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Classical procedures for designing Earth’s mapping missions rely on a preliminary frozen-eccentricity orbit analysis. This initial
exploration is based on the use of zonal gravitational models, which are frequently reduced to a simple 𝐽

2
-𝐽
3
analysis. However, the

𝐽
2
-𝐽
3
modelmay not be accurate enough for some applications. Furthermore, lower order truncations of the geopotential are known

to fail in describing the behavior of elliptic frozen orbits properly. Inclusion of a higher degree geopotential, which also takes into
account the short-period effects of tesseral harmonics, allows for the precise computation of frozen-eccentricity, low Earth orbits
that show smaller long-period effects in long-term propagations than those obtained when using the zonal model design.

1. Introduction

The procedure of designing and maintaining mission orbits
for artificial satellites is made of different phases that go
from simple to complex. First of all it is essential to have
a deep knowledge of the natural dynamics involved, which
requires determining the origin and magnitude of the forces
that prevent exact Keplerian motion to happen. The main
forces are then used to create amodel that, while being simple
enough for providing analytical insight, must retain the bulk
of the real dynamics. The simplified model allows for the
selection of the range of trajectories useful for the mission,
fromwhich the nominal trajectory will be chosen and refined
in amore sophisticatedmodel. Finally, propagations in a real,
ephemeris model are required for maneuver planning.

The selection of the simplified model is eased by the
common practice of separating perturbations into secular,
long-period, and short-period effects [1]. Then, long-term
behavior is efficiently studied in mean elements, whose
evolution equations are obtained by averaging the disturbing
function over the fast rotating angles so as to remove short-
period effects. Ideally, the long-term model would be solved
analytically. However, as the analytical solution is rarely

attained, one must be satisfied with taking advantage of the
fair performances of semianalytical integration [2, 3].

However, the perturbation problem may admit Hamilto-
nian formulation in some cases, basically when the perturba-
tive forces are of gravitational origin. Then, in analogy to the
Hamilton-Jacobimethod, which allows integrating a problem
by finding the canonical transformation to action-angle
variables [4], one can resort to classical perturbation theories
where canonical transformations are used to construct a set of
formal integrals, such that the newHamiltonian only depends
on actions—the momenta conjugate to the angles—up to the
required truncation order [5].

Traditionally, perturbation approaches that proceed by
averaging all the angles are used to obtain an explicit
analytical time solution [6, 7]. However, averaging is only
allowedwhen the involved angles rotate or “circulate,” as is the
case of themean anomaly.Hence, a full averaging process that
removes both short- and long-period effects to obtain the so-
called “proper” elements [8] may miss important pendular-
type solutions related to the oscillation or “libration” of some
angles, thus constraining the validity of the analytical solution
to certain regions in the phase space. On the contrary, the
averaging may only be applied to the circulating angles in



2 Mathematical Problems in Engineering

order to reduce the Hamiltonian to one degree of freedom.
Then, theHamiltonian flowwill be free of the constraints that
apply to the full averaged problem. Even in the cases in which
an explicit closed form solution to the reducedHamiltonian is
not known, the search for particular solutions of the reduced
problem, and notably the stationary solutions, may provide
important results.

A conspicuous example is the so-called Kozai mechanism
[9], by means of which asteroids in high-inclination orbits
may experience large orbital eccentricity and inclination vari-
ations under third-body perturbations. Kozai’s eccentricity-
varying orbits stem from an unstable stationary solution of
a reduced Hamiltonian, involving only the variation of the
eccentricity and the argument of the periapsis (see also [10]).
The Kozai mechanism is not only of interest for astronomers
[11, 12], but also attracts the attention of aerospace engineers
in view of its direct application to the case of sciencemissions
about natural satellites [13–18].

Similarly, orbits with stationary perigee and eccentricity,
on average, are found to exist under the influence of the
geopotential alone. These types of specialized orbits reduce
stationkeeping requirements by using the natural dynamics.
Furthermore, because almost constant eccentricity and fixed-
perigee orbits minimize altitude variations, they are found
quite useful as nominal orbits for Earth mapping missions
[19]. In the usual aerospace engineering lingo, stationary
solutions of these kinds are generally termed as frozen
orbits and are loosely defined as orbits that, on average,
maintain constant certain orbital design parameters, such as
the inclination for sun-synchronous orbits, the node rotation
rate as in the case of repeat-groundtrack orbits, or the
eccentricity and argument of the perigee. The latter, which is
the topic of this paper, are termed frozen-eccentricity orbits
[20]. Historical details on the frozen orbit concept can be
found in [21].

In the preliminary design of Earth mapping missions,
the frozen-eccentricity orbit is usually computed in a 𝐽

2
-𝐽
3

model [19], although the influence of higher order harmonics
may be required in some applications [22, 23]. Specifically,
it must be noted that second-order effects of 𝐽

2
and other

zonal harmonicsmay introduce radical changes in the general
frozen orbits picture when compared to the 𝐽

2
-𝐽
3
case [21].

Because frozen orbits are determined in the mean ele-
ments space, whereas nominal orbits are realized by their
osculating elements, the computation of precise initial con-
ditions needs the readmission of the short-period effects that
were removed in the averaging. This readmission is done by
using the transformation from mean to osculating elements.
In general, the frozen-eccentricity orbit design is efficiently
carried out in a zonal model. However, in some cases the
influence of tesserals may worsen the frozen-eccentricity
condition considerably, thus making the effort of recovering
short-period effects related only to zonals naive [24]. In the
present paper we extend the definition of frozen-eccentricity
orbits to include the short-period effects due to tesserals in
the computation of initial conditions for the nominal orbits,
in addition to the long- and short-period effects due to zonal
harmonics.

The paper is organized as follows. First of all, several
classical facts on perturbations of the orbital elements due to
noncentralities of the geopotential are recalled in Section 2.
Then, in Section 3 we describe the main lines in the com-
putation of the perturbation theory, which consists of the
long-period Hamiltonian and the transformation equations
from mean to osculating elements, by means of the Lie
transforms method [25–27]. The explicit time dependence
introduced in the model by tesseral terms can be avoided
by moving to a rotating frame. This change of the reference
system requires the concomitant introduction of the Coriolis
term into the Hamiltonian. In general, in order to make
possible the elimination of short-period angles related to
longitude-dependent terms from the Hamiltonian, a prelimi-
nary expansion of the true anomaly as a trigonometric series
in the mean anomaly, whose coefficients are functions of
the eccentricity, is required [28]. These kinds of expansions
constrain the use of a perturbation theory to the case of small
or moderate eccentricities [6]. However, in the case of close-
Earth satellites, it is well known that the Coriolis term is of
a higher order than the Keplerian [29]. This fact allows the
short-period effects of the geopotential affecting low Earth
orbits (LEO), including those related to longitude-dependent
terms, to be averaged in closed form of the eccentricity, with
a notable reduction in the number of literal terms required by
the perturbation theory [7, 30–32]. Although this averaging
is only valid away from tesseral resonances, deep tesseral
resonances are not expected for the low-Earth orbits which
are the topic of the present study.

The closed-form averaging is based on the computation of
three canonical transformations of the Lie type.The standard
elimination of the parallax [33] simplifies the original Hamil-
tonian by reducing the parallactic terms to the form 𝑟

−2,
and by removing short-period terms related to the argument
of the latitude. In the case of LEO orbits, a side effect
of the standard elimination of the parallax is the removal
of longitude-dependent terms, except for those related to
the so-called 𝑚-dailies [34]. After this initial simplification,
short-period terms depending on the mean anomaly are
removed from the Hamiltonian via Delaunay normalization
[35]. It follows a simple averaging of the remaining terms that
depend on the argument of the node in the rotating frame.
As expected from the known fact that the effects of tesseral
average out in the long term, except for tesseral resonances,
we find that the reduced Hamiltonian is exactly the same as
the zonal problem [21].

Numerical experiments related to the computation of
frozen-eccentricity orbits are presented in Section 4. Because
the Lie transforms are carried out only up to second-order
effects of 𝐽

2
, the computed frozen orbits are affected by

residual long-period effects derived from the truncation
order of the perturbation theory. In the case of elliptic
orbits, we show that short-period terms due to tesserals may
worsen the frozen-eccentricity solution to some extent, thus
magnifying the residual long-period effects. On the contrary,
for a variety of cases tested, the short periods introduced by
the tesserals do not seem to play any relevant role for almost
circular frozen-eccentricity orbits. Therefore, the classical
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frozen orbits theory based on a zonalmodel would be enough
for computing accurate initial osculating elements of LEO,
frozen-eccentricity, almost circular orbits.

Finally, it must be mentioned that we limit the model to a
fifth-degree andorder truncation of the geopotential, whereas
a ninth-degree model has been suggested to minimize varia-
tions of model predictions when compared with long-term
observations of real satellites [21]. However, the fifth-degree
and order model is simple enough to show all the relevant
aspects of the frozen orbits picture and hence is considered
sufficient for illustrating the theoretical facts discussed in the
present research. On the contrary, higher order harmonics
should be taken into account in the construction of a frozen-
eccentricity orbit theory intended for practical applications.

2. Noncentralities of the Geopotential:
Classical Facts

We only focus on the effects of the geopotential and assume
that the Earth is in uniform rotation about the 𝑧-axis,
without suffering from precessional or any other effects.
Then, the Keplerian motion typical of mass-point attraction
is disturbed by the noncentralities of the Earth’s gravitational
field, which in an Earth-centered, Earth-fixed coordinate
system, are derived from the disturbing potential [1]

𝑉 =
𝜇

𝑟
∑

𝑗≥2

(
𝛼

𝑟
)

𝑗

[𝐽
𝑗
𝑃
𝑗,0
(sin𝜑)

−

𝑗

∑

𝑘=1

(𝐶
𝑗,𝑘

cos 𝑘𝜆+𝑆
𝑗,𝑘

sin 𝑘𝜆) 𝑃
𝑗,𝑘

(sin𝜑)] ,

(1)

where 𝜇 is the Earth’s gravitational parameter, 𝛼 is the equa-
torial radius of the Earth, (𝑟, 𝜑, 𝜆) are spherical coordinates,
with 𝑟 standing for geocentric radius, 𝜑 for latitude, and 𝜆 for
longitude, 𝐽

𝑗
= −𝐶
𝑗,0
, 𝐶
𝑗,𝑘
, and 𝑆

𝑗,𝑘
are harmonic coefficients,

and 𝑃
𝑗,𝑘

are associated Legendre polynomials of degree 𝑗 and
order 𝑘.

For orbital applications, it is customary to formulate the
disturbing potential (1) in orbital elements (𝑎, 𝑒, 𝑖, 𝜔, Ω, and
𝑀), respectively, standing for semimajor axis, eccentricity,
inclination, argument of the perigee, longitude of the ascend-
ing node, and mean anomaly. The conversion from spherical
coordinates to orbital elements is straightforward, based on
the transformation from spherical to Cartesian coordinates
in the Earth-centered Earth-inertial frame:

𝑥 = 𝑟 cos𝜑 cos (𝜆 − 𝜗) , 𝑦 = 𝑟 cos𝜑 sin (𝜆 − 𝜗) ,

𝑧 = 𝑟 sin𝜑,
(2)

where (𝑥, 𝑦, 𝑧) are usual Cartesian coordinates and 𝜗 is the
Greenwich sidereal time, and the fact that the orbital frame,
defined by the position vector r and its derivative with respect

to time ̇r, and the Earth-centered, Earth-inertial frame are
related by simple rotations:

(

𝑥

𝑦

𝑧

) = 𝑅
3
(−Ω) 𝑅

1
(−𝑖) 𝑅

3
(−𝜃)(

𝑟

0

0

) , (3)

where 𝜃 = 𝑓 + 𝜔 is the argument of the latitude, 𝑓 is the
true anomaly, 𝑟 = ‖r‖, and 𝑅

1
and 𝑅

3
, respectively, stand for

standard rotation matrices about the 𝑥- and 𝑧- axes:

𝑅
1
(𝛽) = (

1 0 0

0 cos𝛽 sin𝛽
0 − sin𝛽 cos𝛽

) ,

𝑅
3
(𝛽) = (

cos𝛽 sin𝛽 0

− sin𝛽 cos𝛽 0

0 0 1

) .

(4)

The conversion from spherical coordinates to orbital ele-
ments shapes the disturbing potential in (1) as a trigonometric
series whose arguments are linear, integer combinations of
the angles 𝑓, 𝜔, Ω, and 𝜗, and whose coefficients depend on
inclination and eccentricity. If, in addition, the true anomaly
is expanded as a function of the mean anomaly, one gets [1]
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𝜇
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𝑗
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∑
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𝑗
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where
𝑙 − 𝑚 even ⇒ Q

𝑙,𝑚,𝑝,𝑞
= 𝐶
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cos𝜓
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+ 𝐶
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,

(6)

𝜓
𝑙,𝑚,𝑝,𝑞

= (𝑙 − 2𝑝 + 𝑞) 𝑀 + 𝑚 (Ω − 𝜗) + (𝑙 − 2𝑝) 𝜔. (7)

The formulation of the disturbing potential in orbital ele-
ments is efficiently carried out using recursion formulas for
the computation of the inclination and eccentricity functions,
respectively, 𝐹 and 𝐺 in (5), as is explained in full detail,
for instance, in the popular book by Kaula [1]. Note that, in
general, Kaula’s 𝐺 functions cannot be expressed in closed
formof the eccentricity and, therefore, the use of (5) is limited
to the case of small or moderate eccentricities.

In view of (6) and (7), the effects of the disturbing
potential when expressed in orbital elements are generally
classified in short-periodic effects, due to terms with 𝑙 − 2𝑝 +

𝑞 ̸= 0 which are related to the period of the “fast angle” 𝑀,
long-periodic effects, due to terms with 𝑙 − 2𝑝 + 𝑞 = 𝑚 =

0 related to the period of the perigee rotation, and secular
effects produced by terms with 𝑙 = 2𝑝 and 𝑞 = 𝑚 = 0.
Specifically, even zonal harmonics contribute secular terms
𝜓
𝑙,𝑚,𝑝,𝑞

= 0, as shown in (6), while odd zonal harmonics
introduce long-period terms.

The period of terms depending on Ω − 𝜗 is close to one
day and may be comparable to the orbital period in thecase
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of high-altitude orbits. On the contrary, for LEO orbits their
period is one order of magnitude higher than the orbital
period and the inclusion of higher-order𝑚-daily terms in the
disturbing potential is occasionally recommended [34, 36].
Terms with 𝑙 − 2𝑝 + 𝑞 = 0 and𝑚 ̸= 0 are sometimes classified
as medium-period terms.

The above classification of the disturbing function in
secular, long-period, and short-period terms is quite useful
in studying orbit evolution in the long term. The amplitude
of the short-periodic effects is normally small and orbit
evolution is conveniently studied by retaining only the secular
and long-periodic terms of the disturbing function (5).
Except for the case of tesseral resonances 𝑗�̇� ≈ 𝑘 ̇𝜗 with 𝑗

and 𝑘 integers, where such combinations of the indices that
𝑘(𝑙 − 2𝑝 + 𝑞) ≈ 𝑗𝑚 makes 𝜓

𝑙,𝑚,𝑝,𝑞
evolve slowly, therefore

contributing long-period effects to the disturbing function,
the long-term disturbing function is represented by the zonal
harmonics (𝑚 = 0) contribution to (5), which is further
“averaged” over the mean anomaly (𝑙 − 2𝑝 + 𝑞 = 0).

Lagrange planetary equations provide the rate of varia-
tions for the orbital elements, which require the computation
of the partial derivatives of the disturbing function (5)
with respect to the orbital elements themselves (see [5], for
instance). It is easy to check that the partial derivatives of
𝑉 with respect to 𝑀, Ω, and 𝜔—appearing in the Lagrange
planetary equations for 𝑎, 𝑒, and 𝑖—change sines into cosines
in (7), and vice versa, thus preventing the appearance of secu-
lar terms in the semimajor axis, eccentricity, and inclination,
as derived from (6). On the other hand, partial derivatives
of 𝑉 with respect to 𝑎, 𝑒, and 𝑖—appearing in the Lagrange
planetary equations for the mean anomaly, the longitude of
the node, and the argument of the perigee—do not alter (7)
and hence contribute secular terms to the rate of variation
of 𝑀, Ω, and 𝜔, as derived from (6). When dealing only
with long-period terms of the disturbing function, Lagrange
planetary equations provide the evolution of a different set of
elements, calledmean orbital elements, which are sometimes
written with primes to enhance the differences with respect
to the instantaneous or osculating elements.

While the flow inmean elements is representative enough
for long-term orbit evolution, the computation of initial
conditions corresponding to particular solutions of the mean
elements flow requires the knowledge of the transformation
from osculating to mean elements:

(𝑎, 𝑒, 𝑖, 𝜔, Ω,𝑀)
T
→ (𝑎


, 𝑒

, 𝑖

, 𝜔

, Ω

,𝑀

) . (8)

Besides, the long-term orbital evolution of some specific
osculating elements can be efficiently explored by propagat-
ing correspondingmean elements, which in turn requires the
knowledge of inverse transformation T−1. As a closed form
transformation is not available, one has to be satisfied with
knowing some terms in the series expansion of the above
transformation, which these days are customarily computed
by the Lie transforms method [25–27].

The knowledge of the flow inmean elements alonemay be
enough in some engineering applications. But even in these
cases, the simple removal of short-period terms 𝑗− 2𝑙 +𝑚 ̸= 0

from the geopotential [22, 23]misses important second-order

effects of the second zonal harmonic, such that the averaging
of short periods must be properly accomplished with the
inclusion of second-order effects of 𝐶

2,0
= −𝐽
2
.

3. Long-Term Disturbing Function

As the perturbation problem admits Hamiltonian formula-
tion, we perform the averaging using perturbation theory
by Lie transforms [25–27], which, in addition, provides the
explicit transformation from mean to osculating elements,
which is required in the computation of the nominal orbit.
Besides, in view of 𝜗 that always appears as a subtraction of
the argument of the node, the explicit time dependence intro-
duced by longitude-dependent terms, that is, tesseral and
sectorial harmonics, is avoided by formulating the disturbing
function in orbital elements in the Earth-centered Earth-
fixed frame, which is a rotating frame attached to the Earth.
In consequence, theHamiltonianmust be supplementedwith
the Coriolis term.

Thus, the perturbation problem is materialized by the
initial Hamiltonian:

H = −
𝜇

2𝑎
(1 + 2

̇𝜗

𝑛
𝜂𝑐) + 𝑉, (9)

where 𝜂 = √1 − 𝑒2, 𝑛 = 𝜇
1/2
𝑎
−3/2 is the orbit mean motion,

and 𝑐 = cos 𝑖, and orbital elements must be understood as
functions of certain sets of canonical variables, such as polar-
nodal or Delaunay variables. Bear in mind that the polar-
nodal set (𝑟, 𝜃, 𝜈, 𝑅, Θ,𝑁) is formed by the radial distance 𝑟,
the argument of the latitude 𝜃, the argument of the node 𝜈,
the radial velocity 𝑅, the modulus of the angular momentum
vector Θ, and the projection of the angular momentum
vector along the Earth’s rotation axis𝑁. The set of Delaunay
variables (ℓ, 𝑔, ℎ, 𝐿, 𝐺,𝐻) is formed by the mean anomaly ℓ,
the argument of the perigee 𝑔, the argument of the node ℎ,
the Delaunay action 𝐿 = √𝜇𝑎, the modulus of the angular
momentum vector𝐺 = 𝐿𝜂, and the component of the angular
momentum vector along the Earth’s rotation axis 𝐻 = 𝐺𝑐.
Remember also that the dynamical relation 0 ≤ |𝐻| ≤ 𝐺 ≤ 𝐿

holds. Besides, since we are using the rotating frame 𝜈 = ℎ =

Ω − 𝜗.
We limit ourmodel to a fifth-degree and order truncation

of the geopotential 𝑉, which incorporates the fundamen-
tal qualitative dynamics of the real problem. This model
is sufficient to illustrate the importance of taking short-
period effects due to tesseral harmonics into account in the
transformation equations frommean to osculating elements.
The consideration of higher degrees and orders does not
introduce relevant variations in our approach, except for the
increase of the computational burden derived from the rapid
growth in the size of the series used.

Given that we limit the theory only to the case of LEO
orbits, deep tesseral resonances are not expected to happen
and, therefore, the short-period effects to be removed by
averaging are those related to the mean anomaly as well
as to the argument of the node in the rotating frame. In
addition, the ratio ̇𝜗/𝑛 ∼ √𝐽

2
= 𝜖 for LEO orbits, such that
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it is convenient to arrange the Hamiltonian in the following
perturbative order:

H =

4

∑

𝑚=0

1

𝑚!
H
𝑚
, (10)

where

H
0
=
1

2
(𝑅
2
+
Θ
2

𝑟2
) −

𝜇

𝑟
(11)

is the Keplerian term,

H
1
= −𝑁 ̇𝜗 (12)

is the Coriolis term, andH
2,0

carries the contribution of𝐶
2,0
:

H
2
= 2!

𝜇

𝑟

𝛼
2

𝑟2

𝐶
2,0

2
(1 −

3

2
𝑠
2
+
3

2
𝑠
2 cos 2𝜃) , (13)

where 𝑠 = √1 − 𝑐2 = sin 𝑖. Because the contribution of other
harmonics of the geopotential is of the second order of 𝐶

2,0
,

which is O(𝜖4), there are no terms of the order of 𝜖3 in the
original Hamiltonian; hence, we choose

H
3
= 0,

H
4
= 4! (𝑉 −

1

2!
H
2
) ,

(14)

where, instead of using (5), the disturbing potential 𝑉 =

𝑉(𝑟, 𝜃, 𝜈, −, Θ,𝑁) is expressed in polar-nodal variables using
(2) and (3), and taking into account that 𝜈 = Ω − 𝜗 and
cos 𝑖 = 𝑁/Θ.

Averaging is then made by Lie transforms up to the
fourth order, based on the so-called “Lie triangle” inductive
algorithm; a full account of the method can be consulted
in the original reference [26]. For the sake of making
the analytical manipulation more efficient, the perturbation
theory is split into three Lie transforms, each of which is of a
different nature, as sketched out in the following.

3.1. Elimination of the Parallax. First of all, we carry out a
preparatory simplification

(𝑟, 𝜃, 𝜈, 𝑅, Θ,𝑁)
T
1

→ (𝑟

, 𝜃

, 𝜈

, 𝑅

, Θ

, 𝑁

) , (15)

called the elimination of the parallax [33]. Originally
designed for the simplification of zonal models, this transfor-
mation only removes part of the short-period terms, those
related to the argument of the latitude, while retaining the
contribution of parallactic terms of the form 1/𝑟

2. This
transformation was very soon extended to consider also
tesseral effects, although the efficiency of the “extended
parallax transformation” [37] may be questioned, due to the
scarce simplification of tesseral terms and the large size of
the generating function. However, in those cases in which
the Coriolis term may be considered as a higher order than
the Keplerian, the homological equation is released from

Table 1: Inclination polynomials 𝑞
𝑚,𝑗

in (21) and 𝑑
𝑚,𝑗

in (28).

𝑞


0,0
=

3

16
(19 − 54𝑐

2
− 69𝑐

4
)
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0,0
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0,0
−
3

4
(1 − 3𝑐

2
)
2

𝑑


1,0
= −

9

4
(1 − 3𝑐

2
)
2

𝑞


2,0
= −

9

16
(5 − 18𝑐

2
+ 5𝑐
4
) 𝑑



2,0
= 𝑞


2,0

𝑞


2,2
= −

9

16
(2 − 30𝑐

2
) 𝑠
2

𝑑


2,2
= 𝑞


2,2

its dependence on the argument of the node; therefore, the
standard elimination of the parallax can be applied, providing
a notable simplification of tesseral terms [7, 30–32].

After applying the standard elimination of the parallax to
the perturbed Hamiltonian (10), we find

P = ∑

𝑚≥0

1

𝑚!
P
𝑚
, (16)

where, neglecting terms above the fourth order, we get

P
0
= −

𝜇

2𝑎
, (17)

P
1
= −

𝜇

2𝑎
2

̇𝜗

𝑛
𝜂𝑐, (18)

P
2
= −

𝜇

2𝑎

𝛼
2

𝑟2
𝐶
2,0

1

𝜂2
(1 − 3𝑐

2
) , (19)

P
3
= 0, (20)

P
4
=

𝜇

2𝑎

𝑎
2

𝑟2

𝛼
4

𝑎4
𝐶
2

2,0

2

𝜂6
(𝑞


0,0
+ 𝑞


2,0
𝜂
2
+ 𝑞


2,2
𝑒
2 cos 2𝜔)

+
𝜇

2𝑎

𝑎
2

𝑟2

5

∑

𝑘=2

𝛼
𝑘

𝑎𝑘

2

𝜂2𝑘−2

1

∑

𝑚=0

𝑌
𝑘,𝑚

𝑘

∑

𝑗=−𝑘

𝑆
𝑘,𝑚,𝑗

,

(21)

where

𝑆
𝑘,𝑚,𝑗

= 𝑄
𝑘,𝑗
𝑞
𝑘,𝑚,𝑗

cos [(𝑘 + 2𝑚 − 4) 𝜔 + 𝑗ℎ]

+ 𝑃
𝑘,𝑗
𝑝
𝑘,𝑚,𝑗

sin [(𝑘 + 2𝑚 − 4) 𝜔 + 𝑗ℎ]

(22)

with

𝑘 + 𝑗 even ⇒ 𝑄
𝑘,𝑗

= 𝐶
𝑖,|𝑗|

, 𝑃
𝑘,𝑗

= 𝑆
𝑖,|𝑗|

,

𝑘 + 𝑗 odd ⇒ 𝑄
𝑘,𝑗

= 𝑆
𝑖,|𝑗|

, 𝑃
𝑘,𝑗

= 𝐶
𝑖,|𝑗|

,

(23)

and the eccentricity polynomials 𝑌
𝑘,𝑚

are

𝑌
0,2

= 1, 𝑌
0,3

= 𝑒, 𝑌
0,4

= 2 + 3𝑒
2
,

𝑌
0,5

= 4𝑒 + 3𝑒
3
, 𝑌

1,𝑘
= 𝑒
𝑘−2

.

(24)

Finally, the inclination polynomials 𝑞
𝑚,𝑗

, 𝑝
𝑘,𝑚,𝑗

, and 𝑞
𝑘,𝑚,𝑗

are
given in Tables 1, 2, and 3, respectively. It is worth noting that
the orbital elements are now functions of the prime variables.
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Table 2: Inclination polynomials 𝑝
𝑘,𝑚,𝑗

in (22). We abbreviate 𝛾 ≡ 1 ± 𝑐.

𝑘 𝑗 𝑚 = 0 𝑚 = 1

0 0 0

2 ±1 0 ±18𝑐𝑠

±2 0 ∓18𝑠
2

0
9

2
(1 − 5𝑐

2
)𝑠 −

9

2
(1 − 5𝑐

2
)𝑠

3
±1 ∓

9

4
(1 ∓ 𝑐)(1 ∓ 10𝑐 − 15𝑐

2
) ∓

9

4
𝛾(1 ± 10𝑐 − 15𝑐

2
)

±2
45

2
(1 ∓ 𝑐)(1 ± 3𝑐)𝑠 −

45

2
𝛾(1 ∓ 3𝑐)𝑠

±3 ∓
135

2
(1 ∓ 𝑐)𝑠

2
∓
135

2
𝛾𝑠
2

0 0 0

±1 ±
45

8
𝑐(3 − 7𝑐

2
)𝑠 −

45

8
𝛾(1 ± 7𝑐 − 14𝑐

2
)𝑠

4 ±2 ∓
135

8
(1 − 8𝑐

2
+ 7𝑐
4
) ±

135

4
𝛾
2
(1 ∓ 7𝑐 + 7𝑐

2
)

±3 ±
945

4
𝑐𝑠
3

−
945

4
𝛾
2
(1 ∓ 2𝑐)𝑠

±4 ∓
945

4
𝑠
4

∓
945

2
𝛾
2
𝑠
2

0 −
45

16
(1 − 14𝑐

2
+ 21𝑐

4
)𝑠

105

32
(1 − 9𝑐

2
)𝑠
3

±1 ∓
45

32
𝛾(1 ± 28𝑐 − 42𝑐

2
∓ 84𝑐

3
+ 105𝑐

4
) ±

315

64
𝛾(1 ± 6𝑐 − 15𝑐

2
)𝑠
2

5
±2 −

315

8
𝛾(1 ∓ 3𝑐 − 9𝑐

2
± 15𝑐

3
)𝑠

315

16
𝛾
2
(1 ∓ 12𝑐 + 15𝑐

2
)𝑠

±3 ∓
945

8
𝛾(1 ± 6𝑐 − 15𝑐

2
)𝑠
2

±
315

16
𝛾
3
(1 ∓ 3𝑐)(13 ∓ 15𝑐)

±4 −
2835

4
𝛾(1 ∓ 5𝑐)𝑠

3
−
2835

8
𝛾
3
(3 ∓ 5𝑐)𝑠

±5 ∓
14175

4
𝛾𝑠
4

∓
14175

8
𝛾
3
𝑠
2

The Lie transforms method also provides the generating
function of the transformation T

1
, from which the explicit

transformation equations

𝜉 = 𝜉 (𝑟

, 𝜃

, 𝜈

, 𝑅

, Θ

, 𝑁

) , 𝜉 ∈ (𝑟, 𝜃, 𝜈, 𝑅, Θ,𝑁) (25)

are obtained by means of the straightforward application of
the Lie triangle (see [26], for details).

3.2. Delaunay Normalization. First, the simplified Hamilto-
nian (16) is expressed in Delaunay elements. Then, the elim-
ination of remaining short-period terms related to the mean
anomaly is carried out by means of a new transformation:

(ℓ

, 𝑔

, ℎ

, 𝐿

, 𝐺

, 𝐻

)

T
2

→ (ℓ

, 𝑔

, ℎ

, 𝐿

, 𝐺

, 𝐻

) (26)

which, up to the truncation order, normalizes the Hamilto-
nian by introducing the Delaunay action as a formal integral

of the perturbation problem [35]. The Delaunay normaliza-
tion is carried out in closed form of the eccentricity based on
the standard differential relations between the true andmean
anomaly 𝑎2𝜂dℓ = 𝑟

2d𝑓, derived from the preservation of the
angular momentum in the Kepler problem.

After the normalization, we obtain a new Hamiltonian:

D = ∑

𝑚≥0

1

𝑚!
D
𝑚
, (27)

where, neglecting terms of orders higher than 4, we getD
1
=

P
1
, D
2
= P
2
, D
3
= P
3
, and

D
4
=

𝜇

2𝑎

𝛼
4

𝑎4
𝐶
2

2,0

2

𝜂7
(𝑑


0,0
+𝑑


1,0
𝜂 + 𝑑


2,0
𝜂
2
+𝑑


2,2
𝑒
2 cos 2𝜔)

+
𝜇

2𝑎

5

∑

𝑘=2

𝛼
𝑘

𝑎𝑘

2

𝜂2𝑘−1

1

∑

𝑚=0

𝑌
𝑘,𝑚

𝑘

∑

𝑗=−𝑘

𝑆
𝑘,𝑚,𝑗

,

(28)



Mathematical Problems in Engineering 7

Table 3: Inclination polynomials 𝑞
𝑘,𝑚,𝑗

in (22). We abbreviate 𝛾 ≡ 1 ± 𝑐.

𝑘 𝑗 𝑚 = 0 𝑚 = 1

0 0 0

2 ±1 0 −18𝑐𝑠

±2 0 −18𝑠
2

0 0 0

3
±1 −

9

4
(1 ∓ 𝑐)(1 ∓ 10𝑐 − 15𝑐

2
) −

9

4
𝛾(1 ± 10𝑐 − 15𝑐

2
)

±2 ∓
45

2
(1 ∓ 𝑐)(1 ± 3𝑐)𝑠 ±

45

2
𝛾(1 ∓ 3𝑐)𝑠

±3 −
135

2
(1 ∓ 𝑐)𝑠

2
−
135

2
𝛾𝑠
2

0 −
9

16
(3 − 30𝑐

2
+ 35𝑐

4
)

45

8
(1 − 8𝑐

2
+ 7𝑐
4
)

±1 −
45

8
𝑐(3 − 7𝑐

2
)𝑠 ±

45

8
𝛾(1 ± 7𝑐 − 14𝑐

2
)𝑠

4 ±2 −
135

8
(1 − 7𝑐

2
)𝑠
2

135

4
𝛾
2
(1 ∓ 7𝑐 + 7𝑐

2
)

±3 −
945

4
𝑐𝑠
3

±
945

4
𝛾
2
(1 ∓ 2𝑐)𝑠

±4 −
945

4
𝑠
4

−
945

2
𝛾
2
𝑠
2

0 0 0

±1 −
45

32
𝛾(1 ± 28𝑐 − 42𝑐

2
∓ 84𝑐

3
+ 105𝑐

4
)

315

64
𝛾(1 ± 6𝑐 − 15𝑐

2
)𝑠
2

5
±2 ±

315

8
𝛾(1 ∓ 3𝑐 − 9𝑐

2
± 15𝑐

3
)𝑠 ∓

315

16
𝛾
2
(1 ∓ 12𝑐 + 15𝑐

2
)𝑠

±3 −
945

8
𝛾(1 ± 6𝑐 − 15𝑐

2
)𝑠
2

315

16
𝛾
3
(1 ∓ 3𝑐)(13 ∓ 15𝑐)

±4 ±
2835

4
𝛾(1 ∓ 5𝑐)𝑠

3
±
2835

8
𝛾
3
(3 ∓ 5𝑐)𝑠

±5 −
14175

4
𝛾𝑠
4

−
14175

8
𝛾
3
𝑠
2

where 𝑌
𝑘,𝑚

and 𝑆
𝑘,𝑚,𝑗

are the same as before, and the
inclination coefficients 𝑑

𝑚,𝑗
are given in the right column

of Table 1. Note that now the orbital elements and the
different functions of them are expressed in the double-prime
Delaunay variables.

Again, the Lie transforms method provides the gener-
ating function of the transformation T

2
, from which the

transformation T
2
is itself obtained by means of explicit

equations.

3.3. Elimination of the Node. The Hamiltonian is now free
from short-period effects related to the mean anomaly;
however, it still depends on the argument of the node in
the rotating frame. Therefore, we carry out one more Lie
transform

(−, 𝑔

, ℎ

, 𝐿

, 𝐺

, 𝐻

)

T
3

→ (−, 𝑔

, ℎ

, 𝐿

, 𝐺

, 𝐻

)

(29)

in order to remove ℎ
 from the Hamiltonian, and thus

introducing 𝐻
 as a new formal integral of the double-

averaged problem.

The final Hamiltonian is

K = ∑

𝑚≥0

1

𝑚!
K
𝑚
, (30)

where, up to the fourth order, K
𝑚

= D
𝑚
for 𝑚 = 0, . . . , 3,

and

K
4
=

𝜇

2𝑎

𝛼
4

𝑎4
𝐶
2

2,0

2

𝜂7
(𝑑


0,0
+𝑑


1,0
𝜂 + 𝑑


2,0
𝜂
2
+𝑑


2,2
𝑒
2 cos 2𝜔)

+
𝜇

2𝑎

5

∑

𝑘=2

𝛼
𝑘

𝑎𝑘

2

𝜂2𝑘−1

1

∑

𝑚=0

𝑌
𝑘,𝑚

𝑆
𝑘,𝑚,0

,

(31)

where 𝑌
𝑘,𝑚

, 𝑆
𝑘,𝑚,0

, and the inclination polynomials 𝑑
𝑚,𝑗

are
the same as before, and the orbital elements, as well as the
different functions of them, are expressed now in the triple-
prime Delaunay variables.

Except for tesseral resonances, the effects of tesseral
perturbations average out in the long-term.Therefore, it is no
surprise to find that the long termHamiltonian (30) is exactly
the same as the one provided in the appendix of [21] for a
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zonal model, up to the truncation degree of the geopotential
used in this paper.This agreement is an additional, important
check on the validity of the transformations carried out in this
paper.

The long-term flow is derived from Hamilton equations
of the final Hamiltonian (30). Because of the averaging, (30)
is of the form

K = K (−, 𝑔

, −, 𝐿

, 𝐺

, 𝐻

) , (32)

where 𝐿 = 𝐿
 and 𝐻

 are constant. Therefore, the time
evolution of the reduced phase space (𝑔


, 𝐺

) decouples

from the motion of ℓ and ℎ
. Thus, we first solve the one

degree of freedom system

̇𝑔


=
d𝑔

d𝑡
=

𝜕K

𝜕𝐺
, �̇�


=
d𝐺

d𝑡
= −

𝜕K

𝜕𝑔
, (33)

for the initial conditions 𝑔
0
, 𝐺
0

to get

𝑔


= 𝑔

(𝑡; 𝑔


0
, 𝐺


0
; 𝐿

, 𝐻

) ,

𝐺


= 𝐺

(𝑡; 𝑔


0
, 𝐺


0
; 𝐿

, 𝐻

) .

(34)

Then, the evolution of ℓ and ℎ is obtained by the following
quadratures:

ℓ


= ℓ


0
+ ∫

𝜕K (𝑔

(𝑡) , 𝐺


(𝑡) ; 𝐿

, 𝐻

)

𝜕𝐿
d𝑡,

ℎ


= ℎ


0
+ ∫

𝜕K (𝑔

(𝑡) , 𝐺


(𝑡) ; 𝐿

, 𝐻

)

𝜕𝐻
d𝑡.

(35)

Although the analytical solution (34) may be computed
in some cases, it would require the use of special functions,
which do not provide the desired insight into the long-term
evolution. On the other hand, particular solutions of the
reduced flowmay be quite useful in specific satellite missions.
This is exactly the case of the stationary solutions of (33),
corresponding to the frozen-eccentricity orbits which are the
topic of this research.

Finally, we note that the reduced Hamiltonian (30) can
be written in terms of the mean orbital elements as K =

K(𝑔

, 𝐺

; 𝐿

, 𝐻

) = K(𝑒, 𝜔; 𝑎, 𝜅), where 𝑒 = 𝑒(𝐺


, 𝐿

),

𝜔 = 𝑔
, and the two formal integrals of the reduced flow 𝐿



and 𝐻
 have been replaced by 𝑎 = 𝐿

2
/𝜇 and 𝜅 = 𝜅(𝑒, 𝑖).

The latter is given by

𝜅 =
𝐻


𝐿
= (1 − 𝑒

2
) cos 𝑖 = cos 𝑖

𝑐
, (36)

where 𝑖
𝑐

= arccos(𝐻/𝐿) stands for the inclination of
circular orbits, a case in which 𝐿 = 𝐺.

4. Frozen Orbits Computation:
Numerical Experiments

Because the reduced Hamiltonian is of just one-degree-of-
freedom in the modulus of the angular momentum and the

−1
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g
1
0
(
𝑒
)

Inclination (deg)

(a)

63 63.5 64 64.5

−1

−2

−3

−4

lo
g
1
0
(
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Figure 1: (a) Inclination-eccentricity diagram of frozen-eccentricity
orbits of the 5 × 5 tesseral problem, for a mean semimajor axis
of 8000 km. (b) Detail in the vicinity of the critical inclination. Full
lines are used for 𝜔 = 90 deg., whereas dashed lines indicate 𝜔 =

270 deg.

argument of the perigee, then for each pair of the formal
integrals (𝐿, 𝐻) the reduced flow is comprised of closed
curves and equilibria.Note that the cylindricalmap (𝑔, 𝐺)
introduces singularities in the phase space representation,
which should be properly discussed in the invariants of the
problem [38]. For engineering applications, where rectilinear
trajectories are not of practical interest, the reduced flow can
also be studied in a sphere [39].

Alternatively, insightful information can be obtained
directly in orbital variables by means of global inclination-
eccentricity diagrams (𝑖, 𝑒) and local eccentricity vector dia-
grams (𝑒 cos𝜔, 𝑒 sin𝜔), which give a thorough picture of the
solution space for a given semimajor axis 𝑎

0
. Indeed, after

the straightforward reformulation of the relevant equations in
orbital elements and in view of the frozen-eccentricity orbits
which appear in the “meridian” 𝑔 = ±𝜋/2, (𝑖, 𝑒)-diagrams
of frozen-eccentricity orbits can be obtained by the simple,
inexpensive evaluation of the contour level 0 = ̇𝑔(𝑒, 𝑖; 𝜔 =

±𝜋/2; 𝑎 = 𝑎
0
) of (33) in the variation range 0 ≤ 𝑒 < 1,

0 ≤ 𝑖 < 𝜋 [40].
A sample inclination-eccentricity diagram of frozen-

eccentricity, direct inclination orbits is provided in Figure 1
for a mean semimajor axis 𝑎

0
= 8000 km, where each point

of the respective curves represents a frozen-eccentricity orbit
for different values of the (averaged) energy and 𝐻

 (or
𝜅). An almost symmetric plot can be obtained analogously
for the case of retrograde, frozen-eccentricity orbits. Note
the agreement of Figure 1 with results in [21] except for
quantitative variations due to the different truncation of
the model and the different value selected for the mean
semimajor axis.
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Figure 2: Bifurcation sequence of frozen-eccentricity orbits of the 5 × 5 tesseral problem, for a mean semimajor axis 𝑎 = 8000 km. From left
to right and from top to bottom, the inclination of the circular (nonfrozen) orbits is 𝑖 = 63.33, 63.43, 63.456, 63.46, 63.50, and 63.61 deg.

Thus, in Figure 1 we observe two different lines of frozen-
eccentricity orbits. The first starts from an equatorial almost
circular orbit and is comprised of low-eccentricity orbits
with the perigee fixed, on average, at 90 degrees, which exist
for increasing inclination. Close to the critical inclination
𝑖 = arccos√1/5 (due to the influence of higher order
harmonics, the value of the critical inclination is slightly

different from the value 𝑖 = arccos√1/5, which corresponds
to the 𝐽

2
problem), the eccentricity of the frozen-eccentricity

orbits increases with almost constant inclination. A new line
starts from a frozen-eccentricity orbit close to the critical
inclination, where 𝑒 = 0.023, 𝑖 = 63.45 deg., and 𝜔 =

270 deg. (the large red point in the bottom plot of Figure 1).
One branch of this line is comprised of frozen-eccentricity
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Figure 3: Long-term evolution of the stable, elliptic frozen-
eccentricity orbit in a 5 × 5 tesseral model when the osculating
elements are taken the same as mean elements.

orbits whose eccentricity increases with almost constant
inclination, whereas the other branch is comprised of low-
eccentricity orbits, which exist for increasing inclinations.
For the latter, the eccentricity of the orbits reduces with
inclination until finding an exact circular orbit at 𝑖 =

64.3533 deg. Then, for increasing inclinations, eccentricity
becomes greater and the argument of the perigee changes to
90 deg. We do not attempt to find other frozen-eccentricity
orbits that could exist with very high eccentricities.

Numerical computations based on a 5 × 5 trunca-
tion of the GRACE Gravity Model GGM02C (http://www
.csr.utexas.edu/grace/gravity/), which uses the values 𝛼 =

6378.1363 km, 𝜇 = 398600.4415 km3/s2, and the unnormal-
ized values of the harmonic coefficients, are presented in
Table 4. Besides, for the Earth rotation rate, we used the value
̇𝜗 = 360.9856235 deg/day [41].
On the other hand, local eccentricity vector diagrams

can be constructed for each pair of the formal integrals
(𝐿

, 𝐻

), or, equivalently, (𝑎, 𝜅), bymeans of simple contour

plots of the reduced Hamiltonian (30). Eccentricity vector
diagrams cannot show a clear representation of the reduced
flow for orbits with high eccentricities. In spite of that, these
kinds of diagrams succeed in presenting valuable information
for usual aerospace engineering missions requiring low or
moderate eccentricities, and hence their use is quite common
in mission design and analysis procedures (see [42, 43], for
instance). Applications in this paper are limited to 𝑒 < 0.2

and, therefore, corresponding eccentricity vector diagrams
clearly show the frozen orbits’ behavior.

Thus, Figure 2 shows a collection of eccentricity vector
diagrams that illustrate the typical bifurcation sequence
of frozen-eccentricity orbits in the vicinity of the critical
inclination.Themean semimajor axis, a dynamical parameter
of the reduced flow, is fixed at 8 000 km, corresponding to
circular orbits’ altitude of about 1 600 km over the Earth’s
surface—about 400 km below the upper limit for LEO. The
variation of the other dynamical parameter of the reduced
flow 𝜅 produces the well-known sequence of bifurcations of

Table 4: Unnormalized harmonic coefficients from GGM02.

𝑚 𝑛 𝐶
𝑚,𝑛

𝑆
𝑚,𝑛

2 0 −0.10826356665511𝐷 − 02 0.00000000000000𝐷 + 00

2 1 −0.26411601026866𝐷 − 09 0.18032862693857𝐷 − 08

2 2 0.15745764195628𝐷 − 05 −0.90386794572580𝐷 − 06

3 0 0.25324736913329𝐷 − 05 0.00000000000000𝐷 + 00

3 1 0.21931639484877𝐷 − 05 0.26805873958805𝐷 − 06

3 2 0.30904826386475𝐷 − 06 −0.21143025856490𝐷 − 06

3 3 0.10057897945819𝐷 − 06 0.19722247169000𝐷 − 06

4 0 0.16199743057822𝐷 − 05 0.00000000000000𝐷 + 00

4 1 −0.50866106222860𝐷 − 06 −0.44926607379209𝐷 − 06

4 2 0.78376776296127𝐷 − 07 0.14812596378053𝐷 − 06

4 3 0.59214914301692𝐷 − 07 −0.12010571083214𝐷 − 07

4 4 −0.39821028378360𝐷 − 08 0.65250616563220𝐷 − 08

5 0 0.22790512608210𝐷 − 06 0.00000000000000𝐷 + 00

5 1 −0.53867811341505𝐷 − 07 −0.80816434468490𝐷 − 07

5 2 0.10553305623241𝐷 − 06 −0.52328994862687𝐷 − 07

5 3 −0.14927561343499𝐷 − 07 −0.71024368437187𝐷 − 08

5 4 −0.22995704140867𝐷 − 08 0.38789543672179𝐷 − 09

5 5 0.43038343392817𝐷 − 09 −0.16481584232124𝐷 − 08

frozen orbits in the vicinity of the critical inclination. Further
details on the influence of different truncations of a zonal
geopotential in the frozen-eccentricity orbits picture can be
consulted in [21].

While local plots are useful in illustrating qualitative
dynamical aspects of the problem and for estimating mean
values of frozen-eccentricity orbits of interest, the com-
putation of nominal orbits requires precise knowledge of
corresponding mean elements. This is done by computing
stationary solutions of theHamilton equations of the reduced
long-term Hamiltonian K = K(𝑔, 𝐺; 𝐿,𝐻) in (33). There-
fore, we must solve the system

�̇�


= −
𝜕K

𝜕𝑔
= 0, ̇𝑔


=

𝜕K

𝜕𝐺
= 0. (37)

Stationary solutions are conveniently found bymeans of stan-
dard root-finding procedures that can be fed by approximate
values of fixed points on eccentricity vector diagrams, which
are directly estimated from the figures.

Thus, for instance, in reference to the right-bottom plot
of Figure 2, we find three fixed points. Two of them are of
the elliptic type with 𝑒 ≈ 0.12 and 𝜔 = 90 deg, 𝑒 ≈ 0.004

and 𝜔 = 270 deg. The other, which happens in 𝑒 ≈ 0.11 and
𝜔 = 270 deg, is of the hyperbolic type. Exact values fulfilling
(37) give

𝑒 = 0.120130, 𝜔 = 90
∘
, 𝑖 = 63

∘
.4024,

𝑒 = 0.00342451, 𝜔 = 270
∘
, 𝑖 = 63

∘
.6098,

(38)

for the elliptic type solutions, corresponding to stable frozen-
eccentricity orbits, and

𝑒 = 0.113231, 𝜔 = 270
∘
, 𝑖 = 63

∘
.4258, (39)
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Figure 4: Long-term evolution of the stable, elliptic frozen-
eccentricity orbit in a 5×5 tesseralmodelwhen short-periodic effects
from zonal harmonics are included in the computation of osculating
elements.

for the hyperbolic-type solution, corresponding to an unsta-
ble frozen-eccentricity orbit.

Even after the improvements, stationary solutions of (37)
are just mean values. Therefore, direct propagation of these
values in the nonaveraged problem will provide orbits that
are only approximately frozen. This is illustrated in Figure 3
for the stable, elliptic frozen-eccentricity orbit, where we see
the long-period oscillations of the argument of the perigee
with an amplitude of about 30 deg and a period of about one
hundred years. Correspondingly, the osculating eccentricity
is affected by nonnegligible oscillations between the nominal
value and 𝑒 ≈ 0.128.

Classically, the nominal orbit is computed by recovering
the short-period effects due to zonal harmonics, which are
the only relevant perturbations in the long-term, assuming
that there are no resonances. The readmission of zonal
harmonics’ short-period effects in the computation of oscu-
lating elements, as derived from the generating function
of each Lie transform, indeed improves the frozen orbit
condition, as shown in Figure 4, where we note that now the
amplitude of the long-term oscillations in the eccentricity
is almost negligible when compared with the amplitude of
the inevitable short-period oscillations. The amplitude of the
long-term oscillations of the perigee is also notably reduced
to less than 2 deg.

As expected, the amplitude of the long-period oscillations
can be further reduced when the computation of the osculat-
ing elements of the nominal orbit includes the readmission
of short-period effects caused by tesseral harmonics. Thus,
Figure 5 shows that now the amplitude of the oscillations in
the argument of the perigee is further reduced to about one
degree, while the long-period oscillations of the eccentricity
aremasked by the short periods, whereas the remaining long-
period effects should be attributed to the truncation order of
the perturbation theory, as illustrated, for instance, in [44].

The improvements in the frozen orbit computation are
further illustrated in the eccentricity vector diagram of
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Figure 5: Long-term evolution of the stable, elliptic frozen-
eccentricity orbit in a 5×5 tesseralmodelwhen short-periodic effects
from zonal and tesseral harmonics are included in the computation
of osculating elements.
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Figure 6: Eccentricity vector evolution of the orbits in Figure 5
(red points) and Figure 4 (blue points). Contour levels are mean
elements.

Figure 6, where we note that the readmission of short-
period effects due to tesseral harmonics centers the osculating
elements propagation over the predicted mean value.

The benefits of recovering short-periodic effects due to
tesseral perturbations are not so evident in the case of the
other two stationary solutions. Thus, as shown in the left
plot of Figure 7, either taking or neglecting tesseral effects
in the computation of the osculating orbit provides very
good results, with slight improvements when recovering the
tesseral effects (red plot) that provide an orbit better centered
over the mean frozen value and with more regular shape.
In the case of the unstable stationary solution (right plot
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Figure 7: Eccentricity vector evolution of the frozen-eccentricity orbits when incorporating short-period effects from zonals (blue points) and
also from tesserals (red points) superimposed to the eccentricity vector diagram in mean elements. Left: almost circular frozen-eccentricity
orbit. Right: elliptic, unstable frozen-eccentricity orbit.

of Figure 7), the osculating orbit derails over the unstable
manifold in both cases, such that the corrections added by
the tesserals simply change the unstable branch that the orbit
follows.

5. Conclusions

The classical engineering definition of frozen-eccentricity
orbits as those orbits where secular effects due to even zonal
harmonics are canceled by the long-period contribution
of odd zonal harmonics, which has been more precisely
defined in the past as stationary solutions of an averaged
zonal model, is now amended to include the short-period
effects from tesseral harmonics. Stationary solutions of the
averaged model always carry residual long-period effects
derived from the truncation order of the perturbation theory.
But these undesired long-period effects can be minimized
by recovering the short-period effects due to the tesseral
harmonics in the computation of the osculating elements of
the nominal frozen-eccentricity orbit. This theoretical result
has been demonstrated for a five-degree and order truncation
geopotential, which shares the main characteristics of the full
model. To this effect, we have constructed a perturbation
theory that considers up to second-order 𝐽

2
effects. In the case

of LEO orbits, the perturbation theory can be constructed
in closed form of the eccentricity, thus notably reducing the
number of terms required in the formal series, and, therefore,
making their evaluation more efficient. The perturbation
theory, of course, is not limited to the computation of frozen-
eccentricity orbits and can be applied to the fast and efficient
semianalytical integration of LEO orbits. Thus, long-term
evolution could be used to explain some observable drift
in the eccentricity/argument of perigee of debris orbiting in
special conditions.

We approached only the mathematical problem of the
computation of frozen-eccentricity orbits under the noncen-
tralities of the geopotential. The real, engineering problem is
more complex, because second-order effects due to the non-
fixed spin axis, lunisolar attraction, solar radiation pressure,
or dragmay destroy the frozen orbit condition, thusmaking it
necessary to solve an optimization problem.Nevertheless, the
proposed solution of this researchwill be an excellent starting
solution in the optimization process.
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