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Abstract. We characterize the region of meromorphic continuation of
an analytic function f in terms of the geometric rate of convergence
on a compact set of sequences of multi-point rational interpolants of
f . The rational approximants have a bounded number of poles and the
distribution of interpolation points is arbitrary.

1. Introduction

1.1. Rational functions of best approximation. It is well known that
a sequence of polynomial or rational approximants converging on a certain
region at geometric rate often converges in a larger region, giving thus addi-
tional information on the analytic or meromorphic continuation of the limit
function. Walsh called that phenomenon overconvergence of the approxi-
mants (see, for instance, [16, 17]). Notice that the same word is used in a
somewhat different setting to describe a property of power series (see [9],
Chapter 11). One of the most beautiful theorems of this type was proved
by Gonchar culminating a series of results given by Bernstein, Walsh, and
Saff, among others.

Let K be a compact set of the complex domain C and G the unbounded
component of C \K. We say that K is regular if the domain G is regular
with respect to the Dirichlet problem. By cap (K) we mean the logarithmic
capacity of K. If cap (K) > 0, there exists the generalized Green function of
G with pole at z =∞ which we denote by gG(z,∞) (see [12], Section II.4).
The fact that K is regular implies cap (K) > 0 .

Let Pn be the set of all complex polynomials of degree at most n. Set

Rn,m = {r : r = p/q, p ∈ Pn, q ∈ Pm, q 6≡ 0 }
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point Padé approximation, rows of the Padé table, Montessus de Ballore’s Theorem.
This work was supported by Dirección General de Investigación, Ministerio de Edu-

cación y Ciencia, under grant MTM2009-14668-C02-02. The second author also received
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and

dn,m(K) = min {‖f − r‖K : r ∈ Rn,m},
where ‖ · ‖K stands for the sup norm on K.

Theorem A. Let f be a function defined on a regular compact set K ⊂ C.
Then,

(1) lim sup
n→∞

n

√
dn,m(K) ≤ 1/θ < 1

if and only if the function f admits meromorphic continuation with at most
m poles on the set E(θ) = {z ∈ C : exp{gG(z,∞)} < θ}.

In particular, the best rational approximation characterizes the largest
set E(θ) on which the function f admits meromorphic continuation with at
most m poles. That is, if θf,m denotes the supremum of the numbers θ such
that the function f admits meromorphic continuation with at most m poles
on E(θ), then

θf,m = 1/ lim sup
n→∞

n

√
dn,m(K).

Gonchar proved Theorem A in [2]. The essential contribution by Gonchar
was to prove that (1) implies the assertion about the meromorphic continu-
ation of f . The reciprocal statement basically follows from work by Walsh
[17]. The first result in the direction of Theorem A was given by Bernstein
[1] in 1912 for m = 0 and K = [−1, 1]. The general case for m = 0 was
proved by Walsh [18]. Under the assumption that K is bounded by a Jordan
curve, Saff proved Theorem A in [10].

Let f be an analytic function on a neighborhood of a compact set Σ
wherein interpolation is carried out along an arbitrary table and let K be
a regular compact set on which f is defined. Our main goal in this work
is to show that we can characterize the largest region (of a given type) of
meromorphic continuation of f by means of the geometric rate of conver-
gence on K of its multi-point rational interpolants. Thus, we considerably
enlarge both the class of situations and the regions in which we can deduce
meromorphic continuation of f and show that the characterization of the
largest region of meromorphic continuation does not depend on whether or
not the interpolation table is extremal.

1.2. Row sequences of Padé approximants. To fix ideas, let us consider
the simplest case of rational interpolants corresponding to classical Padé
approximation. Let f be a function analytic on a neighborhood of z = 0
and let n and m be nonnegative integers. The Padé approximant of type
(n,m) for f is defined as the unique rational function πn,m = pn,m/qn,m
verifying

- deg pn,m ≤ n, deg qn,m ≤ m, and qn,m 6≡ 0.
- qn,m(z)f(z)− pn,m(z) = Azn+m+1 + · · · ,
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where rational functions are identified if they coincide after cancellation of
common factors from numerator and denominator. The problem of find-
ing πn,m is reduced to that of solving a system of linear equations whose
coefficients can be expressed in terms of the Taylor coefficients of f .

The table {πn,m}, n,m ∈ Z+, is called the Padé table of f . For each
m ∈ Z+ we say that Dm is the disk of m-meromorphy of f if Dm is the
largest open disk with center at zero into which f can be continued as a
meromorphic function that has at most m poles, counting multiplicities.
The radius of Dm is denoted by Rm. The following result is implicitly
contained in [4].

Theorem B. Suppose that there exists z 6= 0 such that

(2) lim sup
n→∞

|f(z)− πn,m(z)|1/n ≤ |z|
R

< 1.

Then, Rm ≥ R, that is, f admits meromorphic continuation with at most
m poles on the set {z ∈ C : |z| < R}.

From (2) it follows that the disk of m-meromorphy Dm is characterized by
the rate of convergence of the Padé approximants πn,m to f on a fixed point
z 6= 0. The proof relies heavily on the fact that the table of interpolation
points is newtonian (cf. Proposition 4.2 below). In the present paper we
focus on the analogous problem for multi-point Padé approximants where
the interpolation points tend to an arbitrary distribution and we prove that
the phenomenon of overconvergence is not limited to approximants with
maximal rate of convergence. This will be done in Section 4, see Theorem
4.1. Section 2 contains some definitions and auxiliary material whereas in
Section 3 we characterize certain generalized sets of m-meromorphy of f
in terms of convergence in σ-content (for the definition, see Section 2) of
the multi-point Padé approximants. This implies that the region where the
function f is proved to admit meromorphic continuation is the largest among
those of a given type. In the case that the table of interpolation points is
newtonian, we provide more detailed descriptions.

2. Definitions and auxiliary results

2.1. Potential theory. Let Σ be a compact set of the complex domain C
with connected complement. Denote the domain C \ Σ by Ω.

Let µ be a positive unit Borel measure supported on Σ. The logarithmic
potential of µ is denoted by P (µ; z) and is equal to∫

Σ
− log |z − ζ| dµ(ζ).

Set
r0 = inf

z∈Σ
exp{−P (µ; z)} ≥ 0

and
Eµ(r) = {z ∈ C : exp{−P (µ; z)} < r}, r > r0.
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Since the function exp{−P (µ; ·)} is upper semi-continuous on C, Eµ(r), r >
r0, is a non-empty bounded open set that, in general, does not contain
the whole of Σ. By the same token exp{−P (µ; ·)} attains its maximum on
compact sets. So, for each compact set K let us denote

ρµ(K) = ‖ exp{−P (µ; ·)}‖K .

Lemma 2.1. Given any open neighborhood U of Σ there exists r1 > r0 such
that Eµ(r1) ⊂ U .

Proof. First, notice that exp{−P (µ; z)} ≥ r0 for all z ∈ C, due to the
maximum principle for potentials (see Corollary II.3.3 in [12]).

We may assume that F = C \ U 6= ∅. As F ∩ Σ = ∅ and

−P (µ; z) = log |z|+ o(1), z →∞,
the function exp{−P (µ; ·)} attains its minimum on F . Put

r1 = min
z∈F

exp{−P (µ; z)} = exp{−P (µ; z1)} ≥ r0, z1 ∈ F.

It is clear that Eµ(r1) ⊂ U . As z1 6∈ Σ, the function P (µ; ·) is harmonic on a
neighborhood of z1 on which cannot be constant because the complement of
Σ has only one connected component. Therefore, by the minimum principle,
there exists a point z0 verifying exp{−P (µ; z0)} < r1, which implies that
r1 > r0. �

If cap (Σ) > 0 we have

(3) gΩ(z,∞) = − log cap (Σ)− P (µΣ; z), z ∈ C,

where µΣ is the equilibrium measure of the set Σ.

Let µn and µ be finite positive Borel measures on C. By µn
∗−→ µ,

n→∞, we denote the weak∗ convergence of µn to µ as n tends to infinity.
This means that for every continuous function f on C it holds

lim
n→∞

∫
f(x) dµn(x) =

∫
f(x) dµ(x).

If all the measures µn, n ∈ N, are supported on a fixed compact set F and

µn
∗−→ µ, n→∞, the principle of descent for potentials (cf. [12], Theorem

1.6.8) says that

(4) lim inf
n→∞

P (µn; zn) ≥ P (µ; z0),

where the sequence {zn}n∈N tends to z0 ∈ C as n goes to infinity and

(5) lim
n→∞

P (µn; z) = P (µ; z),

uniformly on compact subsets of C \ F .
The fine topology on C is the coarsest topology on C for which all su-

perharmonic functions are continuous. This is finer than ordinary planar
topology. If D is a connected open set then the boundary of D in the fine
and Euclidean topology coincide (see Theorem 5.7.9 in [6]).
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2.2. Convergence in σ-content. Let A be a subset of the complex plane
C. By U(A) we denote the class of all coverings of A by at most a numerable
set of disks. Set

σ(A) = inf

{∑
i∈I
|Ui| : {Ui}i∈I ∈ U(A)

}
,

where |Ui| stands for the radius of the disk Ui. The quantity σ(A) is called
the 1-dimensional Hausdorff content of the set A. This set function is not
a measure but fulfills some good properties like countable semiadditivity
which, for instance, is not satisfied by the logarithmic capacity.

Let {ϕn}n∈N be a sequence of functions defined on a domain D and ϕ
another function also defined on D. We say that the sequence {ϕn}n∈N
converges in σ-content to the function ϕ on compact subsets of D if for each
compact subset K of D and for each ε > 0, we have

lim
n→∞

σ ({z ∈ K : |ϕn(z)− ϕ(z)| > ε}) = 0.

Such a convergence will be denoted by σ-limn→∞ ϕn = ϕ in D.
The next lemma was proved by Gonchar in [3].

Gonchar’s Lemma. Suppose that the sequence {ϕn} of functions defined
on a domain D ⊂ C converges in σ-content to a function ϕ on compact
subsets of D. Then the following assertions hold true:

i) If each of the functions ϕn is meromorphic in D and has no more
than k < +∞ poles in this domain, then the limit function ϕ is also
meromorphic (more precisely, it is equal to a meromorphic function
in D except on a set of σ-content zero) and has no more than k poles
in D.

ii) If each function ϕn is meromorphic and has no more than k < +∞
poles in D and the function ϕ is meromorphic and has exactly k
poles in D, then all ϕn, n ≥ N , also have k poles in D; the poles of
ϕn tend to the poles z1, , . . . , zk of ϕ (taking account of their orders)
and the sequence {ϕn} tends to ϕ uniformly on compact subsets of
the domain D′ = D \ {z1, , . . . , zk}.

2.3. Multipoint Padé approximants. Let f be an holomorphic function
on a neighborhood V of the compact set Σ ⊂ C. Let us fix a family of monic
polynomials

(6) wn(z) =

n∏
i=1

(z − αn,i), n ∈ N,

whose zeros are contained in Σ. It is easy to verify that for each pair of
nonnegative integers n and m, n ≥ m, there exists polynomials P and Q
satisfying

- degP ≤ n−m, degQ ≤ m, and Q 6≡ 0.
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- (Qf − P )/wn+1 ∈ H(V ), where H(V ) denotes the space of analytic
functions in V .

Any pair of such polynomials P and Q defines a unique rational function
P/Q which is called the multi-point Padé approximant of type (n −m,m)
of f and denoted by Πn,m for short.

Let Πn,m = Pn,m/Qn,m where Qn,m and Pn,m are polynomials obtained
eliminating all common zeros and, unless otherwise stated, normalizing Qn,m
so that

(7) Qn,m(z) =
∏
|ζn,k|≤1

(z − ζn,k)
∏
|ζn,k|>1

(
1− z

ζn,k

)
.

Let Rµ,m, m ∈ Z+, be the supremum of the numbers r > r0 such that f
admits meromorphic continuation with at most m poles on Eµ(r). Lemma
2.1 proves that Rµ,m > r0. We define the set of m-meromorphy of f relative
to µ as the set Eµ(Rµ,m) and we denote it by Dµ,m. It is easy to see that f
admits meromorphic continuation with at most m poles on Dµ,m.

For a given polynomial p, we denote by Θp the normalized zero counting
measure of p. That is,

Θp =
1

deg p

∑
ξ: p(ξ)=0

δξ.

The sum is taken over all the zeros of p and δξ denotes the Dirac mea-
sure concentrated at ξ. It is said that the sequence of interpolation points
given by the polynomials {wn}n∈N has the measure µ as its asymptotic zero
distribution if

Θwn
∗−→ µ, n→∞.

The following theorem is an analog of Montessus de Ballore’s theorem (see
[7]) for multi-point Padé approximants with arbitrary distribution of inter-
polation points. It was proved in [19] (cf. [15]) and constitutes a straight-
forward generalization of a previous result by Saff [11].

Theorem 2.2. Let the measure µ be the asymptotic zero distribution of
the sequence of interpolation points given by {wn}n∈N. Suppose that f has
exactly m poles on Dµ,m. Then

i) For all n ≥ n0, Πn,m has exactly m poles which converge according to
their multiplicity to the poles of the function f as n tends to infinity.

ii) For each compact subset K ⊂ Dµ,m not containing any pole of the
function f , it holds

(8) lim sup
n→∞

‖f −Πn,m‖1/nK ≤ ρµ(K)

Rµ,m
< 1.

If, in the above theorem, we take wn(z) = zn, n ∈ N, it follows that µ ≡ δ0,
Σ = {0}, Dµ,m = Dm, and Rµ,m = Rm; therefore regaining Montessus de
Ballore’s theorem. If we take Σ to be a regular compact set and µ precisely
its equilibrium measure we obtain the same result as that of [11].
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It is possible to prove an analog of (8) regardless whether or not the func-
tion f has exactly m poles on Dµ,m. To this end, we need some additional
definitions. Take an arbitrary ε > 0 and define the open set Jε as follows.
For n ≥ m, let Jn,ε denote the ε/6mn2-neighborhood of the set of zeros of
Qn,m and let Jm−1,ε denote the ε/6m-neighborhood of the set of poles of f
in Dµ,m(f). Set Jε = ∪n≥m−1Jn,ε. We have σ(Jε) < ε and Jε1 ⊂ Jε2 for
ε1 < ε2. For any set B ⊂ C we put B(ε) = B \ Jε.

From these properties it readily follows that if {ϕn}n∈N converges uni-
formly to the function ϕ on K(ε) for every compact K ⊂ D and for each
ε > 0, then {ϕn}n∈N converges in σ-content to ϕ on compact subsets of D.

Due to the normalization (7), for any compact set K of C and for every
ε > 0, there exist positive constants C1, C2, independent of n, such that

(9) ‖Qn,m‖K < C1, min
z∈K(ε)

|Qn,m(z)| > C2n
−2m,

where the second inequality is meaningful when K(ε) is a non-empty set.

Lemma 2.3. Let the measure µ be the asymptotic zero distribution of the
sequence of interpolation points given by {wn}n∈N. Then, for each compact
set K ⊂ Dµ,m and for each ε > 0, it holds

(10) lim sup
n→∞

‖f −Πn,m‖1/nK(ε) ≤
ρµ(K)

Rµ,m
< 1.

Proof. Fix a compact set K ⊂ Dµ,m and ε > 0. Let Qm be the monic
polynomial whose zeros are the poles of f on Dµ,m. From the definition of
multi-point Padé approximants it follows that the function

QmQn,m f −Qm Pn,m
wn+1

is holomorphic on Dµ,m ∪ V . Let η > 0 arbitrarily small. Let Γ be a cycle
contained in

{Dµ,m ∪ V } \
{
Eµ(Rµ,m − η) ∪ Σ

}
homologous to 0 in Dµ,m ∪ V , with winding number equal to 1 for all the

points of K∪Σ. This can be done because the compact set Eµ(Rµ,m − η)∪Σ
is included in the open set Dµ,m ∪ V . Then, for all z ∈ Γ, we have

(11) exp{−P (µ; z)} > Rµ,m − η.

Applying the Cauchy integral formula, we obtain

[QmQn,m f −Qm Pn,m](z)

wn+1(z)
=

1

2πi

∫
Γ

[QmQn,m f ](ζ)

wn+1(ζ)

dζ

ζ − z

− 1

2πi

∫
Γ

[Qm Pn,m](ζ)

wn+1(ζ)

dζ

ζ − z
=

1

2πi

∫
Γ

[QmQn,m f ](ζ)

wn+1(ζ)

dζ

ζ − z
,
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for z ∈ K, where the second integral after the first equality is zero due to
the fact that the integrand is an analytic function outside Γ with a zero of
multiplicity at least two at infinity.

Then, for all z ∈ K

[QmQn,m (f −Πn,m)](z) =
wn+1(z)

2πi

∫
Γ

[QmQn,m f ](ζ)

wn+1(ζ)

dζ

ζ − z
and using (9) we arrive at

(12) |f(z)−Πn,m(z)| ≤ C(K, η, ε)n2m ‖wn+1‖K
min
ζ∈Γ
|wn+1(ζ)|

,

for all z ∈ K(ε), where the constant C(K, η, ε) is independent of n.
As the measure µ is the asymptotic zero distribution of the sequence

{wn}n∈N, using (4) and (5), we have

(13) lim sup
n→∞

|wn(zn)|1/n ≤ e−P (µ;z0),

where the sequence {zn}n∈N tends to z0 ∈ C as n goes to infinity and

(14) lim
n→∞

|wn(z)|1/n = e−P (µ;z),

uniformly on compact subsets of C \ Σ.
It follows from (13) that

(15) lim sup
n→∞

‖wn+1‖1/nK ≤ ρµ(K).

Therefore, with the aid of (12), (14), (15), and (11), we obtain

lim sup
n→∞

‖f −Πn,m‖1/nK(ε) ≤
ρµ(K)

Rµ,m − η
and formula (10) follows from the above expression making η go to 0. �

Obviously, a proof of Theorem 2.2 may be obtained by using Lemma 2.3
and part ii) of Gonchar’s lemma.

Let us denote by R′µ,m the supremum of the numbers r > r0 such that the
sequence {Πn,m}n≥m converges in σ-content on compact subsets of Eµ(r).
Due to Lemma 2.3, we have 0 < Rµ,m ≤ R′µ,m . On the other hand, from
part i) of Gonchar’s lemma it follows that f admits meromorhic continuation
with at most m poles in the region where the sequence {Πn,m}n≥m converges
in σ-content. Therefore, it is clear that Rµ,m = R′µ,m and we could have
used this property for an alternative definition of Rµ,m.

Lemma 2.4. Let K be a regular compact set and suppose that

lim sup
n→∞

‖f −Πn,m‖1/nK ≤ cap (K)

θ
< 1.

Then

σ- lim
n→∞

Πn,m = f in EµK (θ),
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where µK is the equilibrium measure of K.

Proof. Set

sn ≡ Qn,mQn−1,m (Πn,m −Πn−1,m) ∈ Pn, n ≥ m.

From hypothesis and (9) it follows that

lim sup
n→∞

‖sn‖1/nK ≤ cap (K)

θ
< 1.

Using the Bernstein-Walsh lemma (see Theorem 5.5.7 in [8]), it holds

(16) lim sup
n→∞

‖sn‖1/nFκ
≤ κ

θ
< 1,

for all κ with cap (K) ≤ κ < θ, where Fκ = EµK (κ).
Fix a compact subset F of EµK (θ). It is clear that ρµK (F ) < θ. So, from

(16) we deduce that there exist constants q < 1 and C1 > 0 depending on
F such that

(17) |sn(z)| < C1q
n, n ≥ N, z ∈ F.

Fix ε > 0, because of (9) and (17), we have

|Πn,m(z)−Πn−1,m(z)| =
∣∣∣∣ sn(z)

Qn,m(z)Qn−1,m(z)

∣∣∣∣ ≤ C1

C2
2

qn n4m,

for n ≥ N and for all z ∈ F (ε). As
∑∞

n=1 q
n n4m < +∞, the sequence

{Πn,m}n≥m converges uniformly on F (ε). Since ε > 0 and F are arbi-
trary, the sequence {Πn,m}n≥m converges in σ-content on compact subsets
of EµK (θ), as we wanted to prove. �

3. Convergence in σ-content of row sequences

Throughout the rest of the paper we maintain the notations introduced
above, i.e., Σ is a compact set with connected complement Ω and f is an
analytic function on a neighborhood V of Σ. For each nonnegative integers
n,m, n ≥ m, Πn,m stands for the multipoint Padé approximant of type
(n−m,m) of f with interpolation points given by wn+1. Such points belong
to Σ. Given a positive unit Borel measure µ supported on Σ, recall that
ρµ(K) = ‖ exp{−P (µ; ·)}‖K and Dµ,m is the set of m-meromorphy of f
relative to µ.

In this section we show that convergence in σ-content of the approximants
{Πn,m} is not possible outside Dµ,m provided we are not in the set of inter-
polation Σ. The corresponding result for the classical case Σ = {0} appears
in [13].

Theorem 3.1. Let the measure µ be the asymptotic zero distribution of the
sequence of interpolation points given by {wn}n∈N. Suppose that the sequence
{Πn,m}n≥m converges in σ-content on compact subsets of a neighborhood of
the point z0 ∈ C \ Σ. Then, z0 ∈ Dµ,m.
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Proof. We argue by contradiction and divide the proof into three parts.
First, we reduce the result to finding a negative constant which uniformly
bounds from above a sequence of subharmonic functions {hn}n≥m. In the
second part we study the boundary values of hn, n ≥ m, and obtain certain
estimates for them which allow us to define a harmonic majorant of all
subharmonic functions considered. This harmonic majorant has the desired
properties and with that we conclude the proof in part three.

1. We may assume that Rµ,m < +∞. Recall that V is the neighborhood
of Σ in which f is analytic. Set

sn ≡ Qn,mQn−1,m (Πn,m −Πn−1,m) ∈ Pn, n ≥ m.

To reach a contradiction it is enough to prove that the functions

hn(z) =
1

n
log |sn(z)|+ P (µ; z) + logRµ,m, n ≥ m,

are uniformly bounded by a negative constant on a neighborhood U of the
set

{z ∈ C \ V : exp{−P (µ; z)} = Rµ,m} 6= ∅.
In that case, there exist constants q < 1 and C3 > 0 verifying

(18) |sn(z)| < C3q
n, n ≥ N, z ∈ U.

Fix ε > 0 and K compact subset of U . Then, because of (9) and (18), we
have

|Πn,m(z)−Πn−1,m(z)| =
∣∣∣∣ sn(z)

Qn,m(z)Qn−1,m(z)

∣∣∣∣ ≤ C3

C2
2

qn n4m,

for n ≥ N and for all z ∈ K(ε). As
∑∞

n=1 q
n n4m < +∞, the sequence

{Πn,m}n≥m converges uniformly on K(ε). Since ε > 0 and K are arbitrary,
part i) of Gonchar’s lemma proves that the sequence {Πn,m}n≥m converges
in σ-content on compact subsets of U to a meromorphic continuation of f
with at most m poles, which contradicts the definition of Rµ,m.

2. Suppose that z0 6∈ Dµ,m. As z0 ∈ C \ Σ and P (µ; z) is a harmonic
function in that region, there exist z1 ∈ C\Σ and δ > 0 such that D(z1, δ) =

{z ∈ C : |z − z1| < δ} ⊂ C \ Σ, exp{−P (µ; z)} > Rµ,m for all z ∈ D(z1, δ),
and the sequence {Πn,m}n≥m converges in σ-content on compact subsets of

a neighborhood of D(z1, δ). Due to this latter fact, for all n ≥ N1, it holds

σ
{
z ∈ D(z1, δ) : |Πn,m(z)−Πn−1,m(z)| ≥ 1

}
<
δ

3
.

Hence, there exists δ1 ∈ (δ/3, δ) such that

(19) |Πn,m(z)−Πn−1,m(z)| < 1, |z − z1| = δ1, n ≥ N1,

where we have used the facts that σ-content is not increased under circular
projection and that the σ-content of a line segment is half of its length.
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As the functions sn are analytic, from the maximum principle in D(z1, δ1),
(9), and (19), it follows that there exists a constant C4 > 0 such that

|sn(z)| < C4, z ∈ D(z1, δ1), n ≥ N1.

We also have

P (µ; z) + logRµ,m < m < 0, z ∈ D(z1, δ1).

Then, there exists a negative constant α such that

(20) hn(z) < α < 0, z ∈ D(z1, δ1), n ≥ N2 ≥ N1.

On the other hand, let Qm be the monic polynomial whose zeros are
the poles of f in Dµ,m. Let W be a bounded open set with connected

complement such that W is regular, Σ ⊂W ⊂W ⊂ V, and W ∩D(z1, δ) =
∅. The existence of W follows from the Hilbert lemniscate theorem (see
Theorem 5.5.8 in [8]). Consequently, ∂W does not contain any pole of the

function f in Dµ,m and the set D = C \ (W ∪D(z1, δ1)) is connected.
Let η > 0 be arbitrarily small. Let Γ be a cycle contained in

{Dµ,m ∪ V } \
{
Eµ(Rµ,m − η) ∪W

}
,

homologous to 0 in Dµ,m ∪ V with winding number equal to 1 for all the

points in W . This can be done because the compact set Eµ(Rµ,m − η) ∪W
is included in the open set Dµ,m ∪ V . Now, we follow the arguments given
in the proof of Lemma 2.3. For all z ∈ Γ it holds (11) and we can apply the
Cauchy integral formula and the principle of descent (14) in an analogous
way to obtain

lim sup
n→∞

|Qn,m(z) (f(z)−Πn,m(z))|1/n ≤ e−P (µ;z)

Rµ,m
,

uniformly on ∂W since ∂W ∩ Σ = ∅. Then, using (9) we have

(21) lim sup
n→∞

|sn(z)|1/n ≤ e−P (µ;z)

Rµ,m
,

uniformly on ∂W . Therefore, for any given ε > 0 there exists Nε ∈ N, Nε ≥
N2, such that

(22) hn(z) ≤ ε, z ∈ ∂W, n ≥ Nε.

3. Now, for each ε > 0, a harmonic function ψε is constructed as the
solution on D = C \ (W ∪D(z1, δ1)) of the Dirichlet problem given by the
boundary values

ψε(z) =

{
ε, for z ∈ ∂W,
α, for z ∈ ∂D(z1, δ1).

Since the functions hn, n ∈ N, are subharmonic on D and taking account of
(20) and (22), we see that ψε is a harmonic majorant of hn for all n ≥ Nε.
Fix any compact set K ⊂ D. From the two-constant theorem (see [8],
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Theorem 4.3.7) it follows that there exist positive constants mK and MK

depending only on K such that

ψε(z) ≤ εmK + αMK , z ∈ K, ε > 0.

Thus, for ε > 0 sufficiently small, the function ψε is bounded from above
on K by a negative constant. The same property is then satisfied by the
functions hn, n ≥ Nε. In particular, we can take K in such a way that it
contains the open set U of part 1, which finishes the proof. �

Remark 1. Let Λ = {nk} ⊂ N be a subsequence such that

(23) lim
k→∞

nk+1

nk
= 1

and suppose that {Πn,m}n∈Λ converges in σ-content on compact subsets of
a neighborhood of the point z0 ∈ C \ Σ. Then, we can also prove that
z0 ∈ Dµ,m since all the arguments employed in the proof of Theorem 3.1 are
valid without any modification under these new hypotheses. In particular,
formula (21) can be deduced for Λ under condition (23).

We say that the interpolation points αn,i, i = 1, . . . , n, n ∈ N, (see (6))
form a newtonian table if wn is divisor of wn+1 for all n ∈ N, that is, if
αn,i = αi, i = 1, . . . , n, n ∈ N.

In the case that Σ = {0} pointwise divergence of the Padé approximants
outside Dm has been proved by Gonchar in [4]. For multi-point Padé ap-
proximants, this was obtained by H. Wallin [15] (excluding the set of inter-
polation Σ) provided that the interpolation points form a newtonian table
and that the function f has exactly m poles in Dµ,m. This latter condition
plays an essential role since it assures the convergence of the denominators
of the approximants which is strongly used in [15].

We next prove that the sequence {Πn,m}n≥m diverges pointwise outside

the set Dµ,m ∪ Σ under the only assumption that the interpolation points
form a newtonian table. To the best of our knowledge, proving such a result
for general tables of interpolation is an open problem, even for m = 0. In
the particular case that the function f is meromorphic on the whole of C
with simple poles, an easy argument based on the descent principle and the
residue theorem gives the desired divergence (cf. [14]).

Proposition 3.2. Let the measure µ be the asymptotic zero distribution of
the sequence of interpolation points given by {wn}n∈N which form a new-
tonian table. Then, the sequence {Πn,m}n≥m diverges pointwise in C \(
Dµ,m ∪ Σ

)
.

Proof. We may assume that Rµ,m < +∞. Otherwise, there is nothing left
to prove. From the definition of multi-point Padé approximants and the fact
that the table of point is newtonian it follows that

Qn,mf − Pn,m
wn+1

∈ H(V ),
Qn+1,mf − Pn+1,m

wn+1
∈ H(V ).
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Therefore

(24)
Qn,mPn+1,m −Qn+1,mPn,m

wn+1
∈ H(V ).

The numerator of the fraction in (24) is a polynomial of degree at most n+1
with zeros at the zeros of wn+1. Necessarily

Qn,m(z)Pn+1,m(z)−Qn+1,m(z)Pn,m(z) = Anwn+1(z),

or, equivalently

(25) Πn+1,m(z)−Πn,m(z) =
Anwn+1(z)

Qn,m(z)Qn+1,m(z)
.

Considering telescopic sums, it follows that the sequence {Πn,m}n≥m con-
verges or diverges with the series∑

n≥n0

Anwn+1(z)

Qn,m(z)Qn+1,m(z)
,

where n0 is chosen conveniently so that Qn0,m(z) 6= 0 at the specific point
under consideration. Set

1

R∗
= lim sup

n→∞
|An|1/n.

Fix ε > 0 and an arbitrary compact set K ⊂ Eµ(R∗). By virtue of (9) and
(13), we obtain

lim sup
n→∞

∣∣∣∣ Anwn+1(z)

Qn,m(z)Qn+1,m(z)

∣∣∣∣1/n ≤ ρµ(K)

R∗
< 1, z ∈ K(ε),

which implies that the sequence {Πn,m}n≥m converges uniformly on K(ε).
Then {Πn,m}n≥m converges in σ-content on compact subsets of Eµ(R∗) and,
consequently, R∗ ≤ Rµ,m.

Let us consider z0 6∈ Σ such that ρµ({z0}) > R∗. Using now (9) and (14)
we have

(26) lim sup
n→∞

∣∣∣∣ Anwn+1(z0)

Qn,m(z0)Qn+1,m(z0)

∣∣∣∣1/n ≥ ρµ({z0})
R∗

> 1.

Hence, the sequence {Πn,m(z)}n≥m diverges at z = z0.
It remains to prove that R∗ ≥ Rµ,m. Suppose that R∗ < Rµ,m. Then,

there exists z1 ∈ Dµ,m \ Σ with ρµ({z1}) > R∗. By the continuity of the
potential P (µ; ·) in a neighborhood of z1, there exists a compact disk K1 =

D(z1, δ) ⊂ Dµ,m \ Σ verifying ρµ({z}) > R∗ for all z ∈ K1.
Fix ε > 0 with ε < δ so that K1(ε) 6= ∅. From (10) and (25) it follows

lim sup
n→∞

∣∣∣∣ Anwn+1(z)

Qn,m(z)Qn+1,m(z)

∣∣∣∣1/n ≤ ρµ(K)

Rµ,m
< 1, z ∈ K1(ε),

which is absurd in light of (26). �
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Remark 2. Notice that the proof of Proposition 3.2 does not make use of
the fact that the open set Ω = C\Σ is connected. Therefore, that condition
may be dropped in this case. Instead, we must require the function f to be
analytic in Eµ(r) for some r > r0 since now we cannot apply Lemma 2.1.
The same can be said about the other results concerning newtonian tables
of interpolation, that is, Proposition 4.2 and Corollary 4.4 below.

4. Meromorphic continuation

We are ready for our main result.

Theorem 4.1. Let the measure µ be the asymptotic zero distribution of
the sequence of interpolation points given by {wn}n∈N. Let K be a regular
compact set for which the value ρµ(K) is attained at a point that does not
belong to the interior of Σ. Suppose that the function f is defined on K and
fulfills

(27) lim sup
n→∞

‖f −Πn,m‖1/nK ≤ ρµ(K)

R
< 1.

Then, Rµ,m ≥ R, that is, f admits meromorphic continuation with at most
m poles on the set Eµ(R).

Proof. Several arguments that will be used below are similar to those em-
ployed in the proof of Theorem 3.1. In particular, we divide the proof into
three parts along the same lines.

1. Let us suppose that Rµ,m < R, hence we will come into contradiction.
It follows from (27), using Lemma 2.4, that the multi-point approximants
Πn,m converge in σ-content to f on compact subsets of EµK (λ0), where

(28) λ0 = cap (K)
R

ρµ(K)
> cap (K).

In case that ρµ(K) = 0 or R = +∞ we have λ0 = +∞ and Theorem
4.1 trivially holds true. Besides, from Theorem 3.1, we have EµK (λ0) ⊂
Dµ,m ∪ Σ.

Let V be the neighborhood of Σ in which f is analytic and set

sn ≡ Qn,mQn−1,m (Πn,m −Πn−1,m) ∈ Pn, n ≥ m.

Using the same argument that appears in the proof of Theorem 3.1, we see
that in order to reach a contradiction it is enough to prove that the functions

hn(z) =
1

n
log |sn(z)|+ P (µ; z) + logRµ,m

are uniformly bounded by a negative constant on a neighborhood U of the
set

{z ∈ C \ V : exp{−P (µ; z)} = Rµ,m} 6= ∅.
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2. For technical reasons that will become apparent below, we fix λ >
cap (K), λ < λ0, sufficiently close to cap (K) so that

(29) 2 log

(
λ

capK

)
<

1

4
log

(
R

Rµ,m

)
.

From (27) and (9) it follows that

(30) lim sup
n→∞

‖sn‖1/nK ≤ cap (K)

λ0
.

Using the Bernstein-Walsh lemma, it holds

(31) lim sup
n→∞

‖sn‖1/nFκ
≤ κ

λ0
< 1,

for all κ with cap (K) ≤ κ < λ0, where Fκ = EµK (κ).
Fix δ > 0 such that

(32) δ < log

(
λ

cap (K)

)
and ε > 0 with ε < λ0 − λ and log(λ+ ε) < log λ+ δ/2.

Apply (31) for κ = λ+ ε. Then, we have

1

n
log |sn(z)| ≤ log(λ+ ε)− log λ0 + δ/2, n ≥ n1(δ), z ∈ EµK (λ+ ε).

Therefore,

1

n
log |sn(z)| ≤ log λ− log λ0 + δ, n ≥ n1(δ), z ∈ EµK (λ+ ε).

That is,

(33) hn(z) ≤ log λ− log λ0 + P (µ; z) + logRµ,m + δ,

for all z ∈ EµK (λ+ ε) and n ≥ n1(δ).

Recall that Ω = C \ Σ is a connected open set. Let z0 ∈ K such that
P (µ, z0) = − log ρµ(K). From hypotheses, we may assume that z0 ∈ Ω which
implies that z0 is a limit point of Ω in the fine topology. As K ⊂ EµK (λ+ε),
there exist an open disk B0 centered at z = z0 and a point z1 ∈ Ω such that
z1 ∈ B0 ⊂ B0 ⊂ EµK (λ+ ε) and

P (µ; z1) < − log ρµ(K) +
1

8
log

(
R

Rµ,m

)
.

Then, there exists an open disk B1 centered at z = z1 with B1 ⊂ B0 ∩ Ω
and verifying

(34) P (µ; z) < − log ρµ(K) +
1

4
log

(
R

Rµ,m

)
, for all z ∈ B1,

since P (µ; ·) is a continuous function on a neighborhood of z1.
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Therefore, using (33), (32), (28), (34), and (29), for all z ∈ B1 and
n ≥ n1(δ), it holds

hn(z) ≤ log λ− log λ0 + P (µ; z) + logRµ,m + δ

= log

(
λ

cap (K)

)
+ P (µ; z) + logRµ,m + log

(
cap (K)

λ0

)
+ δ

< 2 log

(
λ

cap (K)

)
+ P (µ; z) + logRµ,m + log

(
cap (K)

λ0

)

= 2 log

(
λ

cap (K)

)
+ P (µ; z) + log ρµ(K)− log

(
R

Rµ,m

)

< 2 log

(
λ

cap (K)

)
− 3

4
log

(
R

Rµ,m

)
< − 1

2
log

(
R

Rµ,m

)
.

Then, we obtain

(35) hn(z) < α < 0, for all z ∈ B1 and n ≥ n1(δ).

On the other hand, let W be a bounded open set with connected com-
plement such that W is regular, Σ ⊂ W ⊂ W ⊂ V, and W ∩ B1 = ∅.
Consequently, ∂W does not contain any pole of the function f in Dµ,m and

the set D = C \ (W ∪B1) is connected.
Reasoning as in the proof of Theorem 3.1, we have

lim sup
n→∞

1

n
log |Qn,m(z) (f −Πn,m)(z)| ≤ −P (µ; z)− logRµ,m,

uniformly on ∂W . Hence, on account of (9), it holds

(36) lim sup
n→∞

hn(z) ≤ 0,

uniformly on ∂W . Then, fixed ε > 0, we obtain

(37) hn(z) ≤ ε, n ≥ n2(ε), z ∈ ∂W.
3. For each ε ≥ 0, a harmonic function ψε is constructed as the solution

on D = C\ (W ∪B1) of the Dirichlet problem given by the boundary values

ψε(z) =

{
ε, for z ∈ ∂W,
α, for z ∈ ∂B1.

As the functions hn are subharmonic on D ⊂ C \ Σ and taking account of
(37) and (35), we see that ψε is a harmonic majorant of hn for all n ≥ N =
max{n1(δ), n2(ε)}. Besides, the open set U of part 1 verifies U ⊂ D since
EµK (λ0) \Σ ⊂ Dµ,m. The rest of the proof is analogous to that of part 3 of
Theorem 3.1. �

Theorem 4.1 was proved in [5] for the particular case m = 0 under the
additional assumption that the sets K and Σ coincide.
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Remark 3. Theorem 4.1 may be proved under the slightly weaker hypothesis
that formula (27) holds true only for a subsequence Λ = {nk} ⊂ N verifying
(23). This follows from Remark 1 and the fact that formulas (30) and (36)
can be deduced for Λ under condition (23).

In the case that the table of interpolation points is newtonian, we can be
more precise.

Proposition 4.2. Let the measure µ be the asymptotic zero distribution of
the sequence of interpolation points given by {wn}n∈N which form a new-
tonian table. Suppose that the function f is defined at a point z 6∈ Σ and
fulfills

lim sup
n→∞

|f(z)−Πn,m(z)|1/n ≤ ρµ({z})
R

< 1.

Then, Rµ,m ≥ R, that is, f admits meromorphic continuation with at most
m poles on the set Eµ(R).

Proof. From (25) it follows that

(38) |An| ≤
∣∣∣∣Qn,m(z)Qn+1,m(z)

wn+1(z)

∣∣∣∣ (|f(z)−Πn+1,m(z)|+ |f(z)−Πn,m(z)|)

Hence, taking limits in (38) and using (9) and (14), we obtain

(39) lim sup
n→∞

|An|1/n ≤
1

ρµ({z})
lim sup
n→∞

|f(z)−Πn,m(z)|1/n.

Notice that ρµ({z}) > 0 since z 6∈ Σ. From (39) and the proof of Proposition
3.2 it follows that

1

Rµ,m
= lim sup

n→∞
|An|1/n ≤

1

R
,

which gives the result. �

The following corollary is a straightforward consequence of Theorems 2.2
and 4.1 and the definition of Rµ,m.

Corollary 4.3. Let the measure µ be the asymptotic zero distribution of
the sequence of interpolation points given by {wn}n∈N. Suppose that f has
exactly m poles on Dµ,m. Let K ⊂ Dµ,m be a regular compact subset not
containing any pole of the function f and for which the value ρµ(K) is
attained at a point that does not belong to the interior of Σ. Then, it holds

lim sup
n→∞

‖f −Πn,m‖1/nK =
ρµ(K)

Rµ,m
< 1.

If we use Theorem 2.2 and Proposition 4.2 instead, we analogously obtain
the next result.
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Corollary 4.4. Let the measure µ be the asymptotic zero distribution of the
sequence of interpolation points given by {wn}n∈N which form a newtonian
table. Suppose that f has exactly m poles zi, i = 1, . . . ,m, on Dµ,m. Then,

lim sup
n→∞

|f(z)−Πn,m(z)|1/n =
ρµ({z})
Rµ,m

< 1,

for each z ∈ Dµ,m \ (Σ ∪ {z1, . . . , zm}).
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versidad Politécnica de Madrid, José G. Abascal 2, 28006 Madrid, Spain.

E-mail address: bcalle@etsii.upm.es


