4999 - - - - 4.2 0.45 175 175 175 175 175 -
Dietrich, M. et al. (2005) [51] - - 0.012 0.4999 - - - - 10 0.35 - - - - - -
Denoziére, G. et al (2004) [2] - - 0.1 0.4999 12 0.3 - - 4.2 0.45 550 485 440 420 360 0.3

Baroud et al. (2003) [30] 0.12 0.03 - - - - - - 8 0.45 500 485 420 360 - -
Pitzen et al. (2002) [33] - - 0.1 0.4999 - - - - 4.2 0.45 500 485 420 360 - -
Dooris et al. (2001) [40] - - 1 0.49 - - - - - - - - - - - -

Eberlain et al. (2001) [52] Incompress. Fluid - - 23.8 0.4 0.348 0.3 4 0.4 * Stress-strain curve by Shirazi:σ = 23,000 × ε1.9

Martínez et al. (1997) [49] - - - - 20 0.3 - 0.3 - - - - - - - -
Lu et al. (1996) [48] - - - - 20 0.3 - - 4.2 0.45 - - - - - -

Smit et al. (1997) [41] 0.12 0.09 0.5 < E < 1 0.4999 - - - - - - - - - - - -
Sharma et al. (1995) [34] 0.1 0.4999 - - - - 4.2 0.5
Lavaste et al. (1992) [43] - - 1 < E < 4 0.5 - - - - - - - - - - - -

Shirazi-Adl et al. (1984) [11] Incompress. Fluid - - - - - - 4.2 0.45 σ = 23,000 × ε1.9

Yeoh material. Material coefficients: C10 = 0.0146, C20 = −0.0189, C30 = 0.041; a3 = 0.03, b3 = 120.0 (b3 is unitless). C10 = 0.0343 MPa; C0 = 0.1369 MPa. An elastic analysis with a Young
modulus of 1.0 MPa and Poisson ratio of 0.49 was conducted with similar results and a volume change of less than 0. * is Stress-strain curve by Shirazi et al. [11]: in this case, ε is the value
for the deformation and σ is the stress.
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2.1. Biomechanics of the Intervertebral Disc

The intervertebral disc (IVD) is one of the most important constitutive elements of a functional
spine unit (FSU). An FSU consists of two adjacent vertebrae, the intervertebral disc, and all adjoining
ligaments between them. The FSL excludes other connecting tissues such as muscles. Its complex
structure allows significant mobility between two adjacent vertebrae while transmitting considerable
compressive loads from one vertebra to another. Over time, the normal aging process causes the
intervertebral discs to degenerate. This reduces the water contained in the intervertebral disc and the
ability to absorb the impacts that are associated with spinal movements. Excessive pressure, strain,
or injury to a rigid disc can cause the disc to tear or bulge. The degeneration of the disc’s size and the
loss of its functionality will bring the adjacent vertebrae closer to one another. This causes impingement
and compression of a spinal nerve root. Nerve impingement can result in intermittent low back pain
or leg pain, depending on the level of impingement [3]. This problem can be relieved by a surgical
procedure called artificial disc replacement. In this procedure, the damaged disc is replaced by an
artificial prosthesis (arthroplasty). Figure 1a,b show, respectively, an FSU with a healthy disc and an
FSU with a herniated disc.
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Figure 1. (a) Healthy Functional Spinal Unit (b) Detailed view of the nerve impingement and herniated
intervertebral disc.

2.2. Spine Movement

Spinal movement during daily activities is complex because it involves a combination of plane
movements with several motions in axial, coronal, and sagittal planes. In the coronal plane, the spinal
movement takes place when an individual bends forward or backward. This typically occurs when
one is exercising or performing heavy tasks. Forward bending of the spine is defined as flexion,
whereas backward bending is called extension. Movement in the sagittal plane occurs when bending
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laterally to the right or to the left. Bending the spine to the right is called right bending and to the left
is called left bending. Movement of the spine in the axial plane occurs after applying torsion clockwise
and counterclockwise. Torsion of the spine is defined as torsion. Figure 2 shows the plane movements
and the movements [53]: (a) Movement Planes; (b) Compression; (c) Lateral Bending; (d) Torsion;
(e) Flexion; (f) Extension.
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2.3. Bulge

In this work, the radial bulge of the lower disc was examined in the healthy model. The bulge
was calculated at only three characteristic locations of the disc (anterior, lateral, and posterior) as
shown in Figure 3, when axial compression, flexion, extension and lateral bending were simulated.
The bulges for the torsion and shear tests were not considered. The disc bulged anteriorly during
flexion, posteriorly during extension, and toward the concavity of the spinal curve during lateral
bending. One of the mechanisms of nerve root irritation and herniated disc is root impingement by
disc bulge. Clinical interest has led to several in vitro studies that have carefully measured the disc
bulge. In the early studies, only the compression load was applied [54], but in later studies, the effects
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of various other loads also were considered in several directions, such as flexion, extension, and lateral
bending [55–59].Materials 2017, 10, 1116  8 of 40 
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2.4. Experimental Behavior of the Intervertebral Disc

For decades, most authors have studied the behavior of the human intervertebral disc by standard
tests using human cadavers based on stiffness and disc bulges. The standard tests examine compression,
flexion, extension, shear, lateral bending, and torsion. One of the first authors to study the behavior of
the intervertebral disc was Virgin [60]. He investigated the elastic properties of the intervertebral disc
in order to ascertain their contribution to the function of the vertebral column.

2.4.1. Compression

In this work, Virgin [60] obtained a stiffness value of 2500 N/mm in a compression tests when
he applied a load of 4500 N. Other authors used loads of 5500 N to 1000 N for the compression
test and obtained stiffness values of 3000 to 700 N/mm [3,54,60–64]. In other works, for lower
compression values with loads between 850 and 500 N, stiffness values between 2420 and 510 N/mm
were obtained [5,7,65–67]. Others authors applied loads with values of less than 400 N and obtained
stiffness values of 800 and 250 N/mm [8,68–70]. In regard to the bulges in the standard compression
test, many authors analyzed the anterior, posterior, and lateral bulges of the intervertebral disc. In this
regard, Shirazi-Adl et al. [11] used loads of 500, 720, and 1000 N and obtained values of 0.5–0.7–0.8 mm
for the anterior bulge, 0.75–1.0–1.5 mm for the posterior bulge, and 0.35–0.4–0.6 mm for the lateral
bulge. However, Denozière [2] considered a compression load of 2500 N and obtained results for
the anterior, posterior and lateral bulges of 0.5, 0.7, and 0.4 mm. Table 2 summarizes the loads that
were used in the compression test and the different stiffness and bulge values that were obtained by
different authors.
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Table 2. Summary of stiffness, bulges, and compression loads from various authors.

Compression Test

Authors Stiffness (N/mm) Load (N) Range of Load (N)

Moroney et al. (1988) [68] 500 74
Brown et al. (2002) [69] 400 200 <400
Keller et al. (1987) [70] 247 253
Berkson et al. (1979) [8] 800 400

Nachemson et al. (1979) [67] 571 500
Rostedt et al. (1998) [5] 810 500
Stokes et al. (2002) [65] 510 500 850–500
Panjabi et al. (1984) [66] 750 600

Gardner-Morse et al. (2004) [7] 2420 850

Hirsh and Nachemson (1954) [54] 700 1000
Schultz et al. (1973) [61] 1500 1000

González Gutierrez (2012) [3] 833 1000
González Gutierrez (2012) [3] 933 1000
González Gutierrez (2012) [3] 1089 1000 5500–1000

Markolf (1970) [62] 1800 1800
Virgin (1951) [60] 2500 4500

Rolander and Blair (1975) [63] 3000 5000
Brown et al. (1957) [64] 2300 5300

Bulges Values

Authors Anterior/Post/Lateral (mm) Load (N)

Reuber et al. (1982) [58] -/0.24/0.66 400
Schmidt, Kettler (2007) [44] 0.7 to 0.9 500
Shirazi-Adl et al. (1984) [11] 0.5/0.75/0.35 500
Shirazi-Adl et al. (1984) [11] 0.7/1/0.4 720

Reuber et al. (1982) [58] -/0.34/0.8 800
Brinckmann et al. (1991) [59] 0.15 1000
González Gutierrez (2012) [3] 0.69 1000
Shirazi-Adl et al. (1984) [11] 0.8/1.5/0.6 1000
Nachemson, A. (1960) [71] - 2000

Denozière (2004) [2] 0.5/0.7/0.4 2500
Klein et al. (1983) [57] 0.6 -

2.4.2. Flexion and Extension

One of the first studies of the behavior of Flexion and Extension of the human intervertebral disc
was [61]. In this work, a load of 20 Nm was considered for both flexion and extension. Stiffness values
of 4.5 Nm/◦ were obtained in both tests. Similarly, Brown et al. [69] considered the same load (20 Nm)
but obtained a stiffness value of 2 Nm/◦ in both tests. Another study, Miller et al. [71], used higher
loads (70 Nm), and obtained stiffness values of 5.51 and 7.60 Nm/◦ for the Flexion and Extension
tests respectively. Finally, Adams et al. [72] used a load of 80 Nm and obtained stiffness values of
7.3 Nm/◦ for both tests. However, most researchers have used loads of 5 Nm to 10 Nm for their
studies. For example, the work by Schultz et al. [9] considered a load of 10.6 Nm for a study of the
behavior of the intervertebral disc, and obtained stiffness values of 1.92 Nm/◦ and 3.53 Nm/◦ for
the Flexion and Extension test respectively. Adams et al. [73] considered a load of 10.7 Nm, and the
stiffness obtained was 1.34 Nm/◦. Other authors used a load of 10 Nm for the Flexion and Extension
test. They obtained stiffness values that ranged between 0.8 and 2.04 Nm/◦ for Flexion, and between
2 and 3.53 Nm/◦ for Extension [7,53,67]. Guan et al. [74], Busscher et al. [75] and [76], González
Gutiérrez [3], and Patwardhan et al. [77] considered a load range of 4 to 8 Nm for both the Flexion and
Extension tests. The stiffness values that they obtained from these tests varied from 0.8 to 1.18 Nm/◦

for the Flexion test and from 0.8 to 1.53 Nm/◦ for the Extension test. In regard to the study of anterior,
posterior and lateral bulges by the Flexion and Extension tests, Reuber et al. [58] considered loads
of 3.9 Nm to 7.9 Nm and obtained values of 0.73 and 1.11 mm for the posterior bulge, respectively.
For the lateral bulge, they obtained values of 0.07 and 0.21 mm respectively. Finally, Denozière [2]
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used a load of 10 Nm and obtained values of 1.3, 1.9, and 2.6 mm for the anterior, posterior, and lateral
bulges, respectively. Table 3 summarizes the stiffness and bulge values for the Flexion and Extension
standard tests by the various authors.

Table 3. Stiffness, bulge values, and flexion-extension loads from various authors.

Flexion/Extension Test

Authors Stiffness Values (Nm/◦) Load (Nm)

Guan et al. (2007) [75] 0.82/1.53 4
Busscher et al. (2009) [76] 0.8 4
Busscher et al. (2010) [77] 0.8 5

González Gutierrez (2012) [3] 1.18/1.38 5
Patwardhan et al. (2003) [78] 1.33 8
White and Panjabi (1978) [79] 0.8/2 10
Nachemson et al. (1979) [67] 2.03/3.53 10

Gardner-Morse et al. (2004) [7] 2.04 10
Schultz et al. (1979) [9] 1.92/3.55 10.6
Adams et al. (1980) [74] 1.34 10.7
Schultz et al. (1973) [61] 4.5 20
Brown et al. (2002) [69] 2 20
Miller et al. (1986) [72] 5.51/7.60 70

Adams et al. (1996) [73] 7.3 80

Bulges Values

Authors Anterior/Post/Lateral (mm) Load (Nm)

Denoziére, G. et al. (2004) [2] 1.3/1.9/2.6 10
Reuber et al. (1982) [58] -/0.73/0.07 3.9
Reuber et al. (1982) [58] -/1.11/0.21 7.9

2.4.3. Lateral Bending

As in the previous standard test, Schultz et al. [61] obtained a value of stiffness equal to 2.8 Nm/◦ for
Lateral Bending tests using a load of 20 Nm. Subsequently, Miller et al. [71] obtained a stiffness value of
4.35 Nm/◦ for Lateral Bending using a load of 60 Nm. Other authors considered a lower range of loads
(between 4 and 10 Nm) and obtained values that ranged between 0.75 and 2 Nm/◦ [3,7,9,53,74–76,78].
In addition, one of the few authors who were found in the extensive literature to have studied the anterior,
posterior and lateral IVD bulges under a Lateral Bending load was Reuber, M. et al. [58]. In this work,
two different loads of 9.8 Nm and 3.9 Nm were used. They resulted in bulge values of 0.49 and 1.13 mm
for the posterior bulge respectively, whereas the lateral bulge values were 0.83 and 2.11 mm respectively
(See Table 4).

Table 4. Stiffness values and lateral bending loads from various authors.

Lateral Bending Test

Authors Stiffness Values (Nm/◦) Load (Nm)

Guan et al. (2007) [75] 0.76 4
Busscher et al. (2009) [76] 0.5 4
Busscher et al. (2010) [77] 0.6 5

González Gutierrez (2012) [3] 1.58 5
White and Panjabi (1978) [79] 0.9 10
Nachemson et al. (1979) [67] 1.1 10

Gardner-Morse et al. (2004) [7] 1.29 10
Schultz et al. (1979) [9] 2 10.6

Schultz et al. (1973) [61] 2.8 20
Miller et al. (1986) [72] 4.35 60

Bulges Values

Authors Anterior/Post/Lateral (mm) Load (Nm)

Reuber et al. (1982) [58] -/0.49/0.83 3.9
Reuber et al. (1982) [58] -/1.13/2.11 9.8
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2.4.4. Shear and Torsion

Only a few studies in the literature have studied the stiffness of the IVD in a shear test. One of
these was conducted by Schultz et al. in [9,61], who used loads of 1000 N and 980 N and obtained,
respectively, 685 N/m and 1000 N/m for stiffness values. Similarly, Weisse et al. [79] obtained a
stiffness value of 830 N/m when they applied a load of 950 N. Another research team to conduct this
type of test was Liu et al. [6]. In this work, the load applied was 450 N and the stiffness value that was
obtained was 300 N/m. Other authors, such as Miller et al. [71] and Markolf [62], applied loads of
150 N for the same shear test but obtained different stiffness values (115 N/m and 260 N/m). Finally,
Moroney et al. [68] used a much lower load than those used by the previously mentioned authors
(20 N) and obtained a stiffness value of 60 N/m.

When the disc is subjected to a torsion load, the stress distribution in the IVD depends on the
disc’s degree of degeneration and whether the posterior elements are intact. Miller et al. [71] was
one of the groups of investigators in the literature, who considered the highest torsion load. It was
70 Nm and produced a stiffness value of 10.9 Nm/◦. Farfan et al. [80] and Schultz et al. [61] considered
loads of 31 Nm and 30 Nm, and obtained stiffness values of 2 and 4.5 Nm/◦ respectively. However,
most researchers considered torsion test loads of 10 Nm to 8 Nm and obtained stiffness values that
ranged from 8.48 to 1.44 Nm/◦ [7,53,78,81,82]. Today, loads of 5 Nm to 4 Nm are applied in this type
of standard test, and the stiffness values that are obtained vary from 4.4 to 1.6 Nm/◦ [42,75,76]. Table 5
summarizes the stiffness values and the loads applied in shear and torsion tests.

Table 5. Stiffness and loads for the shear and torsion tests by various authors.

Shear Test

Authors Stiffness (N/mm) Load (N)

Moroney et al. (1988) [68] 60 20
Markolf (1970) [62] 260 150

Miller et al. (1986) [72] 115 150
Liu et al. (1975) [6] 300 450

Weisse et al. (2012) [80] 830 950
Schultz et al. (1979) [9] 1000 980

Schultz et al. (1973) [61] 685 1000

Torsion Test

Authors Stiffness (Nm/◦) Load (Nm)

Busscher et al. (2009) [76] 2.5 4
Busscher et al. (2010) [77] 1.6 5

González Gutierrez (2012) [3] 4.4 5
Haughton et al. (1999) [83] 7 6.6

Adams et al. (1981) [82] 1.44 7.4
White and Panjabi (1978) [79] 2.22 10
Nachemson et al. (1979) [67] 8.48 10

Gardner-Morse et al. (2004) [7] 2.1 10
Schultz et al. (1979) [9] 7.07 10.6

Schultz et al. (1973) [61] 4.5 30
Farfan et al. (1970) [81] 2 31
Miller et al. (1986) [72] 10.9 70

As described in the previous paragraphs, the published studies of the behavior of IVD are
extensive. In this regard, the current work selected only fifteen different stiffness values and bulges,
as well as the corresponding loads, for a search for the optimal combination of the disc’s FE model
parameters. Table 6 summarizes the 15 different stiffness and bulge values that were selected (six for
stiffness and nine for bulges) and the load that each author, whose work was selected, applied in the
corresponding standard test. These values were used to adjust the parameters that define the behavior
of the FE model.
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Table 6. Stiffness and bulge values selected from the standard tests that are used to adjust the
parameters that define the behavior of the finite element (FE) model of the intervertebral lumbar disc.

Test Author Load Used Stiffness

Compression Rostedt et al. (1998) [5] 500 N 810 N/mm
Flexion González Gutierrez (2012) [3] 5 Nm 1.18 Nm/◦

Extension Guan et al. (2007) [75] 4 Nm 1.53 Nm/◦

Lateral Bending Bending Schultz et al. (1979) [9] 10.6 Nm 2.0 Nm/◦

Shear Liu et al. (1975) [6] 450 N 300 N/mm
Torsion Gardner-Morse et al. (2004) [7] 10 Nm 2.1 Nm/◦

Test Authors Load Used
Bulge Bulg Bulge

Anterior (mm) Posterior (mm) Lateral (mm)

Compression Shirazi-Adl et al. (1984) [11] 500 N 0.5 0.75 0.35
Flexion Reuber et al. (1982) [58] 3.9 Nm - 0.73 0.07

Extension Reuber et al. (1982) [58] 3.9 Nm - 0.24 0.1
Lateral Bending Reuber et al. (1982) [58] 9.8 Nm - 1.13 2.11

3. FE Model for Modeling the Intervertebral Disc Proposed

Like the authors’ disc that was modeled by FEM and described in Section 2 (See Table 1), this paper
considered that intervertebral discs have four main parts. They are the annulus fibrosus, the nucleus
pulposus, and the two endplates that link it to the vertebrae. Figure 4 shows a 3D view of the proposed
human healthy IVD FE model. In the lumbar spine, the nucleus is located between the middle and the
posterior third of the sagittal diameter. Its volume is 30–50% of the total disc volume [53]. In some
finite element analyses of the lumbar spine, the authors concluded that the nucleus was 43% of the
total disc volume, which is the volume that the current paper assumes.
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Also, the nucleus pulposus was considered to be a non-linear incompressible and hyper-elastic
Mooney Rivlin solid material. It was formulated according to empirical constants C10 and C0 [30,41].
It was assumed that the nucleus pulposus is surrounded by the annulus fibrosus. In order to prevent
volumetric blockage, as the nucleus was considered to be practically incompressible, a full integration
with Herrmann formulation was used for the eight-node solid FE elements that constituted the nucleus
pulposus [83,84]. The annulus fibrosus was assumed to be a homogenous ground substance of
hydrated proteoglycan gel that is reinforced by collagen fibers. The current FE model includes five
layers of fibers that were oriented at an angle of ±30◦ relative to the transverse plane. The fibers were
simulated by three-dimensional unidirectional line FE elements. The homogenous ground substance
was simulated as eight-node isoparametric solid FE elements. For the five layers (Fiber12, Fiber34,
Fiber56, Fiber78, and Fiber910), a range of E of 550 to 360 MPa, respectively, was assumed for their
elastic modulus values. The endplates, which are composed of hyaline cartilage, link the disc to the
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vertebrae. This work considered cartilage endplates with an isotropic formulation (an elastic modulus
E and a Poisson ratio of µ) for the FE model). A total of 11 material parameters were selected to define
the behavior of the human disc FE model. They were adjusted after considering the above mentioned
standard test. Table 7 summarizes these eleven different proposed material parameters.

Table 7. Range of the proposed material parameters for defining the behavior of the human
intervertebral lumbar disc models based on FEM.

Tissue
FE Parameters

Tissue
FE Parameters

Min. Max. Min. Max.

Nucleus Pulposus Annulus Fibrosus

C10 0.11 0.14 Fiber12 515.0 550.0
C0 0.02 0.04 Fiber34 503.0 515.0

Endplate Fiber56 455.0 503.0

E 23.0 55.0 Fiber78 408.0 455.0
µ 0.3 0.4 Fiber910 360.0 408.0
- - - E Annulus Fibrosus 4.0 4.2
- - - µ Annulus Fibrosus 0.25 0.45

3.1. Configuration of the Finite Element Analysis and Mesh Size

Due to the large displacements and deformations that the intervertebral disc suffered in this study,
as well as the hyper-elastic behavior of the nucleus pulposus, a nonlinear analysis that involved large
strain procedure with an updated Lagrangian formulation was used. Also, the mesh size that was
established for each of the four parts of the intervertebral disc was based on the extensive literature
available [85,86]. In this case, the largest mesh size for hexahedral elements of the endplate and
annulus fibrosus was 2.2 mm, whereas the lowest was 0.5 mm, which corresponds to the thickness of
the endplate itself (See Figure 5a). Also, the largest mesh size for the nucleus pulposus was 1.6 mm,
and the smallest size was 0.3 mm (See Figure 5b). The openings in all of the mesh sizes that were
established for the proposed FE models were smaller than each of the four parts of the intervertebral
disc than those sizes of the FE models proposed in the literature. In other words, the discretization that
is chosen can obtain satisfactory results without depending on further mesh refinement.
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3.2. Intervertebral Disc Dimensions

For decades, many authors have studied the kinematic behavior of human intervertebral discs of
patients of different ages, sex, and stature, as well as different states of degeneration of the intervertebral
disc itself. Many of these studies have been based exclusively on experimental studies using intervertebral



Materials 2017, 10, 1116 14 of 39

discs from cadavers. Other works have been based mainly on FE models of discs for the study of their
kinematics. In the studies that were based on FE models, the proposed models have been experimentally
validated using data obtained by the authors themselves, or have been experimentally validated using
data obtained from the literature. For a very broad range of patients that were studied, all lumbar
intervertebral discs for the L1–L5 segment analyzed have had very similar widths, depths, and heights (See
Figure 6a). For example, Zhou et al. [87] studied 126 patients with differing degrees of disc degeneration
according to the Friberg and Hirsch scale [88]. Fifty-five male patients with a mean age of 50 ± 13.6
and 71 female patients with a mean age of 49 ± 12.04 and an age range of 22–80 years were studied.
The approximate dimensions of the intervertebral discs analyzed in this case were, according to Figure 6a,
a width of 46.1 ± 3.1 mm, a depth of 34.1 ± 2.6 mm, and a height of 12.4 ± 1.7 mm. Rostedt et al. [5]
experimentally studied six lumbar FSUs from four subjects with different degrees of disc degeneration.
The less degenerate discs (with a degree of degeneration equal to 1) were those of individuals of 45 years
of age and a disc height of 12 mm. Schultz et al. [9] studied 16 UVF from 10 females and 26 UVF from
13 males with an age range of 21 to 60 and a mean age of 43 years with different degrees of degeneration.
In this case, the less damaged discs were those of men of 35, 40, and 53 years of age with a disc surface
of 15.9, 16.8, and 15 cm2, respectively. Other authors, such as Panjabi [89], studied UVF with healthy
intervertebral discs from a sample of 60 patients of age 19–59 years (a mean of 46.3) and disc dimensions
of width of 48.1 mm and a depth of 34.7 mm. Eijkelkamp [90] also studied a group of 60 patients of
age 18 to 65 years, and observed that the mean intervertebral disc height was 13.5 mm. With a group
of 157 patients and ages between 20 and 38 years, Nissan and Gilad [91] determined an average depth
and height of the disc of 34.6 mm and 10.8 mm, respectively. With a smaller group (11 individuals) of
age between 25 and 36 years, Tibrewal and Pearcy [92] found a depth and height of the disc of 33 mm
and 9.8 mm, respectively. However, Wolf et al. [93] determined a mean width and depth of 44.1 mm
and 31.7 mm respectively for a disc in a group of 55 individuals of 20 to 90 years of age. A more
extensive study was that of Amonoo-Kuofi [94]. In the latter case, a group of 305 males and 310 females
of 10 to 64 years of age and 10 to 61 years respectively were studied. The mean dimensions of the
intervertebral discs were a depth of 42.8 mm and a height of 13.5 mm for males and a depth of 39.9 mm
and a height of 13 mm for females. Other authors proposed FE models and validated them later with
their own experimental data. For example, Schmidt et al. [24] developed a method to determine the
individual contribution of the fibers and the ground substance to bending moments with four different
magnitudes. They proposed a 3D, non-linear FE-model of an intervertebral disc from the L4–L5 FSU.
In order to determine the appropriate geometry of the FE-model, six specimens were tested. The median
anteroposterior dimension of the inferior endplate of L4 was 37.4 mm, whereas the median left to right
dimension was 58.7 mm. The geometry used in the FE-model was determined from one of the tested
specimens. The latter had dimensions nearest to the median with an anteroposterior distance of 38.1 mm
and a left to right distance of 59.0 mm. Kim et al. [36] studied with the FEM the influence of the disc
degeneration. A 3D nonlinear FE model of the lumbar spine was developed that consisted of four lumbar
vertebrae, three intervertebral discs, and the associated spinal ligaments. Geometrical details of the human
lumbar spine (L2–L5) were obtained from the high-resolution computed tomography (CT) images of a
46-year-old male patient who had no spinal deformities. In this case, the average area of the intervertebral
disc was 1119 mm2. González et al. [42] studied the biomechanics of the intervertebral disc with different
degrees of degeneration in compression using a FE model that was validated by experimental data.
The study was performed on 5 patients aged 65–75 years for L2–L3 and L4–L5 lumbar levels. The height
of the healthy intervertebral disc that was studied was 9.9 mm with an area of 1845 mm2 for the L2–L3
level. For the L4–L5 level, it was 10 mm with an area of 1951 mm2. Shirazi-Adl et al. [11] proposed an FE
model for analyzing the stress of the UVF para el nivel lumbar L2–L3 in compression for a 29 years old
female patient. The geometry of the FE model that was analyzed was based in in vitro measurements.
It had a width of 49.2 mm, a depth of 34 mm, a heigth of 11 mm and an area of 1371 mm2. Smit et al. [41]
proposed a complete UVF FE model and studied the stresses on the cortical bone of the vertebrae. In that
case, the intervertebral disc that was proposed in the FE model had a width of 42 mm and a depth of
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35 mm. Finally, other authors proposed FE models and later validated them with experimental data
from other authors. For example, Ibarz et al. [47] proposed a FE model for the Lumbar Spine to study
the degeneration of the intervertebral discs. To verify the FE model, radiological images (X-rays) were
taken of a group of 25 healthy male individuals who had an average age of 27.4 and average weight of
78.6 Kg. The results obtained from the simulation and from radiological measurements were compared
to the results obtained from White and Panjabi [95]. Good agreement was obtained for the different
movements. However, Ayturk [38] proposed an FE model to study the changes in lumbar spine mechanics
due to degenerative disc disease. The experimental study was conducted on a 49-year-old female patient.
The results obtained from the FE model were also compared to the studies that were conducted by
Heuer et al. [96]. Other authors such as Weisse et al. [79] proposed an FE model for the determination
of the translational and rotational stiffness of an L4–L5 FSU using the FEM. In this case, the geometry
of the disc was obtained by computed tomography, and the results were compared subsequently to the
studies by several of the aforementioned authors [87,89–94]. Once the proposed FE model was simulated,
the results were compared experimentally to results obtained from the literature [96–98]. Denozière and
Ku [50] proposed a 3D FE model of a two-level ligamentous lumbar segment. The proposed FE model
was validated with the clinical data obtained from the literature [98–101]. These authors developed an FE
model of the intervertebral disc according to Figure 6a. In this case, the intervertebral disc had a width of
50 mm, a depth of 35 mm, a height of 10 mm and an area of 1440 mm2. Table 8 summarizes the anatomical
dimensions of the L1–L5 lumbar segment and the differents intervertebral discs that were studied. As has
been observed from the references in Table 8, the dimensions of the intervertebral discs are very similar
for the range of patients studied. Also, it can be seen in this table that many of the mentioned authors
validate their FE models with the experimental data obtained from the studies by other authors. For this
reason, the FE model of the intervertebral disc that is studied in the current paper has been elaborated
on the basis of the study by Denozière and Ku [50], which had the following dimensions according to
Figure 6a (width = 50 mm, depth = 35 mm, height = 10 mm, and area = 1440 mm2).
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Table 8. Range of the material parameters proposed to define the behavior of human intervertebral lumbar disc models based on FEM.

Summary of Anatomical Dimensions of L1–L5

Authors Group Size (n) Lumbar Level Sex Mean Age
(From . . . to . . . )

Width
(mm)

Depth
(mm)

Height
(mm) Area (cm2)

Rostedt et al. (1998) [5] 4 L3–L4 - 45 - - 12 -
Schultz et al. (1979) [9] 1 L1–L5 male 35 - - - 1590
Schultz et al. (1979) [9] 1 L1–L5 male 40 - - - 1680
Schultz et al. (1979) [9] 1 L1–L5 male 53 - - - 1500
Zhou et al. (2000) [88] 55 L3–L5 male 50 (22–80) 53 37.5 12.2 1492 ± 173.8
Zhou et al. (2000) [88] 71 L3–L5 female 49 (22–80) 50.5 35.4 11.3 1492 ± 173.8

Panjabi (1992) [90] 60 L1–L5 - 46.3 (19–59) 48.1 34.7 - -
Eijkelkamp (2002) [91] 60 L1–L5 - (18–65) - - 13.5 -

Nissan and Gilad (1986) [92] 157 L1–L5 - 26.8 (20–38) - 34.6 10.8 -
Tibrewal and Pearcy (1985) [93] 11 L1–L5 - 29.5 (25–36) - 33 9.8 -

Wolf et al. (2001) [94] 55 L1–L5 - (20–90) 44.1 31.7 - -
Amonoo-Kuofi (1991) [95] 305 L1–L5 male (10–64) - 42.8 13.5 -
Amonoo-Kuofi (1991) [95] 310 L1–L5 female (10–61) - 39.9 13 -

Schmidt et al. (2006) [24] - L4–L5 - - 58.7 37.4 - -
Kim and Chun (2015) [36] 1 L4–L5 male 46 - - - 1119
González et al. (2015) [42] 5 L2–L3 male/female (65–75) - - 9.9 1739
González et al. (2015) [42] 5 L4–L5 male/female (65–75) - - 10 1951

Shirazi-Adl et al. (1984) [11] 1 L2–L3 female 29 49.2 34 11 1371
Smit et al. (1997) [41] - L4 - - 42 35 - -

Ibarz, Elena et al. (2014) [47] 25 L5–S1 27.4
Ayturk, U.M. (2010) [38] - L1–L5 female 49 -
Weisse et al. (2012) [80] - L4–L5 male 43 50.3 33.7 12.8 -

Denozière (2004) [2] - L3–L4 - - 50 35 10 1440
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3.3. Boundary Conditions

Numerous authors have studied the behavior of intervertebral discs with the FEM. In doing do,
they applied the contour conditions to these models and thus reproduced, as rigorously as possible,
the corresponding experimental analysis [2,3,50]. In the current paper, the boundary conditions
applied to the proposed FE models were applied in a similar way to the work that was developed by
Denozière [2] and Denozière and Ku [50]. The proposed intervertebral disc FE model consisted of the
intervertebral disc itself (nucleus pulposus, endplate, annulus fibrosus, and the fiber layers), as well as
two steel supports to which the disc was glued (See Figure 6a). The boundary conditions applied to
the proposed FE model to obtain the compression stiffness were applied as follows (see Figure 6b).
On the upper steel support the pressure Pc was applied. It was calculated by the following equation:

Pc =
Fmax

S
(1)

where Fmax is the maximum compression test load, whose value was 500 N (See Table 6). S is the
upper surface of the steel support, which has an area of 1440 mm2. The compression stiffness value
was obtained from the “Z” displacement. The boundary conditions to obtain the stiffness value for
the bending test were applied as follows (See Figure 6c): the corresponding maximum torque of the
bending test (Bmax) was applied on the anterior area of the steel upper support, which, in this case,
is 5 Nm (See Table 6). The pressure Pb was calculated as follows:

Pb =
Bmax

Sa·CG
(2)

where Sa is the anterior area of the intervertebral disc, namely 745 mm2, and CG is the distance from
the geometric center of the disc surface or instantaneous axis of rotation (IAR) to the center of gravity
of Sa. The bending stiffness value was calculated once the angle α had been obtained. The boundary
conditions of the FE model that were required to obtain the lateral bending stiffness were applied in
similar fashion to the process to obtain the bending stiffness (see Figure 6d). Over half area of the upper
steel support was applied the pressure Plb, which was calculated according to the following equation:

Plb =
LBmax

(S/2)·CG
(3)

where LBmax is the maximum torque of the bending test, which in this case was to 10.6 Nm (see
Table 6). S/2 is the area of the intervertebral disc that is considered for the lateral bending, namely
720 mm2 and CG is the distance from the geometric center of the disc to the center of gravity of S/2
area. The lateral bending stiffness was obtained from angle β. The boundary conditions necessary to
obtain the torsional stiffness (see Figure 6e) are: on a group of nodes that belong to the periphery of
the steel upper plate and a force Ft (in this case in the Y direction) that is applied in a way that twists
the disc. In order that the load Ft is always at an angle of 90◦ to a given R, a “following force” analysis
was considered. The value of this force Ft was calculated with the following equation:

Ft =
Tmax

n·R (4)

where Tmax is the maximum torque value. In this case, it is 10 Nm (see Table 6), Also, n is the number
of nodes at which the load Ft was applied and R is one the half of the width of the intervertebral
disc (in this case is 25 mm). The value of the stiffness of lateral flexion is obtained from the angle
η. Finally, the boundary conditions that are necessary to obtain shear stiffness (see Figure 6f) are as
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follows: on all of the nodes on the upper surface of the steel support, an Fs load was applied in the Y
direction. The value of this force Fs was calculated with the following equation:

Fs =
Fmax

n
(5)

where Fmax is the value of the maximum torque, which is 450 N in this case (see Table 6), and n is the
number of nodes to which the load Fs is applied. The value of the stiffness of shear was obtained from
the Y displacement of these nodes. In addition, for all previously proposed simulations, a boundary
condition of embedding all nodes was imposed on the lower support of steel.

4. Design of the Experiments and Design Matrix

The response surface method (RSM) needs to establish a design of experiments (DoE) in order to
obtain accurate models with the least amount of data to support the initial hypotheses [102]. Several
methods have been proposed to develop DoE. However, they generally require the construction of
a design matrix (inputs) to measure the outputs or responses of the experiments. One of the most
widely used methods is the full factorial design method [103]. This method is based on the adoption
all possible combinations of each of the values (or levels) and each of the factors that are considered in
the DoE. Another DoE that is widely used is the 2k factorial design. This DoE is a full factorial design
that has two levels and generates 2k experiments in which k is the number of factors. In using this
method to adjust the parameters of the FE model, the number of factors is k = 11 (C0, C10, Fiber12,
Fiber34, Fiber56, Fiber78, Fiber910, Annulus_E, Annulus_µ, Cartil_E, and Cartil_µ) and the number of
experiments or FE simulations needed is 2048. Similarly, a 3k factorial design generates 3k experiments
or 177147 FE simulations. For both methods, this amount of data may be sufficient to cover completely
the entire range of possibilities. However, it has the disadvantage of generating a large number of
experiments or FE simulations. Another of the methods that are used to develop a DoE is Central
Composite Design (CCD). This method is considered to be a fractional three-level design that is useful
in obtaining regression models, thereby reducing the number of experiments in comparison to a
factorial design 3k. A CCD generates 2070 experiments. This is very similar to the number that a
2k factorial generates. However, a Box-Behnken design (BBD) generates 176 experiments. This is an
advantage because it significantly reduces the number of FE simulations [104]. In the current paper,
the DoE was employed using a two-level fractional factorial design. In this case, 128 FE simulations
were needed. This reduced amount of data may be sufficient to completely cover the entire range of
possibilities and subsequently to search for the optimal parameters that define the behavior of the
intervertebral disc. Table 9 shows some of the 128 combinations of the material parameters (C0, C10,
Fiber 12, AnnulusE, etc.) that are generated with a two-level fractional factorial design when the ranges
that appear in Table 7 are considered. The design matrix and their corresponding combination of
parameters that define de behavior of the human lumbar Intervertebral disc FE models are generated
by using the “R” statistical software (R 2014).

Table 9. Design matrix for the simulation of FE models when considering combination of 128 material
parameters (inputs).

Run C10 C0 Fiber
12

Fiber
34

Fiber
56

Fiber
78

Fiber
910

Annulus
E

Annulus
µ

Cartil
E

Cartil
µ

1 0.11 0.02 515 503 455 408 360 4 0.25 55 0.4
2 0.14 0.02 515 503 455 408 360 4.2 0.45 23 0.3
3 0.11 0.04 515 503 455 408 360 4.2 0.45 23 0.4
4 0.14 0.04 515 503 455 408 360 4 0.25 55 0.3
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Table 9. Cont.

Run C10 C0 Fiber
12

Fiber
34

Fiber
56

Fiber
78

Fiber
910

Annulus
E

Annulus
µ

Cartil
E

Cartil
µ

5 0.11 0.02 550 503 455 408 360 4.2 0.45 55 0.3
6 0.14 0.02 550 503 455 408 360 4 0.25 23 0.4
7 0.11 0.04 550 503 455 408 360 4 0.25 23 0.3
8 0.14 0.04 550 503 455 408 360 4.2 0.45 55 0.4
9 0.11 0.02 515 515 455 408 360 4.2 0.25 23 0.4

10 0.14 0.02 515 515 455 408 360 4 0.45 55 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
120 0.14 0.04 550 503 503 455 408 4 0.45 23 0.4
121 0.11 0.02 515 515 503 455 408 4 0.25 55 0.4
122 0.14 0.02 515 515 503 455 408 4.2 0.45 23 0.3
123 0.11 0.04 515 515 503 455 408 4.2 0.45 23 0.4
124 0.14 0.04 515 515 503 455 408 4 0.25 55 0.3
125 0.11 0.02 550 515 503 455 408 4.2 0.45 55 0.3
126 0.14 0.02 550 515 503 455 408 4 0.25 23 0.4
127 0.11 0.04 550 515 503 455 408 4 0.25 23 0.3
128 0.14 0.04 550 515 503 455 408 4.2 0.45 55 0.4

4.1. Response Surface Method for Modeling and Optimizing Problems

RSM is a method that attempts to determine the relationships between input variables and one or
more response variables. The method was introduced by Box and Wilson in [104] and was used first
to obtain a regression model from experimental data and an optimal response. Originally, RSM was
developed to model experimental responses. However, it has been used recently to optimize products
and industrial processes [105,106]. RSM is a group of statistical techniques that utilize a regression
model that is based on a polynomial function (Equation (6)).

Y = f(x1, x2, x3, . . . , xk + e) (6)

where Y is the response variables for the experiments and (x1, x2, x3, . . . , xk) are the input variables,
e is an error, and f is a function that consists of cross-products of the terms that form the polynomial.
To optimize the response Y, it is necessary to find an approximation functional relationship between
the inputs and the response surface. A polynomial is the functional relationship used by RSM
((Equation (7)) in this kind of work.

Y = b0 +
n

∑
i=1

bi·Xi +
n

∑
i=1

bii·X2
i +

n−1

∑
i=1

n

∑
j=i+1

bij·Xi·Xj + e (7)

where the first summation is the linear part, the second is the quadratic part and the third is the product
of pairs of all inputs of the polynomial. The values of the coefficients b0, bi, bii, and bij are calculated by
use of a regression analysis to determine the relationship between inputs and outputs. Also, the terms
that are selected to form the equation are chosen according to their levels of significance [107]. One
computes this level by the analysis of variance (ANOVA) and selecting terms according to the p-value
obtained. When a problem has more than one output, as does this work, the optimization problem
can be solved by using MRS [108]. In this regard, Harrington developed the desirability functions to
obtain a compromise between the different outputs (Equations (8) and (9)) and the overall desirability.
The latter is defined as the geometric mean of the desirability of each output (Equation (10)), [109].

dmax
r =


0 if fr(X) < A(

fr(X)−A
B−A

)S
if A ≤ fr(X) ≤ B

1 if fr(X) > B

(8)
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dmin
r =


1 if fr(X) < A(

fr(X)−B
A−B

)S
if A ≤ fr(X) ≤ B

0 if fr(X) > B

(9)

D =

(
R

∏
r=1

dr

)1/R

(10)

In these equations, parameters A and B correspond to the limits of the input ranges, S is an
exponent that determines the importance of reaching the target value, X corresponds to the input
vector, and fr is the polynomial function that is used to predict the response. A second polynomial
degree should be used to optimize one or several responses [108]. The desirability approach involves
transforming each estimated response into a unitless utility that is bounded by 0 < dr < 1, where a higher
value of dr indicates that the response value is more desirable. The optimization, which was developed
with R statistical package, searches for a combination of importance factors that simultaneously satisfy
the optimization criteria of each response and input [110].

4.2. Combining FEM and MRS to Optimize Mechanical Problems

Over the years, many researchers have used the FEM as an alternative to reduce costs during the
design and optimization phases of mechanical problems. The FEM is widely used in industry to analyze
engineering problems that are too complicated to solve by classical analytical methods. The object of
its application is to reduce the expense incurred by experimental tests. FEM has the disadvantage of
requiring a high computational cost especially when the process of fitting the proposed FE models is
based only on the experience of the designer through simulations and trial and error. This adjustment
process is greatly amplified when the FE model tries to solve non-linear problems, such as mechanical
contacts, large deformations and hyper-elastic material behavior. However, the computational cost
is reduced with the RSM, which provides an approximation of the same problem that is modeled
with FEM [111]. Building regression models based on RSM is a good strategy to reduce the number
of simulations that are necessary to model and optimize FE models. These models learn from the
most characteristic samples that are obtained from FEM simulations and use their outputs. In this
regard, the combination of RSM and FEM has been used widely to optimize many industrial processes.
For example, Lin et al. [112] proposed a functionally graded material (FGM) as a potential upgrade to
some conventional implant materials like titanium in prosthetic dentistry. In that work, computational
bone remodeling and design optimization are used. Based on the results of remodeling, RSM has been
adopted to develop a multi-objective optimal design for FGM implantation. Similarly, Sadollah and
Bahreininejad [113] investigated the development of an optimal design of an FGM dental implant to
promote long-term success. Also, Rungsiyakull et al. [114] combined RSM and FEM to establish a
relationship between the surface morphology induced micromechanics and bone remodeling responses
to a solid bead coated porous implant. In this case, the RSM was used to relate the major implant
coating parameters to the bone responses. More recently, Bahraminasab et al. [115] studied the use of a
functionally graded material (FGM) for the femoral component of knee implants. This is attractive
because the properties can be designed to vary in a certain pattern to meet the desired requirements
at different regions of the knee joint system, thereby decreasing the loosening problem. Therefore,
a multi-objective design optimization of a FGM femoral component is conducted in this study by use
of the FEM and RSM. The results of using an optimized FGM are then compared to those of using
a standard Co–Cr alloy in a femoral component knee implant to demonstrate relative performance.
In the current paper, the RSM used the results of FE analysis to search for the optimal parameter that
defines correctly the behavior of healthy human lumbar intervertebral disc (IVD) FE models. Eleven
parameters with which to define the parameterized FE models were selected. They were C0, C10,
Fiber12, Fiber34, Fiber56, Fiber78, Fiber910, Annulus_E, Annulus_µ, Cartil_E, and Cartil_µ. For each of
the standard tests, regression models were generated to model the six stiffness and nine bulges of the
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healthy IVD models when the parameters of the FE models were changed. The optimal combination
of the eleven parameters was achieved by applying MRS based on desirability functions according to
three different adjustment criteria.

5. Results and Discussion

5.1. FE Models’ Results

After the parameterized healthy IVD FE models were created, an automatic procedure conducted
the 128 simulations according to the design matrix that appears in Table 9. Table 10 shows the
stiffness and bulges that were obtained from the FE simulations. They are named as follows and
grouped according to the corresponding standard test. For the compression test, the anterior,
posterior and lateral bulges values (Comp_bulgeA, Comp_bulgeL, Comp_bulgeP), as well as the
stiffness (Comp_stiff), were obtained. The same applies to Shear, Extension, Lateral Bending, Flexion
and Torsion tests: Shear_stiff, Exte_bulgeL, Exte_bulgeP, Exte_stiff, LBend_bulgeL, LBend_bulgeP,
LBend_stiff, Flex_bulgeL, Flex_bulgeP, Flex_stiff, and Tors_stiff. These 128 values formed the training
dataset and were used to generate the regression models. The following subsections show the process
to generate and optimize these models.

Table 10. Results of the simulation of FE models when a combination of 128 material parameters are
considered in Table 9.

Run Comp
BulgeA

Comp
BulgeL

Comp
BulgeP

Comp
Stiff

Shear
Stiff

Exte
BulgeL

Exte
BulgeP

Exte
Stiff

LBend
BulgeL

LBend
BulgeP

LBend
Stiff

Flex
BulgeL

Flex
BulgeP

Flex
Stiff

Tors
Stiff

1 0.265 0.089 0.593 984.510 305.752 0.095 0.574 1.744 0.773 1.085 1.998 0.076 0.351 1.635 3.593
2 0.337 0.133 0.730 1271.883 281.371 0.137 0.830 2.121 0.970 1.929 1.581 0.095 0.288 1.762 3.264
3 0.347 0.140 0.758 1253.827 275.927 0.139 0.861 2.094 1.386 2.136 1.320 0.093 0.301 1.646 3.150
4 0.256 0.085 0.553 1017.076 315.425 0.096 0.566 1.779 0.798 1.051 2.257 0.073 0.303 1.686 3.640
5 0.298 0.094 0.665 1500.886 306.597 0.096 0.696 2.406 0.617 1.254 3.268 0.080 0.321 2.227 3.618
6 0.290 0.111 0.694 897.694 284.611 0.135 0.667 1.627 1.520 1.805 1.160 0.076 0.331 1.348 3.191
7 0.286 0.108 0.683 891.309 285.801 0.135 0.644 1.619 1.349 1.653 1.322 0.082 0.334 1.394 3.271
8 0.295 0.092 0.634 1548.473 316.704 0.095 0.685 2.461 0.672 1.188 3.215 0.076 0.280 2.309 3.682
9 0.290 0.113 0.711 901.414 289.552 0.132 0.661 1.661 1.531 1.892 1.130 0.078 0.349 1.338 3.320
10 0.304 0.095 0.670 1474.443 300.617 0.099 0.728 2.351 0.625 1.237 3.229 0.081 0.301 2.192 3.447
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
120 0.345 0.136 0.752 1256.486 278.278 0.139 0.875 2.063 1.322 2.070 1.382 0.090 0.284 1.673 3.016
121 0.260 0.088 0.596 989.416 313.213 0.094 0.574 1.749 0.778 1.086 1.990 0.076 0.352 1.635 3.665
122 0.333 0.131 0.731 1276.741 287.840 0.135 0.829 2.127 0.961 1.928 1.583 0.094 0.289 1.766 3.318
123 0.342 0.139 0.760 1258.926 282.358 0.137 0.860 2.100 1.374 2.137 1.325 0.092 0.302 1.652 3.201
124 0.252 0.085 0.555 1022.062 322.997 0.095 0.565 1.783 0.801 1.052 2.250 0.073 0.304 1.686 3.723
125 0.294 0.092 0.667 1507.286 314.067 0.094 0.693 2.414 0.614 1.251 3.262 0.079 0.322 2.230 3.670
126 0.286 0.110 0.697 901.330 291.307 0.133 0.667 1.630 1.524 1.809 1.160 0.076 0.332 1.350 3.255
127 0.282 0.107 0.685 894.800 292.534 0.134 0.644 1.621 1.351 1.654 1.321 0.082 0.335 1.395 3.333
128 0.291 0.091 0.635 1555.367 324.328 0.093 0.684 2.469 0.670 1.186 3.210 0.076 0.281 2.310 3.740

5.2. Analysis of Variance

Equation (6) was fitted with the data that appear in Tables 9 and 10 to obtain the regression
equations for all responses by the use of the RMS “R” package [116]. Each of the responses or outputs
from Equations (6) through (20) is shown. They were obtained by a combination of polynomials that
are formed by input variables. The responses are: Comp_bulgeA, Comp_bulgeL, Comp_bulgeP,
Comp_stiff, Shear_stiff, Exte_bulgeL, Exte_bulgeP, Exte_stiff, LBend_bulgeL, LBend_bulgeP,
LBend_stiff, Flex_bulgeL, Flex_bulgeP, Flex_stiff, and Tors_stiff.

Comp_bulgeA = 0.453125− 0.150922×C10− 0.154598× C0− 4.4× 10−0.5

×Fiber12− 2.8× 10−0.5 × Fiber56− 2.3× 10−0.5 × Fiber78− 2.5× 10−0.5

×Fiber910− 0.034134×Annulus_E + 0.262148×Annulus_µ
−0.001137×Cartil_E + 0.040998×Cartil_µ

(11)
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Comp_bulge L = 0.169454− 0.084948×C10− 0.087169×C0− 5× 10−0.5

×Fiber12− 0.006264×Annulus_E + 0.088348×Annulus_µ
−0.001015×Cartil_E + 0.031074×Cartil_µ

(12)

Comp_bulge P = 1.206599− 0.91178×C10− 0.915255×C0
−0.113434×Annulus_E + 0.442496×Annulus_µ− 0.003303
×Cartil_E + 0.117189×Cartil_µ

(13)

Comp_stiff = −635.243327 + 822.048324×C10 + 834.364625×C0
+180.06106×Annulus_E + 2051.947822×Annulus_µ
+5.673156×Cartil_E

(14)

Cort_stiff = −70.312808 + 199.672441×C10 + 199.736145×C0
+0.02166× Fiber12 + 0.055155× Fiber34 + 0.031639× Fiber56
+0.057449× Fiber78 + 0.044255× Fiber910 + 58.151336×Annulus_E
−72.981833×Annulus_µ+ 0.926751×Cartil_E− 16.717294×Cartil_µ

(15)

Exte_bulgeL = 0.083398 + 0.00016× Fiber_910 + 0.028063×Annulus_µ
−0.001135×Cartil_E

(16)

Exte_bulgeP = −0.243941 + 0.001987× Fiber910 + 0.76198×Annulus_µ
−0.003522×Cartil_E

(17)

Exte_stiff = 6.205107− 0.01339× Fiber910 + 2.595841×Annulus_µ
+0.008305×Cartil_E

(18)

LBend_bulgeL = 1.574761− 1.014308×C10− 0.929876×Annulus_µ
−0.017706×Cartil_E + 1.620387×Cartil_µ

(19)

LBend_bulgeP = 2.995354− 3.019289×C10− 3.118902×C0
−0.212027×Annulus_E + 1.351171×Annulus_µ− 0.023247×Cartil_E
+0.84824×Cartil_µ

(20)

LBend_stiff = −1.428516 + 1.708987×C10 + 0.297374×Annulus_E
+3.014858×Annulus_µ+ 0.041594×Cartil_E− 1.896308×Cartil_µ

(21)

Flex_bulgeL = 0.125918− 0.064104×C10− 0.060597×C0
−3.1e− 0.5× Fiber12− 0.00418×Annulus_E + 0.04945×Annulus_µ
−0.000311×Cartil_E− 0.019064×Cartil_µ

(22)

Flex_bulgeP = 0.681909− 0.920479×C10− 0.921496×C0
−0.048626×Annulus_E− 0.113105×Annulus_µ+ 0.039252×Cartil_µ

(23)

Flex_stiff = −0.697824 + 1.433372×C10 + 1.443693×C0
+0.269714×Annulus_E + 2.099688×Annulus_µ+ 0.013196×Cartil_E
−0.368862×Cartil_µ

(24)

Tors_stiff = −2.079685 + 1.056596×C10 + 0.901329×C0
+0.00263× Fiber34− 0.000469× Fiber56 + 0.001202× Fiber78
+0.908448×Annulus_E− 0.905043×Annulus_µ+ 0.013001×Cartil_E
−0.521362×Cartil_µ

(25)

In order determine whether the variables that were used in the linear regression models are
statistically significant, an ANOVA test was developed. Tables 11–25 show the ANOVA results.
The tables show that most of the variables have a p-value of less than 0.01. This means that the models
are statistically significant. In addition, the multiple correlation coefficient (R2) was calculated as a
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measure of the variation around the mean that the regression model produced. The results show that
all values of R2 are close to one. This indicates that these models possess good predictive capacity.

Table 11. Analysis of variance (ANOVA) table for a compression bulge anterior linear model.

Compression Bulge Anterior BulgeL

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.00066 0.00066 35.8 2.41 × 10−8 ***
C0 1 0.00031 0.00031 16.7 8.01 × 10−5 ***

Fiber12 1 0.00008 0.00008 4.1 4.47 × 10−2 *
Fiber56 1 0.00006 0.00006 3.1 7.96 × 10−2 .
Fiber78 1 0.00004 0.00004 2.0 1.58 × 10−1

Fiber910 1 0.00005 0.00005 2.6 1.09 × 10−1

Annulus_E 1 0.00149 0.00149 81.5 4.25 × 10−15 ***
Annulus_µ 1 0.08796 0.08796 4805.3 <2.2 × 10−16 ***
Cartil_E 1 0.04237 0.04237 2314.5 <2.2 × 10−16 ***
Cartil_µ 1 0.00054 0.00054 29.4 3.24 × 10−7 ***
Residuals 117 0.00214 0.00002

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 12. ANOVA table for a compression bulge lateral linear model.

Compression Bulge Lateral

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.00021 0.00021 8.3 4.73 × 10−3 **
C0 1 0.00010 0.00010 3.9 5.12 × 10−2 .

Fiber12 1 0.00010 0.00010 4.0 4.89 × 10−2 *
Annulus_E 1 0.00005 0.00005 2.0 1.60 × 10−1

Annulus_µ 1 0.00999 0.00999 398.4 <2.2 × 10−16 ***
Cartil_E 1 0.03378 0.03378 1347.0 <2.2 × 10−16 ***
Cartil_µ 1 0.00031 0.00031 12.3 6.31 × 10−4 ***
Residuals 1200 0.00301 0.00003

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 13. ANOVA table for a compression bulge posterior linear model.

Compression Bulge Posterior

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.02444 0.02444 323.4 <2.2 × 10−16 ***
C0 1 0.01072 0.01072 141.9 <2.2 × 10−16 ***

Annulus_E 1 0.01647 0.01647 217.9 <2.2 × 10−16 ***
Annulus_µ 1 0.25063 0.25063 3316.3 <2.2 × 10−16 ***
Cartil_E 1 0.35753 0.35753 4730.9 <2.2 × 10−16 ***
Cartil_µ 1 0.00439 0.00439 58.2 6.11 × 10−12 ***
Residuals 121 0.00914 0.00008

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 14. ANOVA table for a compression stiffness linear model.

Compression Stiffness

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 19,462 19,462 14.7 2.00 × 10−4 ***
C0 1 8911 8911 6.7 1.06 × 10−2 *

Annulus_E 1 41,500 41,500 31.4 1.34 × 10−7 ***
Annulus_µ 1 5,389,427 5,389,427 4074.1 <2.2 × 10−16 ***
Cartil_E 1 1,054,628 1,054,628 797.2 <2.2 × 10−16 ***
Residuals 122 161,387 1323

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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Table 15. ANOVA table for a shear stiffness linear model.

Shear Stiffness

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 1148.2 1148.2 438.8 <2.2 × 10−16 ***
C0 1 510.6 510.6 195.1 <2.2 × 10−16 ***

Fiber12 1 18.4 18.4 7.0 9.15 × 10−3 **
Fiber34 1 14.0 14.0 5.4 2.24 × 10−2 *
Fiber56 1 73.8 73.8 28.2 5.34 × 10−7 ***
Fiber78 1 233.3 233.3 89.2 4.82 × 10−16 ***
Fiber910 1 144.4 144.4 55.2 2.02 × 10−11 ***
Annulus_E 1 4328.4 4328.4 1654.0 <2.2 × 10−16 ***
Annulus_µ 1 6817.7 6817.7 2605.3 <2.2 × 10−16 ***
Cartil_E 1 28,143.4 28,143.4 10,754.5 <2.2 × 10−16 ***
Cartil_µ 1 89.4 89.4 34.2 4.73 × 10−8 ***
Residuals 116 303.6 2.6

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 16. ANOVA table for an extension bulge lateral linear model.

Extension Bulge Lateral Stiffness

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

Fiber910 1 0.00189 0.00189 12.9 4.62 × 10−4 ***
Annulus_µ 1 0.00101 0.00101 6.9 9.74 × 10−3 **
Cartil_E 1 0.04221 0.04221 288.7 <2.2 × 10−16 ***
Residuals 1244 0.01813 0.00015

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 17. ANOVA table for an extension bulge posterior linear model.

Extension Bulge Posterior

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

Fiber910 1 0.29 0.29 17.9 4.54 × 10−5 ***
Annulus_µ 1 0.74 0.74 45.6 4.90 × 10−10 ***
Cartil_E 1 0.41 0.41 25.0 1.94 × 10−6 ***
Residuals 124 2.02 0.02

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 18. ANOVA table for an extension stiffness linear model.

Extension Stiffness

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

Fiber910 1 13.2 13.2 20.4 1.45 × 10−5 ***
Annulus_µ 1 8.6 8.6 13.3 3.88 × 10−4 ***
Cartil_E 1 2.3 2.3 3.5 6.42 × 10−2 .
Residuals 124 80.4 0.6

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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Table 19. ANOVA table for a lateral bending bulge lateral linear model.

Lateral Bending Bulge Lateral

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.03 0.03 3.2 7.57 × 10−2 .
Annulus_µ 1 1.11 1.11 119.9 <2.0 × 10−16 ***
Cartil_E 1 10.27 10.27 1112.5 <2.0 × 10−16 ***
Cartil_µ 1 0.84 0.84 91.0 <2.0 × 10−16 ***
Residuals 123 1.14 0.01

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 20. ANOVA table for a lateral bending bulge posterior linear model.

Lateral Bending Bulge Posterior

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.26 0.26 53.7 2.84 × 10−11 ***
C0 1 0.12 0.12 25.5 1.59 × 10−6 ***

Annulus_E 1 0.06 0.06 11.8 8.21 × 10−4 ***
Annulus_µ 1 2.34 2.34 478.3 <2.2 × 10−16 ***
Cartil_E 1 17.71 17.71 3624.2 <2.2 × 10−16 ***
Cartil_µ 1 0.23 0.23 47.1 3.06 × 10−10 ***
Residuals 121 0.59 0.00

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 21. ANOVA table for a lateral bending stiffness linear model.

Lateral Bending Stiffness

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.08 0.08 1.9 1.68 × 10−1

Annulus_E 1 0.11 0.11 2.6 1.10 × 10−1

Annulus_µ 1 11.63 11.63 265.9 <2.2 × 10−16 ***
Cartil_E 1 56.69 56.69 1295.7 <2.2 × 10−16 ***
Cartil_µ 1 1.15 1.15 26.3 1.11 × 10−6 ***
Residuals 122 5.34 0.04

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 22. ANOVA table for a flexion bulge lateral linear model.

Flexion Bulge Lateral

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.00012 0.00012 15.7 1.25 × 10−4 ***
C0 1 0.00005 0.00005 6.2 1.38 × 10−2 *

Fiber12 1 0.00004 0.00004 5.0 2.74 × 10−2 *
Annulus_E 1 0.00002 0.00002 3.0 8.73 × 10−2 .
Annulus_µ 1 0.00313 0.00313 416.0 <2.2 × 10−16 ***
Cartil_E 1 0.00316 0.00316 420.0 <2.2 × 10−16 ***
Cartil_µ 1 0.00012 0.00012 15.5 1.42 × 10−4 ***
Residuals 120 0.00090 0.00001

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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Table 23. ANOVA table for a flexion bulge posterior linear model.

Flexion Bulge Posterior

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.024 0.024 2130.8 <2.2 × 10−16 ***
C0 1 0.011 0.011 949.1 <2.2 × 10−16 ***

Annulus_E 1 0.003 0.003 264.3 <2.2 × 10−16 ***
Annulus_µ 1 0.016 0.016 1429.9 <2.2 × 10−16 ***
Cartil_µ 1 0.000 0.000 43.1 1.36 × 10−9 ***
Residuals 122 0.001 0.000

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 24. ANOVA table for a flexion stiffness linear model.

Flexion Stiffness

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.059 0.059 13.0 4.45 × 10−4 ***
C0 1 0.027 0.027 5.9 1.68 × 10−2 *

Annulus_E 1 0.093 0.093 20.5 1.39 × 10−5 ***
Annulus_µ 1 5.643 5.643 1243.7 <2.2 × 10−16 ***
Cartil_E 1 5.706 5.706 1257.6 <2.2 × 10−16 ***
Cartil_µ 1 0.044 0.044 9.6 2.42 × 10−3 **
Residuals 121 0.549 0.005

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 25. ANOVA table for a torsion stiffness linear model.

Torsion Stiffness

Var. Df Sum of Sq. Mean Square F Value p-Value Significance Code

C10 1 0.032 0.032 21.0 1.13 × 10−5 ***
C0 1 0.010 0.010 6.8 1.03 × 10−2 *

Fibra34 1 0.032 0.032 20.9 1.22 × 10−5 ***
Fiber56 1 0.016 0.016 10.6 1.47 × 10−3 **
Fiber78 1 0.102 0.102 66.8 3.84 × 10−13 ***
Annulus_E 1 1.056 1.056 691.1 <2.2 × 10−16 ***
Annulus_µ 1 1.049 1.049 685.9 <2.2×10−16 ***
Cartil_E 1 5.539 5.539 3623.7 <2.2 × 10−16 ***
Cartil_µ 1 0.087 0.087 56.9 1.04 × 10−11 ***
Residuals 118 0.180 0.002

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Also, MAE and RMSE are calculated to determine the generalization capacity of the regression
models that were obtained by using the results of the design matrix (inputs) from Table 9 and their
corresponding outputs from Table 10 according to Equations (26) and (27).

MAE =
1
m
·

m

∑
k=1
|Yk FEM −Yk Model| (26)

RMSE =

√
1
m
·

m

∑
k=1

(Yk FEM −Yk Model)
2 (27)
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Table 26 shows the prediction errors, when the maximum error corresponds to Exte_stiff (MAE
equal to 13.97% and RMSE equal to 21.81%). and the minimum error corresponds to Shear_stiff (MAE
equal to 1.74% and RMSE equal to 2.19%).

Table 26. Results of the predicted error criteria using the regression models.

Errors and
Correlations Comp_BulgeA Comp_BulgeL Comp_BulgeP Comp_Stiff Shear_Stiff

Correlation 99.189 96.861 99.180 98.784 99.636
MAE 3.384 7.353 2.839 5.166 1.740
RMSE 3.710 7.786 3.433 5.228 2.190

Exte_BulgeL Exte_BulgeP Exte_Stiff LBend_BulgeL LBen_BulgeP

Correlation 84.457 64.532 48.035 95.663 98.603
MAE 11.141 13.241 13.973 8.023 4.176
RMSE 17.393 19.936 21.812 9.483 5.135

LBend_Stiff Flex_BulgeL Flex_BulgeP Flex_Stiff Tors_Stiff

Correlation 96.376 93.817 98.757 97.709 98.881
MAE 8.956 8.864 3.203 6.036 3.257
RMSE 9.072 9.840 3.607 6.441 3.997

Figure 7 shows the relationship between some of the actual values that were obtained
experimentally with FEM (Table 10) and the predicted (regression models) values of LBend_stiff
(Figure 7a), Comp_stiff (Figure 7b), Flex_bulgeP (Figure 7c), Flex_bulgeL (Figure 7d), Comp_bulgeP
(Figure 7e), and Comp_bulgeA (Figure 7f). These figures indicate that the correlations between the real
values and the predicted ones are high, and the residuals that were obtained were small.

Additionally, 30 new FE models were created to test the proposed regression models with
parameters that had not been used previously to generate regression models. Table 27 shows the errors
incurred during the testing stage, when the maximum error corresponds to Tor_stiff (MAE equal to
10.06% and RMSE equal to 19.50%) and the minimum error corresponds to Flex_bulgeP (MAE equal
to 2.86% and RMSE equal to 3.19%). The errors show that the adjustment between the regression
models and the results obtained from the FE models is almost accurate. This also demonstrates its
good capacity for generalization.

Table 27. Results of the predicted error criteria using the regression models.

Errors and
Correlations Comp_BulgeA Comp_BulgeL Comp_BulgeP Comp_Stiff Shear_Stiff

Correlation 98.801 95.648 95.429 97.603 94.763
MAE 5.998 12.781 8.063 4.835 6.320
RMSE 6.792 14.106 9.167 6.031 7.802

Exte_BulgeL Exte_BulgeP Exte_Stiff LBend_BulgeL LBend_BulgeP

Correlation 92.228 82.880 69.068 88.825 91.281
MAE 6.595 5.537 9.807 8.575 8.315
RMSE 7.574 6.884 11.204 11.663 10.359

LBend_Stiff Flex_BulgeL Flex_BulgeP Flex_Stiff Tors_Stiff

Correlation 87.637 92.933 96.930 94.031 64.698
MAE 9.122 6.981 2.8642 5.594 10.067
RMSE 11.125 8.152 3.193 6.883 19.505
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Figure 8 shows the relationship between some of the 30 additional FE models that were
implemented to test the regression models and their corresponding FE simulations. Figure 7 shows
the values of LBend_stiff (Figure 8a), Comp_stiff (Figure 8b), Flex_bulgeP (Figure 8c), Flex_bulgeL
(Figure 8d), Comp_bulgeP (Figure 8e), and Comp_bulgeA (Figure 8f). The figures indicate that the
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correlations are high, whereas the residuals that were obtained are small, which indicate that these
regression models are adequate for the prediction of IVD behavior.
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5.3. Multiple Response Optimization

Tables 28–30 show a combination of the eleven material parameter (inputs) that were studied in
searching for the optimal behavior of human intervertebral lumbar disc FE models when using the
desirability functions with the “R” package [110]. Three different adjustment criteria were considered.
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The first column of the tables shows the material parameters (inputs) and stiffness values and bulges
(outputs) that were studied. The second column shows the goals that were established in the goal
setting process for both inputs and outputs when different adjustment criteria are considered. The third
column shows the optimal values to define the behavior of the FE model and the last column shows
the desirability values. Table 28 shows the results when all material parameters, as well as stiffness
and bulges, were considered to have the same level of importance (equal to “inRange”). In this case,
the value of the overall desirability was 0.625. Also, the table shows that some of the values that were
obtained are very close to the targets that were proposed. For example, the target proposed for the
Exte_bulgeL was 0.1 and the optimal value that was obtained was 0.100 with a desirability value of
1. In contrast, the proposed target for the Comp_bulgeL was 0.35 and the optimal value that was
obtained was 0.0970 with a desirability value of 0.244.

Table 28. The first criterion considered inputs and outputs that were considered equally important.

Var. Goal Value Desirability

C10 inRange→ 0.125 0.102 1.000
C0 inRange→ 0.03 0.015 1.000

Fiber12 inRange→ 532.5 518.133 1.000
Fiber34 inRange→ 509 500.083 1.000
Fiber56 inRange→ 479 517.692 1.000
Fiber78 inRange→ 431.5 463.054 1.000

Fiber910 inRange→ 384 366.794 1.000
Annulus_E inRange→ 4.1 3.951 1.000
Annulus_µ inRange→ 0.35 0.201 1.000

Cartil_E inRange→ 39 42.121 1.000
Cartil_µ inRange→ 0.35 0.430 1.000

Comp_bulgeA target→ 0.5 0.265 0.262
Comp_bulgeL target→ 0.35 0.097 0.244
Comp_bulgeP target→ 0.75 0.650 0.651

Comp_stiff target→ 810 826.143 0.983
Shear_stiff target→ 300 298.124 0.964

Exte_bulgeL target→ 0.1 0.100 1.000
Exte_bulgeP target→ 0.24 0.490 0.711

Exte_stiff target→ 1.53 2.167 0.867
LBend_bulgeL target→ 2.11 1.235 0.534
LBend_bulgeP target→ 1.13 1.459 0.792

LBend_stiff target→ 2 1.465 0.634
Flex_bulgeL target→ 0.07 0.074 0.873
Flex_bulgeP target→ 0.73 0.375 0.381

Flex_stiff target→ 1.18 1.357 0.880
Tors_stiff target→ 2.1 3.401 0.451
Overall

Desirability 0.625

Table 29 shows the results when the stiffness was considered to have a higher level of importance
than bulges. This table shows that the material parameters that were obtained for all different goals
required in the first criteria are very similar, although the value of overall desirability was 0.817,
which is higher than the first criteria. Also, the target for the parameters of Shear_stiff and Tors_stiff
were 300 and 2.1, and the values obtained were 300.000 (desirability = 1) and 3.456 (desirability
= 0.428), respectively.

Table 30 shows the results that were obtained with the third criterion when the bulges were
considered to be the most important. Analogously to the other adjustment criteria that were previously
studied, the material parameters that have been obtained are very similar for all different goals. In this
case, the value of overall desirability was 0.554, which is the lowest result of the three criteria that
are studied in this paper. Also, it is observed that the targets for the parameters of Exte_bulgeL and
Comp_bulgeL were 0.1 and 0.35, and the values obtained were 0.103 (desirability = 0.947) and 0.101
(desirability = 0.257), respectively.
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Table 29. The second criterion considered: setting the target of the FE model parameters based only
on stiffness.

Var. Goal Value Desirability

C10 inRange→ 0.125 0.105 1.000
C0 inRange→ 0.03 0.015 1.000

Fiber12 inRange→ 532.5 541.867 1.000
Fiber34 inRange→ 509 500.123 1.000
Fiber56 inRange→ 479 458.643 1.000
Fiber78 inRange→ 431.5 396.291 1.000
Fiber91 inRange→ 384 421.320 1.000

Annulus_E inRange→ 4.1 3.952205 1.000
Annulus_µ inRange→ 0.35 0.2269 1.000

Cartil_E inRange→ 39 45.575 1.000
Cartil_µ inRange→ 0.35 0.2756 1.000

Comp_bulgeA inRange→ 0.5 0.262 1.000
Comp_bulgeL inRange→ 0.35 0.089 1.000
Comp_bulgeP inRange→ 0.75 0.628 1.000

Comp_stiff target→ 810 900.147 0.907
Shear_stiff target→ 300 300.000 1.000

Exte_bulgeL inRange→ 0.1 0.105 1.000
Exte_bulgeP inRange→ 0.24 0.605 1.000

Exte_stiff target→ 1.53 1.530 0.999
LBend_bulgeL inRange→ 2.11 0.895 1.000
LBend_bulgeP inRange→ 1.13 1.270 1.000

LBend_stiff target→ 2 1.984 0.989
Flex_bulgeL inRange→ 0.07 0.076 1.000
Flex_bulgeP inRange→ 0.73 0.363 1.000

Flex_stiff target→ 1.18 1.518 0.772
Tors_stiff target→ 2.1 3.456 0.428
Overall

Desirability 0.817

Table 30. The third criterion considered: setting the target of the FE model parameters based only on
the bulges.

Var. Goal Value Desirability

C10 inRange→ 0.125 0.102 1.000
C0 inRange→ 0.03 0.015 1.000

Fiber12 inRange→ 532.5 559.341 1.000
Fiber34 inRange→ 509 512.790 1.000
Fiber56 inRange→ 479 443.243 1.000
Fiber78 inRange→ 431.5 396.348 1.000
Fiber91 inRange→ 384 348.282 1.000

Annulus_E inRange→ 4.1 3.951 1.000
Annulus_µ inRange→ 0.35 0.214 1.000

Cartil_E inRange→ 39 36.933 1.000
Cartil_µ inRange→ 0.35 0.429 1.000

Comp_bulgeA target→ 0.5 0.277 0.298
Comp_bulgeL target→ 0.35 0.101 0.257
Comp_bulgeP target→ 0.75 0.673 0.730

Comp_stiff inRange→ 810 821.981 1.000
Shear_stiff inRange→ 300 287.011 1.000

Exte_bulgeL target→ 0.1 0.103 0.947
Exte_bulgeP target→ 0.24 0.481 0.722

Exte_stiff inRange→ 1.53 2.403 1.000
LBend_bulgeL Target→ 2.11 1.314 0.576
LBend_bulgeP target→ 1.13 1.595 0.706

LBend_stiff inRange→ 2 1.288 1.000
Flex_bulgeL target→ 0.07 0.075 0.846
Flex_bulgeP target→ 0.73 0.373 0.378

Flex_stiff inRange→ 1.18 1.315 1.000
Tors_stiff inRange→ 2.1 3.311 1.000
Overall

Desirability 0.554
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Finally, three new FE models were simulated with the eleven different optimal material parameters
that considered the three different adjustment criteria. These FE models were simulated again by
the same standard test (Compression, Flexion, etc.) in order to compare the methodology proposed
for adjust the optimal parameters. Table 31 shows a comparison of the results with the FE models
using the optimized parameters, the optimal results from the regression models using the RMS with
desirability functions and the experimental standard test. In order to compare the different errors that
were obtained using three different adjustment criteria that were studied in this case, different MAE
were obtained from the normalized data. The data is commonly normalized in statistical processes to
transform all variables to the same scale (from 0–1). The transformation was achieved in this case by
subtracting the minimum value from each original value and dividing the result by the range of each
variable according to Equation (28).

Yk,norm =
Yk −min(Y)

max(Y)
(28)

where Yk,norm were the normalized outputs that were obtained from the results of the FE models with
the optimized parameters and the outputs that were obtained experimentally from the standard test.
The first column of the table shows the stiffness and bulges (outputs) that were studied. The second,
third, and fourth columns show, respectively, the results obtained from the FE models with the
optimized parameters for each of the different criteria that were considered. The fifth column shows
the values of the standard test, and the last column shows the normalized MAE that was obtained.
It can be seen in the table that the normalized MAE of the three criteria considered are very similar
(Criteria 1 = 0.2782, Criteria 2 = 0.2795 and Criteria 3 = 0.2788). In contrast, the normalized MAE
obtained for each of the outputs is lower when predicting the Shear_stiff (MAE = 0.01) and greater when
predicting Comp_bulgeL (MAE = 0.73). The reason for this difference may be that the proposed FE
model is generally less accurate in predicting bulges than stiffness. In addition, all of the values of MAE
that were obtained for each of the different outputs or stiffness and bulges are in acceptable agreement.

Table 31. Comparison of the results of the regression models; FEM and the experimental values.

Parameters Criteria 1 Criteria 2 Criteria 3 Experiments Error

FEM FEM FEM Standard Test Normalized MAE

Comp_bulgeA 0.266 0.262 0.269 0.50 0.469
Comp_bulgeL 0.096 0.090 0.095 0.35 0.732
Comp_bulgeP 0.624 0.602 0.625 0.75 0.177
Comp_stiff 915.640 944.360 922.740 810 0.125
Shear_stiff 302.925 304.920 299.090 300 0.010

Exte_bulgeL 0.106 0.099 0.106 0.10 0.041
Exte_bulgeP 0.527 0.559 0.538 0.24 0.539

Exte_stiff 1.634 1.678 1.645 1.53 0.073
LBend_bulgeL 0.997 0.871 0.977 2.11 0.551
LBend_bulgeP 1.282 1.173 1.263 1.13 0.085
LBend_stiff 1.489 2.175 1.493 2.00 0.183
Flex_bulgeL 0.077 0.080 0.076 0.07 0.096
Flex_bulgeP 0.380 0.373 0.373 0.73 0.486

Flex_stiff 1.488 1.524 1.500 1.18 0.213
Tors_stiff 3.550 3.549 3.506 2.10 0.404

Normalized
MAE 0.2782 0.2795 0.2788

6. Conclusions

This paper sets out a fully automated method that combines the finite element method (FEM)
and multi-response surface method (MRS) based on desirability functions. This work looks for the
optimal parameters that will correctly define the behavior of a medium-sized healthy human lumbar
intervertebral disc (IVD) models based on FEM. First, based on standard tests (compression, flexion,
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extension, shear, lateral bending, and torsion), three-dimensional parameterized finite element (FE)
models were generated. Then, 11 parameters were selected to define the parameterized intervertebral
lumbar disc FE models. For each of the standard tests, regression models were generated for modeling
the six stiffness and nine bulges of the healthy IVD models when the parameters of the FE models
were varied. The optimal combination of the 11 parameters was achieved by applying MRS based on
desirability functions according to three different adjustment criteria. The first criterion considered all
of the material parameters (inputs), as well as the stiffness and bulges (outputs), with the same level of
importance (equal to “inRange”). The second criterion considered, with a higher level of importance
the stiffness, then bulges (goal of stiffness = target), whereas the third criteria considered, the bulges
with a higher level of importance, then stiffness (goal of bulges = target). The best fit of the FE model
parameters was achieved with the proposed second criterion. This produced a value for the normalized
MAE of 0.2795. However, the results were very similar for the first and the third criteria that were
considered. These were, respectively, MAE = 0.2782 and MAE = 0.2788. In contrast, the normalized
MAE obtained for each of the outputs was lower when predicting the Shear_stiff (MAE = 0.01) and
greater when predicting Comp_bulgeL (MAE = 0.73). This reason for this difference may be that the
proposed FE model is generally less accurate in predicting bulges than stiffness. The MAE obtained
from each criterion that was studied demonstrated that the proposed method is a powerful tool for
adjusting healthy IVD FE models when there are many parameter and the stiffness and number of
bulges to which the models must be adjusted, are high.
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List of Symbols/Nomenclature

MAE Mean Absolute Error

C10 Mooney-Rivlin parameter for annulus ground substance
C0 Mooney-Rivlin parameter for annulus ground substance

Annulus_E Young’s modulus for the annulus ground substance (MPa)
Annulus_µ Poisson’s modulus for the annulus ground substance

Fiber12 Collagen fibers layer 1 (mm2)
Fiber34 Collagen fibers layer 2 (mm2)
Fiber56 Collagen fibers layer 3 (mm2)
Fiber78 Collagen fibers layer 4 (mm2)

Fiber910 Collagen fibers layer 5 (mm2)
Cartil_E Young’s modulus for the endplate cartilage (MPa)
Cartil_µ Poisson’s modulus for the endplate cartilage -

Comp_bulgeA Bulge Anterior for the Compression Test (mm)
Comp_bulgeL Bulge Lateral for the Compression Test (mm)
Comp_bulgeP Bulge Posterior for the Compression Test (mm)

Comp_stiff Stiffness for the Compression Test (N/mm)
Shear_stiff Stiffness for the Shear Test (N/mm)

Exte_bulgeL Bulge Lateral for the Extension Test (mm)
Exte_bulgeP Bulge Posterior for the Extension Test (mm)

Exte_stiff Stiffness for the Extension Test (Nm/◦)
LBend_bulgeL Bulge Lateral for the Lateral Bending Test (mm)
LBend_bulgeP Bulge Posterior for the Lateral Bending Test (mm)

LBend_stiff Stiffness for the Lateral Bending Test (Nm/◦)
Flex_bulgeL Bulge Lateral for the Flexion Test (mm)
Flex_bulgeP Bulge Posterior for the Flexion Test (mm)

Flex_stiff Stiffness for the Flexion Test (Nm/◦)
Tors_stiff Stiffness for the Torsion Test (Nm/◦)
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