Synthesis and Reactivity of σ-Alkynyl/P-Bonded Phosphinoalkyne Platinum Complexes toward cis-[M(C $\left.\mathbf{C}_{5} \mathbf{F}_{\mathbf{2}}(\mathbf{t h f})_{2}\right](\mathbf{M}=\mathbf{P t}, \mathbf{P d})^{\dagger}$

Irene Ara, \ddagger Larry R. Falvello, \ddagger Susana Fernández, ${ }^{\S}$ J uan Forniés,*, \ddagger Elena Lalinde,*,s Antonio Martín, ${ }^{\ddagger}$ and M. Teresa Moreno ${ }^{\ddagger}$
Departamento de Quími ca Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de I nvestigaciones Científicas, 50009 Zaragoza, Spain, and Departamento de Química, Universidad de La Rioja, 26001 Logroño, Spain

Received J uly 31, 1997^{*}

Abstract

The reactivity of cis-bis(alkynyl)bis((diphenylphosphino)alkyne)platinum(II) complexes cis$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Bu}^{\mathrm{t}} ; \mathrm{L}=\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\left(\mathrm{L}^{1}\right), \mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\left(\mathrm{L}^{2}\right) ; \mathbf{1}-4\right)$, formed by displacement of the COD ligand from $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}(\mathrm{COD})\right]$, toward cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](\mathrm{M}=$ Pt, Pd, thf $=$ tetrahydrofuran; in both a 1:1 and 1:2 molar ratio) has been investigated. Treatment of $\mathbf{1}-\mathbf{4}$ with 1 equiv of cis-[$\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ affords dinuclear derivatives [$\left\{\mathrm{L}_{2} \mathrm{Pt}-\right.$ $\left.\left.\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CR}\right)_{2}\right\} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ (5-12) with exclusive formation of doubly alkynyl-bridged systems. The molecular structure of $\left[\left\{\left(\mathrm{Bu} \mathrm{C}^{\mathrm{C}} \equiv \mathrm{CPh}_{2} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right], \mathbf{1 0}$, is presented. In contrast, it was found that the course of the reactions with 2 equiv of cis$\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ strongly depend on the alkynyl substituents and metal centers. Thus, treatment of tert-butylalkynyl derivatives cis- $\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2} \mathrm{~L}_{2}\right](\mathbf{2}, \mathbf{4})$ with 2 equiv of cis$\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ only gives the expected trinuclear complexes 15A and 18A, in the case of the reactions with cis- $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { thf })_{2}\right]$. The molecular structure of the complex $\left[\left\{\operatorname{Pt}\left(\mu-\kappa(\mathrm{P}): \eta^{2}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBut}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$, 15A, reveals that both the complexed cis- $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ moieties are symmetrically linked to the precursor "cis- $\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2^{-}}$ $\left.\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{\prime \prime}$, with the platinum atoms connected by two unusual mixed alkynyl/ phosphinoalkyne bridging systems. On the other hand, similar reactions of phenylethynyl derivatives $(\mathbf{1}, \mathbf{3})$ with 2 equiv of cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ and $\mathbf{3}\left(\mathrm{L}=\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)$ with cis-[Pt$\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ lead, instead, to the unexpected trinuclear $\operatorname{PtPd}_{2}(\mathbf{1 4 B}, \mathbf{1 7 B})$ and $\mathrm{Pt}_{3}(\mathbf{1 6 B})$ derivatives which display terminal phosphinoalkyne ligands and, hence, contain the alkynyl groups acting as $\mu_{3}-\eta^{2}$ (σ-Pt edge Pd or Pt) bridging ligands. However, a mixture of both types of isomers 13A and 13B (50:32) is observed in the reaction system cis-[Pt($\mathrm{C} \equiv \mathrm{CPh})_{2^{-}}$ $\left.\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right](\mathbf{1}) / \mathrm{cis}-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$. The following order of bonding capability is deduced from this study: alkynyl > P-bonded phosphinoalkyne and $\mathrm{XC} \equiv \mathrm{CPh}$ fragments $>\mathrm{XC} \equiv \mathrm{CBu}^{\mathrm{t}}$ ($\mathrm{X}=\mathrm{Pt}, \mathrm{P}$).

Introduction

Phosphinoalkynes and acetylides have been widely used in the formation of organometallic complexes containing two or more transition metals. Phosphinoalkynes ($\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}$) are potentially difunctional ligands with the capacity to coordinate as simple phosphines ${ }^{1}$ or disubstituted acetylenes ${ }^{2}$ or to simultaneously use the phosphorus lone pair and the acetylenic π-orbitals in a polydentate bonding mode. ${ }^{3}$ Although all three of these possibilities have been observed, it seems that the coordinating ability of $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}$ is usually dominated by the phosphine donor sites, especially for complexes of metals in their normal oxidation states. The participation of the acetylenic triple bonds in coordination

[^0]seems to require a low-valent metal site with a high affinity for alkyne π-electrons. 2,3 These bonding situations are well represented by the low-valent dinuclear complexes $\left[\mathrm{Fe}_{2}\left(\mu-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}(\mathrm{CO})_{6}\right],{ }^{3 \mathrm{c}}\left[\mathrm{Ni}_{2}\left(\mu-\eta^{3}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}(\mathrm{CO})_{2}\right],{ }^{3 \mathrm{f}}\left[\mathrm{M}_{2}\left(\mu-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $(\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})^{3 \mathrm{~g}}$ (Scheme 1, A), and $\left[\mathrm{Fe}_{2}\left(\mu-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C} \equiv\right.\right.$ $\left.\left.\mathrm{CBu} \mathrm{t}^{\mathrm{t}}\right)(\mathrm{CO})_{8}\right]^{3 \mathrm{~d}}$ (Scheme 1, B), in which the $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}$ groups act as four-electron bridging ligands (P, η^{2}) and by the tetranuclear $\left[\mathrm{CO}_{4}\left(\mu_{3}-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}(\mathrm{CO})_{10}\right]^{3 \mathrm{a}}$ and trinuclear $\left[\mathrm{Ni}_{2} \mathrm{Cp}_{2}\left(\mu_{3}-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{Ni}(\mathrm{CO})_{3}\right]^{2 b}$ derivatives in which the ligands behave as six-electron donors ($\mathrm{P}, \eta^{2}: \eta^{2}$, Scheme 1, C). In this context, we have recently shown that the reaction of cis- $\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right](\mathrm{M}$ $=P \mathrm{Pt}, \mathrm{Pd})$ with cis-[Pt $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ gives the unusual dinuclear derivatives $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)-\right.$ $\left.\mathrm{MCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right]^{4}$ (Scheme 1, \mathbf{D}) containing a diphen-

[^1]
Scheme 1

$\mu-\eta^{3}$ (P: η^{2} doubly-bridge) $\quad \mu-\eta^{3}$ (P: η^{2} mono-bridge)
$\mathrm{MLn}=\mathrm{Fe}(\mathrm{CO})_{3}{ }^{3 \mathrm{c}}, \mathrm{Ni}(\mathrm{CO})^{3 \mathrm{f}}$,
$\mathrm{M}\left(\mathrm{PPh}_{3}\right) \mathrm{M}=\mathrm{Pt}, \mathrm{Pd}^{3 \mathrm{~g}}$

$\mathrm{MLn}=\mathrm{Fe}(\mathrm{CO})_{4}{ }^{3 \mathrm{~d}}$
B

$\mu-\eta^{3}$ bridge
$\mathrm{MLn}=\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$
$\mathrm{M}^{\prime} \mathrm{L}^{\prime}=\mathrm{M}^{\prime}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{Cl}(\mathrm{Pd}, \mathrm{Pt})^{4}$
D
A

$\mu_{3}-\eta^{3}\left(\mathrm{P}: \eta^{2}: \eta^{2}\right)$
$\mathrm{MLn}=\mathrm{NiCp} ; \mathrm{MLn}^{\prime}=\mathrm{Ni}(\mathrm{CO})_{3}{ }^{2 \mathrm{~b}}$

$$
\begin{gathered}
\mu_{3}-\eta^{3}\left(\mathrm{P}: \eta^{2}: \eta^{2}\right) \\
\mathrm{MLn}=\mathrm{Co}(\mathrm{CO})_{3} ; \mathrm{M}^{\prime} \mathrm{Ln}^{\prime}=\mathrm{Co}(\mathrm{CO})_{2}{ }^{3 \mathrm{a}}
\end{gathered}
$$

C
yl(phenylethynyl)phosphine acting as a bridging ligand ($\mu-\mathrm{P}: \eta^{2}$) between two $\mathrm{Pt}(\mathrm{II})$ centers. The formation of these derivatives is rather surprising since the isomeric dinuclear doubly bridging chloride complexes $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ $\left.\mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{M}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]$ would have been expected. Interestingly, we observed that these complexes D, which are sparingly soluble in common organic solvents, dissolve in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, yielding a mixture of the isomers \mathbf{D} along with the expected $\mathrm{M}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}$ derivatives. This fact suggests that in solution the migration of the Pt$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ unit around the cis- $\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}$ fragment $\left[\mu-\mathrm{Cl}, \kappa(\mathrm{P}): \eta^{2}\right] \rightarrow(\mu-\mathrm{Cl})_{2}$ probably has a small energetic cost and that steric effects involving the two mutually cis bulky $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}$ groups should account in part for the $\mu-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}$ bridging preference in the solid phase.

On the other hand, the ability of alkynyl ligands to bind several metal centers through σ and π bonds is now firmly established. ${ }^{5}$ In particular, we have recently found that either neutral or anionic alkynylplatinum substrates $\left[L_{n} M(C \equiv C R)_{2}\right]^{n-}(n=0, L=$ phosphine, COD; $\mathrm{n}=2, \mathrm{~L}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{C} \equiv \mathrm{CR}$) react with Lewis-acidic metal complexes yielding homo and hetero- di- and

[^2]trinuclear compounds stabilized with double alkynyl bridges, $\mathrm{Pt}(\mu-\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{M} .{ }^{5 \mathrm{a}, 6}$

In this paper, we report on the synthesis of neutral cis-bis(alkynyl)bis((diphenylphosphino)alkyne)platinum(II) complexes cis-[Pt(C $\left.\equiv \mathrm{CR})_{2} \mathrm{~L}_{2}\right] \quad\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Bu}^{\mathrm{t}} ; \mathrm{L}=\right.$ $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}, \mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$) and describe their reactivity toward cis- $\left.\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \text { (thf) }\right)_{2}\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ in either a 1:1 or 1:2 molar ratio. The syntheses of both di- and trinuclear complexes and the solid-state structures of $\left[\left\{\left(\mathrm{Bu} \mathrm{L}^{\mathrm{t}} \equiv \mathrm{CPh}_{2} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$, 10, an unusual triplatinum $\left[\left\{\mathrm{Pt}\left(\mu-\kappa(\mathrm{P}): \eta^{2}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\left(\mu-\eta^{1}\right.\right.\right.$: $\left.\left.\left.\eta^{2}-\mathrm{C} \equiv \mathrm{CBu}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$, 15A, and an unprecedented triangular trimetallic bicapped $\left[\left\{\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}\right)_{2}{ }_{2} \mathrm{Pt}\left(\mu_{3}-\right.\right.\right.$ $\left.\left.\left.\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$ complex, 16B, are presented.

Results and Discussion

Syntheses of cis-[Pt(C $\left.\equiv \mathbf{C R})_{2} L_{2}\right]$ Complexes. A series of stable mononuclear σ-alkynyl/P-coordinated (diphenylphosphino)alkyne complexes cis-[$\left.\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{~L}_{2}\right]$ ($\mathrm{R}=\mathrm{Ph}$ or $\mathrm{Bu}^{\mathrm{t}} ; \mathrm{L}=\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\left(\mathrm{L}^{1}\right), \mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\left(\mathrm{L}^{2}\right)$; 1-4) are easily prepared in high yield by displacement of the weakly coordinating COD ligand from [Pt$\left.(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right.$) derivatives by the appropriate diphenylalkynylphosphine ligands (eq 1). They are isolated as white solids, and their spectroscopic data (Tables 1 and 2) unequivocally confirm the P coordination mode of the difunctional $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}$
(6) (a) Forniés, J.; Gómez-Saso, M. A.; Lalinde, E.; Martínez, F.; M oreno, M. T. Organometallics 1992, 11, 2873. (b) Forniés, J.; Lalinde, E.; Martín, A.; Moreno, M. T. J . Chem. Soc., Dalton Trans. 1994, 135. (c) Berenguer, J . R.; Forniés, J .; Lalinde, E.; Martínez, F. J . Organomet. Chem. 1994, 470, C15. (d) Berenguer, J. R.; Forniés, J.; Lalinde, E.; Martínez, F. J. Chem. Soc., Chem. Commun. 1995, 1227. (e) Forniés, J.; Lalinde, E.; Martín, A.; M oreno, M. T. J . Organomet. Chem. 1995, 490, 179.
Table 1. Elemental Analyses, Yield, Relevant IR Absorption and Mass Spectral Data for the Complexesa

compound	analysis (\%) ${ }^{\text {b }}$		yield (\%)	$\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$		mass spectra $\mathrm{m} / \mathrm{z}^{\mathrm{d}}$
	C	H		$\nu(\mathrm{C} \equiv \mathrm{C})$	$\nu\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{X}$-sen $\mathrm{s}^{\text {c }}$	
$\mathbf{1}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{~L}^{1}\right)_{2}\right]$	68.82 (69.34)	4.20 (4.16)	82	2173 (vs) 2124(m)		1155 ([M + PPh $\left.]^{+}, 19\right), 970\left([M]^{+}, 15\right), 868$ ([M - C $\left.=C P h\right]^{+}$, 14), 767 ($\left.\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 100\right)$, 377 ([Pt(PPh $\left.)]^{+}-2,42\right)$
$2\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\left(\mathrm{~L}^{1}\right)_{2}\right]$	66.52 (67.16)	5.15 (5.20)	78	2178 (vs)		930 ($[\mathrm{M}]^{+}, 25$), 848 ($\left[\mathrm{M}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right]^{+}, 12$), 767 $\left[\left(\operatorname{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 100\right), 378\left(\left[\operatorname{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}-1,22\right)$
$\mathbf{3}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{~L}^{2}\right)_{2}\right]$	66.72 (67.16)	4.91 (5.20)	92	$\begin{aligned} & 2203(\mathrm{w}), 2162(\mathrm{~m}), \\ & 2117(\mathrm{~m}) \end{aligned}$		930 ($[\mathrm{M}]^{+}, 25$), 828 ($[\mathrm{M}-\mathrm{C} \equiv \mathrm{CPh}]^{+}, 8$), 727 ($\left.\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]^{+}, 100\right), 379\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}, 39\right)$
$4\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\left(\mathrm{~L}^{2}\right)_{2}\right]$	64.17 (64.78)	6.22 (6.34)	94	$\begin{aligned} & 2208(\mathrm{~m}), 2167(\mathrm{~s}), \\ & 2131(\mathrm{vw}) \end{aligned}$		890 ($[\mathrm{M}]^{+}, 10$), 808 ($\left[\mathrm{M}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right]^{+}, 9$), 727 ($\left.\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]^{+}, 100\right), 379\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}, 22\right)$
$5\left[\left\{L^{1}{ }_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\} \operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	53.92 (54.48)	2.88 (2.69)	51	2175 (vs)	801(vs), 791 (s)	1499 ([M] ${ }^{+}, 8$), $1332\left(\left[M-C_{6} \mathrm{~F}_{5}\right]^{+}, 8\right), 1296\left([\mathrm{M}-2 \mathrm{C} \equiv \mathrm{CPh}]^{+}\right.$ 11), 767 ($\left.\left(\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 29\right)$
$6\left[\left\{\mathrm{~L}^{1} 2 \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	57.78 (58.19)	2.95 (2.87)	57	2178 (vs), 2068 (w)	789 (m), 779 (m)	$973\left(\left[\mathrm{PtPd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}(\mathrm{C} \equiv \mathrm{CPh})\right]^{+}, 20\right)$, 873 ($\left.\left[\mathrm{PtPd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 75\right)$, 767 ($\left.\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 40\right)$
$7\left[\left\{\mathrm{~L}^{1}{ }_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	52.70 (52.68)	3.82 (3.31)	85	2178 (vs), 2040 (vw)	801 (vs), 788 (s)	$\begin{aligned} & 1458\left([\mathrm{M}]^{+}, 15\right), 1296\left(\left[\mathrm{PP}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{+}, 30\right), \\ & 1129\left(\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{+}, 54\right),\right. \\ & 1028\left(\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\left(\mathrm{PPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{+}, 80\right), \\ & 767\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}\right)_{2}\right]^{+}, 65\right), 377\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}-2,65\right) \end{aligned}$
$8\left[\left\{\mathrm{~L}^{1} 2 \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	55.70 (56.09)	4.02 (3.53)	93	$\begin{aligned} & 2179 \text { (vs), } 2061 \text { (w), } \\ & 2044 \text { (w) } \end{aligned}$	788 (s), 775 (s)	$1372\left([\mathrm{M}]^{+}, 5\right), 874\left(\left[\operatorname{PtPd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 100\right)$, $767\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 20\right)$
$9\left[\left\{L^{2} 2 P t\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\} \operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	52.13 (52.68)	3.68 (3.31)	65	$\begin{aligned} & 2200(\mathrm{~m}, \mathrm{br}), 2172 \text { (s), } \\ & 2159(\mathrm{~s}) \end{aligned}$	804 (s), 793 (s)	$1458\left([\mathrm{M}]^{+}, 5\right), 1089\left(\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{+}, 50\right)$, $\left.727\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]^{+}, 86\right), 379\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}, 80\right)$
$\mathbf{1 0}\left[\left\{\mathrm{L}^{2}{ }_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	53.50 (53.33)	3.66 (3.35)	70	2212 (s), 2169 (s)	792 (s), 779 (s)	$1371\left([\mathrm{M}]^{+}, 15\right), 834\left(\left[\mathrm{PtPd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]^{+}, 100\right)$, 767 ($\left.\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 50\right), 379\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}, 43\right)$
$11\left[\left\{\mathrm{~L}^{2}{ }_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	50.63 (53.78)	3.44 (3.26)	68	2210 (s), 2168 (s)	e	$1419\left([\mathrm{M}]^{+}, 3\right), 727\left(\left[\operatorname{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]^{+}, 100\right)$, 379 ([Pt $\left.\left.\left(\mathrm{PPh}_{2}\right)\right]^{+}, 54\right)$
$12\left[\left\{L^{2}{ }_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBut}\right)_{2}\right\} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	53.66 (54.17)	4.01 (4.24)	51	$\begin{aligned} & 2210(\mathrm{~m}), 2170(\mathrm{~s}), \\ & 2062(\mathrm{w}), 2041(\mathrm{w}) \end{aligned}$	780 (s), 775 (sh)	1331 ([M] $\left.{ }^{+}, 3\right), 832\left(\left[\operatorname{PtPd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]^{+}, 51\right)$, 727 ($\left.\left(\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]^{+}, 32\right), 379\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}, 23\right)$
14B $\left.\left[\left\{\mathrm{L}^{1}{ }_{2} \mathrm{Pt}\left(\mu_{3}-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right)\right\}\left\{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$	51.02 (51.91)	1.69 (2.18)	70	$\begin{aligned} & 2179(\mathrm{~s}), 2151(\mathrm{w}), \\ & 1951(\mathrm{w}) \end{aligned}$	794 (s), 780 (s)	$973\left(\left[\mathrm{PtPd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}(\mathrm{C} \equiv \mathrm{CPh})^{+}, 15\right)\right.$, $872\left(\left[\operatorname{PtPd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 100\right)$, $\left.767\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{+}, 48\right)$
15A [\{cis-Pt $\left.\left.\left(\mu-\kappa(\mathrm{P}):-\eta^{2}-\mathrm{L}^{1}\right)_{2}\left(\mu-\eta^{1}: \eta^{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$	46.45 (45.91)	2.35 (2.43)	86	$\begin{aligned} & 2064(\mathrm{~m}), 2028(\mathrm{~m}), \\ & 1980(\mathrm{~m}) \end{aligned}$	803 (vs), 792 (s)	1458 ($\left.[7]^{+}, 7\right), 1128\left(\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{+}, 33\right)$, $727\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]^{+}, 30\right), 377\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}-2,52\right)$
16B $\left[\left\{\mathrm{L}^{2}{ }_{2} \mathrm{Pt}\left(\mu_{3}-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$	46.64 (45.91)	2.03 (2.43)	45	$\begin{aligned} & 2210(\mathrm{w}), 2169(\mathrm{~m}), \\ & 1883(\mathrm{w}), 1870(\mathrm{sh}) \end{aligned}$	804 (vs), 798 (s)	
17B $\left.\left[\left\{\mathrm{L}^{2}{ }_{2} \mathrm{Pt}\left(\mu_{3}-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right)\right\}\left\{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$	49.92 (50.41)	2.31 (2.67)	40	$\begin{aligned} & 2210 \text { (s), } 2169 \text { (s), } \\ & 1951 \text { (d) } \end{aligned}$	792 (s), 780 (s)	$\begin{aligned} & 832\left(\left[\mathrm{PtPd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBut}\right)_{2}\right]^{+}-1,58\right), \\ & 727\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}\right)_{2}\right]^{+}, 42\right), 379\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}, 100\right) \end{aligned}$
18A [\{cis-Pt $\left.\left.\left(\mu-\kappa(\mathrm{P}):-\eta^{2}-\mathrm{L}^{2}\right)_{2}\left(\mu-\eta^{1}: \eta^{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$	43.85 (44.38)	2.52 (2.90)	57	2017 (m), 1991 (sh)	802 (vs), 790 (s)	$1417\left([11-2]^{+}, 5\right), 1089\left(\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{+}\right.$, 53), $1008\left(\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)\left(\mathrm{PPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{+}, 27\right)$, 727 ($\left.\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]^{+}, 100\right), 379\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\right]^{+}, 100\right)$

Table 2. ${ }^{19} \mathrm{~F}$, ${ }^{31} \mathrm{P}$, and ${ }^{1} \mathrm{H}$ NMR Data ${ }^{\text {a }}$ for the Complexes

compound	T ${ }^{\text {a }}$	${ }^{19} \mathrm{~F}$			${ }^{31} \mathrm{P}$		${ }^{1} \mathrm{H}$	
		$\mathrm{F}_{0}{ }^{\text {b }}$	F_{p}	F_{m}	$\delta(\mathrm{P})$	${ }^{1}$ J ${ }^{195 p t-31 p}$	$\delta(\mathrm{Ph})$	$\delta\left(\mathrm{Bu}^{\mathrm{t}}\right)$
1					-5.87	2343	$\begin{gathered} 7.87(\mathrm{~m}, 8 \mathrm{H}) ; 7.30(\mathrm{~m}, 12 \mathrm{H}) ; 7.17(\mathrm{~m}, \\ 6 \mathrm{H}) ; 6.99(\mathrm{~m}, 8 \mathrm{H}) ; 6.89(\mathrm{~m}, 6 \mathrm{H}) \end{gathered}$	
2					-6.13	2311	$\begin{aligned} & 7.83(\mathrm{~m}, 10 \mathrm{H}) ; 7.30(\mathrm{~m}) ; 7.15(\mathrm{~m}) \text {; } \\ & 6.98(\mathrm{~m}, 20 \mathrm{H}) \end{aligned}$	0.90 (s, 18H)
3					-7.90	2360	$\begin{aligned} & 7.80(\mathrm{~m}, 8 \mathrm{H}) ; 7.33(\mathrm{~m}) ; 7.00(\mathrm{~m}) ; \\ & 6.88(\mathrm{~m}, 22 \mathrm{H}) \end{aligned}$	0.97 (s, 18H)
4					-7.76	2335	7.76 (m, 10H); 7.31 (m, 20H)	$\begin{gathered} 0.97(\mathrm{~s}, 18 \mathrm{H}) \\ 0.88(\mathrm{~s}, 18 \mathrm{H}) \end{gathered}$
5	20	$\begin{aligned} & -117.3 \text { (s) [406], }-116.5 \\ & (\mathrm{~s}, \mathrm{br})[\sim 310] \end{aligned}$	-164.4 (t)	-166.4 (m), -165.1 (s, br)	-10.40	2679	$\begin{aligned} & 7.90(\mathrm{~m}, 8 \mathrm{H}) ; 7.37(\mathrm{~m}, 12 \mathrm{H}) ; 7.21 \\ & (\mathrm{~m}, 8 \mathrm{H}) ; 7.03(\mathrm{~m}, 8 \mathrm{H}) ; 6.86(\mathrm{~d}, 4 \mathrm{H}) \end{aligned}$	
	-50	-118.3 (s, br) [461]	-163.2 (t)	-165.9 (s, br)				
$6{ }^{\text {c }}$	20	-114.7 (d)	-163.3 (t)	-165.5 (m)	-8.53	2644	$\begin{aligned} & 7.89(\mathrm{~m}, 8 \mathrm{H}) ; 7.36(\mathrm{~m}, 12 \mathrm{H}) \text {; } \\ & 7.19(\mathrm{~m}, 8 \mathrm{H}) ; \\ & 7.02(\mathrm{~m}, 8 \mathrm{H}) ; 6.70(\mathrm{~d}, 4 \mathrm{H}) \end{aligned}$	
7		$\begin{aligned} & -114.8(\mathrm{~m})[393], \\ & -116.3(\mathrm{~s})[458] \end{aligned}$	-164.7 (t)	-165.9 (m, br), -166.5 (m)	-10.56	2674	$\begin{aligned} & 7.85(\mathrm{~m}, 8 \mathrm{H}) ; 7.33(\mathrm{~m}, 12 \mathrm{H}) ; \\ & 7.18(\mathrm{~m}, 6 \mathrm{H}) ; 7.00(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$	0.78 (s, 18H)
8		-111.4 (d), -112.2 (m)	-162.9 (t)	-164.9 (m), -165.2 (m)	-8.90	2661	$\begin{aligned} & 7.86(\mathrm{~m}, 8 \mathrm{H}) ; 7.33(\mathrm{~m}, 12 \mathrm{H}) ; \\ & 7.20(\mathrm{~m}, 6 \mathrm{H}) ; 7.01(\mathrm{~d}, 4 \mathrm{H}) \end{aligned}$	0.78 (s, 18H)
9	20	-117.0 (d) [410]	-164.3 (t)	-166.2 (m)	-12.79	2692	$\begin{aligned} & 7.84(\mathrm{~m}, 8 \mathrm{H}) ; 7.42(\mathrm{~m}, 12 \mathrm{H}) ; \\ & 7.15(\mathrm{~m}, 2 \mathrm{H}) ; 7.03(\mathrm{~m}, 4 \mathrm{H}) ; \\ & 6.83(\mathrm{~d}, 4 \mathrm{H}) \end{aligned}$	1.03 (s, 18H)
	-50	-117.0 (br), -118.0 (br)	-163.2 (t)	-165.3 (br), -165.9 (br)				
10°	20	-114.3 (d)	-163.1 (t)	-165.3 (m)	-10.78	2656	$\begin{aligned} & 7.81(\mathrm{~m}, 8 \mathrm{H}) ; 7.40(\mathrm{~m}, 12 \mathrm{H}) ; 7.13 \\ & (\mathrm{~m}, 2 \mathrm{H}) ; 6.99(\mathrm{~m}, 4 \mathrm{H}) ; 6.66(\mathrm{~d}, 4 \mathrm{H}) \end{aligned}$	1.03 (s, 18H)
11		$\begin{aligned} & -114.7 \text { (s) [402], } \\ & -115.8 \text { (d) [442] } \end{aligned}$	-164.7 (t)	-165.8 (s), -166.2 (s)	-13.06	2689	7.78 (m, 8H); $7.38(\mathrm{~s}, 12 \mathrm{H})$	$\begin{gathered} 0.99(\mathrm{~s}, 18 \mathrm{H}) \\ 0.76(\mathrm{~s}, 18 \mathrm{H}) \end{gathered}$
12		-111.1 (d), -112.3 (m)	-163.2 (t)	-165.2 (m)	-10.90	2674	7.77 (s, br, 8H); 7.36 (s, br, 12H)	$\begin{gathered} 1.00(\mathrm{~s}, 18 \mathrm{H}) \\ 0.76(\mathrm{~s}, 18 \mathrm{H}) \end{gathered}$
$14 B^{\text {d }}$	20	-113.1 (br)	-160.5 (t)	$-164.0(\mathrm{~m})$	-14.10	2891	$\begin{aligned} & 7.97(\mathrm{~m}, 6 \mathrm{H}) ; 7.27(\mathrm{~s}, 24 \mathrm{H}) ; \\ & 6.93(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	
	-50	-112.6 (s, br), -114.1 (d)	-159.9 (t)	-162.8 (s), -164.6 (m)				
$15 A^{\text {d }}$	20 -50	$\begin{aligned} & -114.6 \text { (d) }[367],-115.3(\mathrm{~s}, \mathrm{br}) \\ & \quad(-116.8)(\mathrm{br}, \Delta v \approx 515) \\ & -114.8(\mathrm{md})[384],-115.5(\mathrm{~m}),-116.3 \\ & (\mathrm{~m})[\sim 274],-118.3(\mathrm{dm})[347] \end{aligned}$	$\begin{aligned} & -161.3(\mathrm{t}),-161.5(\mathrm{t}) \\ & -160.75(\mathrm{t}),-160.9(\mathrm{t}) \end{aligned}$	$\begin{aligned} & -163.5(\mathrm{~m}, 1 \mathrm{~F}),-164.3 \\ & (\mathrm{~m}, 1 \mathrm{~F}),-164.1(\mathrm{br}, 2 \mathrm{~F}) \\ & -162.7\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right),-163.2 \\ & \left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{m}}\right),-163.8\left(\mathrm{~m}, 4 \mathrm{~F}_{\mathrm{m}}\right) \end{aligned}$	-0.92	2488	$\begin{aligned} & 7.91(\mathrm{~m}, 4 \mathrm{H}) ; 7.53(\mathrm{~m}, 12 \mathrm{H}) ; \\ & 7.33-7.18(\mathrm{~m}, 12 \mathrm{H}) ; 7.00(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$	0.9 (s, 18H)
$16 B^{\text {d }}$	20 50	$-116.1 \text { (br) }$	-161.7 (t)	$-165.0(\mathrm{~s}, \mathrm{br})$	-20.55	3008	$\begin{aligned} & 7.96(\mathrm{~m}, 6 \mathrm{H}) ; 7.43(\mathrm{~m}, 12 \mathrm{H}) ; 7.15 \\ & (\mathrm{~m}, 4 \mathrm{H}) ; 6.91(\mathrm{~m}, 4 \mathrm{H}) ; 6.82(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$	1.14 (s, 18H)
	-50 20	$-115.1(\mathrm{~s}), \mathrm{e}-118.2$ (d) $-113.1(\mathrm{br})$	-161.0 -160.7 (t)	$-163.9(\mathrm{~m}),-165.1(\mathrm{~m})$				
$17 B^{\text {d }}$	20	-113.1 (br)	-160.7 (t)	$-164.0(\mathrm{~m})$	-14.80	2910	$\begin{aligned} & 7.92(\mathrm{~m}, 2 \mathrm{H}) ; 7.39(\mathrm{~m}, 6 \mathrm{H}) ; \\ & 6.93(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	1.1 (s, 18H)
	-50	-112.7 (s, br), -114.0 (d)	-160.0 (t)	-162.9 (s), -164.1 (m)				
18A	20	-115.1 (br), ${ }^{\text {e }}-116.1$ (br)	-161.1 (t), -161.7 (t)	-163.9 (br), -164.4 (br)	-1.96	2501	$\begin{aligned} & 7.87(\mathrm{~m}, 4 \mathrm{H}) ; 7.52(\mathrm{~m}, 6 \mathrm{H}) ; \\ & 7.36(\mathrm{~m}, 6 \mathrm{H}) ; 7.06(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$	$\begin{gathered} 1.16(\mathrm{~s}, 18 \mathrm{H}), \\ 0.94(\mathrm{~s}, 18 \mathrm{H}) \end{gathered}$
	-50	$\begin{aligned} & -115.1\left(m, 4 F_{0}\right),-116.1 \\ & \left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{o}}\right),-117.7\left(\mathrm{~m}, 2 \mathrm{~F}_{\mathrm{o}}\right) \end{aligned}$	$\begin{aligned} & -160.3^{f}\left(b r, 2 F_{p}\right), \\ & -161.3^{f}\left(b r, 2 F_{p}\right) \end{aligned}$	$\begin{aligned} & -162.8\left(\mathrm{~m}, \mathrm{br}, 4 \mathrm{~F}_{\mathrm{m}}\right), \\ & -163.8\left(\mathrm{~m}, \mathrm{br}, 4 \mathrm{~F}_{\mathrm{m}}\right) \end{aligned}$				

$\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}+2 \mathrm{~L} \longrightarrow \operatorname{clsPt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{~L}_{2}$
$\mathrm{R}=\mathrm{Ph}, \mathrm{Bu}^{\mathrm{t}}$

R	L
Ph	$\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh} 1$
$\mathrm{Bu}^{\text {t }}$	$\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh} 2$
Ph	$\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CBu}^{\text {a }}$
$B u^{t}$	$\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CBu}^{\text {t }} 4$

ligands: (i) the presence of strong absorptions (one for $\mathbf{1}$ and $\mathbf{2}$ or two for $\mathbf{3}$ and 4) in the 2167-2208 cm^{-1} region due to the $\nu(\mathrm{C} \equiv \mathrm{C})$ of the phosphinoal kyne ligands shows that these groups are acting as P -donors. Complexes 1, 3, and 4 display additional absorptions of medium intensity in the $2117-2131 \mathrm{~cm}^{-1}$ region attributed to the $v(\mathrm{C} \equiv \mathrm{C})$ of terminal alkynyl ligands. (ii) The presence of a singlet in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\delta-5.87$, -7.90), especially the magnitude of ${ }^{1}{ }^{195 p t-31 p}$ (23112360 Hz) which is comparable to that reported for mononuclear platinum complexes having a tertiary phosphine trans to a terminal alkynide group, is consistent with a dis configuration of the ligands about platinum. ${ }^{6,7}$ In the ${ }^{13} \mathrm{C}$ NMR spectra, the acetylenic carbons (see Table 3 and Experimental Section for details) are found in the typical chemical shift ranges ($\mathrm{C}_{\alpha} / \mathrm{C}_{\beta}, \mathrm{Pt}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}-\mathrm{R}$ 84.7-102.3/108.8-117 ppm; $\left.\mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}-\mathrm{R} 70.7 / 118.3 \mathrm{ppm}\right)$. The C_{α} signals are observed as a first-order doublet of doublets ($\mathrm{Pt}-\mathrm{C}_{\alpha}$) or as a doublet ($\mathrm{P}-\mathrm{C}_{\alpha}$, dd for $\mathbf{1}$ and $\mathbf{2}$), while the alkyne C_{β} resonances exhibit the typical A part of a secondorder AXX^{\prime} system. The two alkynyl ($\mathrm{Pt}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{R}$) carbon signals could be easily identified due to their significantly different coupling constants to the ${ }^{195} \mathrm{Pt}$ nuclei. The magnitude of the coupling constants ${ }^{13} \mathrm{C}$ ${ }^{195 P t}\left({ }^{1} \mathrm{~J} \mathrm{c-pt}=1135-1150 \mathrm{~Hz},{ }^{2} \mathrm{~J} \mathrm{c}-\mathrm{Pt}=309-314 \mathrm{~Hz}\right.$) are comparable to those observed in similar neutral bis(alkynyl) complexes of the type $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{~L}_{2}\right](\mathrm{L}=$ phosphine) ${ }^{8}$ but, as expected, are notably larger than those observed by us in the anionic derivatives $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{X}_{2}\right]^{2-}\left(\mathrm{X}=\mathrm{C} \equiv \mathrm{CR}\right.$ or $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)(924-1048) / 250-$ $293 \mathrm{~Hz}^{1} \mathrm{~J} \mathrm{c}-\mathrm{pt} \mathrm{I}^{2} \mathrm{~J} \mathrm{c}-\mathrm{Pt}$). ${ }^{9}$ Although all complexes (1-4) exhibit signals due to the molecular peaks in the FAB$(+)$ mass spectra, the most intense peaks correspond to the loss of the two alkynyl groups [PtL 2$]^{+}$(100), and the peaks assignable to the loss of one alkynyl ligand [Pt$\left.(\mathrm{C} \equiv \mathrm{CR}) \mathrm{L}_{2}\right]^{+}$are also present.

Syntheses of Dinuclear Complexes. In order to develop the synthetic potential of these σ-bonded species cis- $\left[\operatorname{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{~L}_{2}\right]$, we have studied their reactivity toward cis-[M($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$. As shown in eq 2, treatment of cis-[$\left.\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{~L}_{2}\right]$ with 1 equiv of cis$\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature affords the homo- or heterobinuclear derivatives $\left[\left\{\mathrm{L}_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CR}\right)_{2}\right\} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ (5-12) in good yield. These complexes, isolated as white microcrystalline solids, are moderately air-stable in the sol id state

[^3]Table 3. Relevant ${ }^{13} \mathrm{C}$ NMR Spectral Data of Several Complexes ${ }^{\text {a }}$

	$\mathrm{Pt}-\mathrm{C}_{\alpha} \equiv$	$\equiv \mathrm{C}_{\beta}-\mathrm{R}$	$\mathrm{P}-\mathrm{C}_{\alpha} \equiv$	$\equiv \mathrm{C}_{\beta}-\mathrm{R}$
$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]$				
1	101.3 [1150]	109.3 (Ph) [313.9]	81 (101.6)	107.9 (Ph)
2	84.7 [1145]	117 (But) [309]	81.8 (98.2)	107.2 (Ph)
3	102.3	108.8 (Ph) [${ }^{\text {310] }}$	70.7 (105.5)	118.3 (But)
4	85.4 [1135]	116.4 (But) [307]	71.5 (101.7)	117.5 (But)
$\left.\left[\left\{\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CR}\right)_{2}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$				
5	90.5	103.8 (Ph)	78.7 (112)	109.3 (Ph)
7	83.2	113.9 (Bu')	79.5 (109)	108.6 (Ph)
9	91	103.2 (Ph)	68.7 (115)	120.0 (Bu^{t})
11	84.1	113.3 (But)	69.4 (112)	119.2 (But)
[\{cis-Pt $\left.\left(u-\kappa(\mathrm{P}): \eta^{2}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\left(u-\eta^{1}: \eta^{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\}\left\{\mathrm{Pt}^{\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]}\right.$				
15A	87.7	124.6 (But)	78.3 (77.8)	109.5 (Ph)
$\left.\left[\left\{\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBut}\right)_{2} \mathrm{Pt}\left(\mu_{3}-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$				
16B			67.5 (126.7)	121.4
[\{cis-Pt $\left.\left.\left(\mu-\kappa(\mathrm{P}): \eta^{2}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\left(\mu-\eta^{1}: \eta^{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$				
18A	87.18	$\mathrm{C}(\mathrm{Bu})^{\text {) }}$	70.5 (97.1)	113.2 (Bu^{t})

${ }^{\text {a }} \mathrm{R}=\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}, \mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$. ${ }^{\mathrm{b}}$ Numbers in brackets are ${ }^{1} \mathrm{~J} \mathrm{C}-\mathrm{Pt}$ or ${ }^{3} \mathrm{~J} \mathrm{c}-\mathrm{Pt}$; numbers in parentheses are ${ }^{1} \mathrm{~J} \mathrm{c}-\mathrm{p} .{ }^{\mathrm{C}} \mathrm{A}$ badly resolved signal at $108.9(\mathrm{~m})$ can be tentatively assigned to this C_{β} carbon.

R	L	M
Ph	$\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}$	$\mathrm{Pt} \mathrm{5} ,\mathrm{Pd} \mathbf{6}$
Ph	$\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CBu}$	$\mathrm{Pt} 7, \mathrm{Pd} \mathbf{8}$
Bu^{t}	$\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}$	$\mathrm{Pt} 9, \mathrm{Pd} \mathbf{1 0}$
Bu^{t}	$\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CBu}^{\mathrm{t}}$	$\mathrm{Pt} 11, \mathrm{Pd} \mathbf{1 2}$

but in solution they decompose in a few hours. The structural characterization of these dinuclear compounds is based on microanalysis, positive ion FAB mass spectrometry, and spectroscopic methods (IR (Table 1) and ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ NMR (Table 2)). In agreement with a dimeric formulation, the $\mathrm{FAB}(+)$ mass spectra show the expected peak corresponding to the molecular ion in most of the complexes (Table 1).
The presence of terminal phosphinoalkyne ligands is inferred from the IR spectra. Thus, all complexes show $\nu(\mathrm{C} \equiv \mathrm{C})$ absorptions assignable to the phosphinoalkyne ligands which lies approximately in the same region as in the corresponding mononuclear derivatives. As in the precursors, complexes $\mathbf{5 - 8}\left(\mathrm{L}=\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)$ only exhibit one strong $\nu(\mathrm{C} \equiv \mathrm{C})$ absorption (range 2179-2175 cm^{-1}), while in the $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBut}^{\mathrm{t}}$ complexes (9-12), two absorptions in the range $2212-2168 \mathrm{~cm}^{-1}$ are seen. One is assigned to $\nu(\mathrm{C} \equiv \mathrm{C})$, and the other one is assigned to a Fermi resonance observed in substituted tert-butylalkynes. ${ }^{10}$ Moreover, in concordance with the η^{2} coordination of the alkynyl entities, some of the compounds (6-8 and 12) al so show additional weak ($\mathrm{C} \equiv \mathrm{C}$)

[^4]

Figure 1. View of the molecular structure of $\left[\left\{\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{C} \equiv\right.\right.\right.$ $\left.\left.\left.\mathrm{CPh}_{2} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right], 10$.

Table 4. Selected Bond Lengths (\AA) and Angles (deg) for 10

$\mathrm{Pt}(1)-\mathrm{C}(21)$	$1.972(4)$	$\mathrm{Pt}(1)-\mathrm{C}(13)$	$1.983(4)$
$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.2639(10)$	$\mathrm{Pt}(1)-\mathrm{P}(2)$	$2.2783(11)$
$\mathrm{Pt}(1)-\mathrm{Pd}(1)$	$3.1582(11)$	$\mathrm{Pd}(1)-\mathrm{C}(1)$	$1.986(4)$
$\mathrm{Pd}(1)-\mathrm{C}(7)$	$2.003(3)$	$\mathrm{Pd}(1)-\mathrm{C}(21)$	$2.283(3)$
$\mathrm{Pd}(1)-\mathrm{C}(13)$	$2.314(3)$	$\mathrm{Pd}(1)-\mathrm{C}(22)$	$2.433(4)$
$\mathrm{Pd}(1)-\mathrm{C}(14)$	$2.456(4)$	$\mathrm{P}(1)-\mathrm{C}(59)$	$1.729(4)$
$\mathrm{P}(1)-\mathrm{C}(47)$	$1.796(4)$	$\mathrm{P}(1)-\mathrm{C}(53)$	$1.803(4)$
$\mathrm{P}(2)-\mathrm{C}(41)$	$1.735(4)$	$\mathrm{P}(2)-\mathrm{C}(29)$	$1.801(4)$
$\mathrm{P}(2)-\mathrm{C}(35)$	$1.813(4)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.205(5)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.210(5)$	$\mathrm{C}(41)-\mathrm{C}(42)$	$1.189(5)$
$\mathrm{C}(59)-\mathrm{C}(60)$	$1.177(5)$		

$\mathrm{C}(21)-\mathrm{Pt}(1)-\mathrm{C}(13)$	$81.87(14)$	$\mathrm{C}(21)-\mathrm{Pt}(1)-\mathrm{P}(1)$	$91.21(10)$
$\mathrm{C}(13)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$89.76(11)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$97.16(4)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{C}(7)$	$83.87(14)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{C}(21)$	$99.93(14)$
$\mathrm{C}(7)-\mathrm{Pd}(1)-\mathrm{C}(13)$	$104.58(13)$	$\mathrm{C}(21)-\mathrm{Pd}(1)-\mathrm{C}(13)$	$68.59(13)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{C}(22)$	$80.77(13)$	$\mathrm{C}(7)-\mathrm{Pd}(1)-\mathrm{C}(14)$	$83.05(13)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{Pt}(1)$	$175.8(3)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{Pd}(1)$	$82.0(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$166.2(4)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{Pt}(1)$	$175.7(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{Pd}(1)$	$82.1(2)$	$\mathrm{Pt}(1)-\mathrm{C}(21)-\mathrm{Pd}(1)$	$95.57(14)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$164.5(4)$	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{P}(2)$	$175.3(4)$
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	$177.6(5)$	$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{P}(1)$	$165.7(4)$

C(59)-C(60)-C(61) 176.3(4)
absorptions at lower frequencies (range 2068-2040 cm^{-1}, which is in keeping with the presence of bridging alkynyl ligands. Unfortunately, this expected absorption assignable to the $\operatorname{Pt}(\mu-\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{M}$ moiety is not observed in the rest of the complexes. So, in order to confirm the assignment made above, an X-ray diffraction study has been carried out on a single crystal of one of the complexes, 10. A drawing of the structure is presented in Figure 1, and selected bond distances (\AA) and angles (deg) are collected in Table 4. A relevant feature of this structure is the presence of a palladium atom coordi nated to two mutually cis- $\sigma \mathrm{C}_{6} \mathrm{~F}_{5}$ groups and stabilized by a chelating bis(alkynyl)platinum(II) fragment "cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]$ " through unusual η^{2}-al kynide interactions. In spite of the fact that the reactivity of alkynes toward palladium(II) complexes has been extensively explored, ${ }^{11}$ only a few complexes

[^5]
Scheme 2

containing an η^{2}-palladium(II)-alkyne moiety have been reported. ${ }^{6 c, 9,12}$ Thesetypes of complexes have been proposed as intermediates in the final formation of unusual molecules arising from insertion and/or polymerization processes at the $\operatorname{Pd}(I I)$ center. ${ }^{13}$ Due to the peculiar ability of bis(alkynyl)platinum substrates to stabilize unusual η^{2}-metal-alkyne interactions, we have previously isolated and reported the first two examples $\left[\left\{\text { cis-Pt }\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CSiMe}\right)_{2}\right\} \mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{-6 c}$ and $\left[\left\{\text { cis- }\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\} \mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{+9}$ containing structural information about an η^{2}-alkyne interaction to a cationic palladium center " $\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+"}$. Complex 10 represents a new example in which two $\mathrm{C} \equiv \mathrm{CPh}$ ligands are η^{2}-coordinated to an electrophilic neutral palladium(II) center of the " $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ " building block.

The palladium center is located in a slightly distorted square-planar environment formed by two $\eta^{2}-\mathrm{C} \equiv \mathrm{C}$ bonds ($\mathrm{C}(13)-\mathrm{C}(14), \mathrm{C}(21)-\mathrm{C}(22)$) and two $\sigma-\mathrm{C}_{6} \mathrm{~F}_{5}$ ligands, the dihedral angle between the planes Pd-$C(1)-C(7)$ and $P d(1)-M 1-M 2$ (M 1 and M 2 are the midpoints of $C(13) \equiv C(14)$ and $C(21) \equiv C(22))$ being only 6.6°. As found in the cation [\{cis- $\left(\mathrm{PPh}_{3}\right)_{2} \operatorname{Pt}(\mu-\eta)^{1}$: $\left.\left.\left.\eta^{2}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\} \mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{+}, 9$ the η^{2}-palladium alkynido linkages in $\mathbf{1 0}$ are asymmetric with the $\mathrm{Pd}-\mathrm{C}_{\alpha}$ distances approximately $0.15 \AA$ shorter than the corresponding $\mathrm{Pd}-\mathrm{C}_{\beta}(\mathrm{Pd}(1)-\mathrm{C}(13), \mathrm{Pd}(1)-\mathrm{C}(21) 2.314(3), 2.283(3) \AA$ versus $\mathrm{Pd}(1)-\mathrm{C}(14), \mathrm{Pd}(1)-\mathrm{C}(22) 2.456(4), 2.433(4) \AA$, respectively). This asymmetry, although less pronounced than that found in the cation [\{cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}-$ $\left.\left.\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\} \operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{+9}(\Delta \sim 0.2 \AA)$, contrasts with the symmetrical η^{2}-linkages found in the anion $\left[\left\{\text { cis- } \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)_{2}\right\} \mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{-6 c}$ and in the neutral dinuclear complex [\{(dppe)Pt $\left(\mu-\eta^{1}\right.$: $\left.\left.\eta^{2}-\mathrm{C} \equiv \mathrm{CR}\right)_{2}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$], ${ }^{6 \mathrm{a}}$ in which both alkynyl ligands of the neutral 3-platinapenta-1,4-diyne neutral fragment are also η^{2}-coordinated to a similar $\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ building block. The angles formed by the $\mathrm{C} \equiv \mathrm{C}$ vectors and the normal to the palladium coordination plane (Pd, $C(1), C(7), M 1$, and $M 2)$ are $48.6(2)^{\circ}$ for $C(13,14)$ and $46.7(2)^{\circ}$ for $\mathrm{C}(21,22)$. This structural feature clearly forces the Pd center to be located out of the 3-platina-1,4-diyne plane ($\mathrm{Pt}, \mathrm{C}(13$), $\mathrm{C}(14), \mathrm{C}(21), \mathrm{C}(22)$) by 1.309(2) \AA, resulting in a central bent dimetallacycle $\mathrm{PtC}_{4} \mathrm{Pd}$ core (the dihedral angle formed by the Pd and Pt coordination planes is $58.46(6)^{\circ}$). A similar structural feature (type I, Scheme 2) has been found in other
(12) (a) $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]$: Hosokawa, T.; M oritani, I.; Nishioka, S. Tetrahedron Lett. 1969, 3833. (b) cis-[Pd ($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{PhC} \equiv \mathrm{CPh})_{2}\right]$: Usón, R.; Forniés, J.; Tomás, M.; Menjón, B.; Welch, A. J . J. Organomet. Chem. 1986, 304, C24. (c) Recently, several palladium(II) complexes containing η^{1}-metallacarbyne ligands (including X-ray and theoretical studies) have been reported: (i) Engel, P. F.; Pfeffer, M.; Dedieu, A. Organometallics 1995, 14, 3423. (ii) Engel, P. F.; Pfeffer, M.; Fisher, J.; Dediu, A. J. Chem. Soc., Chem. Commun. 1991, 1275.
(13) (a) Ryabov, A. D.; van Eldik, R.; Le Borgne, G.; Pfeffer, M. Organometallics 1993, 12, 1386 and references therein. (b) Backvall, J .-E.; Nilson, Y. I. M.; Gatti, R. G. P. Organometallics 1995, 14, 4242 and references therein. (c) Zhn, G.; Lu, X. Organometallics 1995, 14, 4899.
dinuclear chelating [M$](\mu-\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{M}^{\prime} \mathrm{L}_{n}$ complexes containing $\mathrm{M}^{\prime} \mathrm{L}_{n}$ building blocks with square-planar environments at M^{\prime}. $\mathrm{Sa}^{-\mathrm{d}}$ However, this structural conformation (type I, Scheme 2) contrasts with that typically found in other well-known heterometallic tweezer-like complexes in which the M^{\prime} center is well embedded by bis(alkynyl)titanocene fragments displaying almost planar $\mathrm{TiC}_{4} \mathrm{M}^{\prime}$ cores (type II, Scheme 2). ${ }^{14}$ The factors responsible for the preferred in or out- η^{2} alkyne-M bonding interaction in this type of adduct are still poorly understood. For instance, the only reported examples in which a bis(alkynyl) platinum fragment forms tweezerlike adducts correspond to $\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)_{2}\right\}\right.$ $\left.M X_{2}\right]^{2-}\left(\mathrm{MX}_{2}=\mathrm{HgBr}_{2}{ }^{15}\right.$ and $\left.\mathrm{CoCl}_{2}{ }^{16}\right)$. In these anions, the preference of the chelated metal center for in-plane η^{2}-alkyne-M bonding interactions could be ascribed to their resulting tetrahedral environments with lower steric requirements. However, in the related trinuclear anion $\left[\left\{\left(\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBut}^{\mathrm{t}}\right)_{2}\right\}\left(\mathrm{CoCl}_{2}\right)_{2}\right]^{2-}\right.$, the η^{2}-al kyne cobalt bonding interactions take place out of the $\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C})_{2}$ entities ${ }^{16}$ and the bending of the central $\mathrm{PtC}_{4} \mathrm{Co}$ cores is accompanied by a significant decrease in the $\mathrm{Pt}-\mathrm{Co}$ distance ($0.44 \AA \AA$). It was suggested that the weak attraction between the basic platinum and acidic cobalt centers ($3.007 \AA$) appears to drive the distortion of the $\mathrm{PtC}_{4} \mathrm{Co}$ core from planarity and, hence, determines the final out-of-plane η^{2}-alkyne-cobalt interactions. In complex 10, the Pt…Pd distance is also rather long (3.1582(11) Å), excluding any metal - metal interaction.

As a consequence of the η^{2}-coordination of the two arms of the 3 -platina-1,4-diyne fragment cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2-}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}\right)_{2}\right)_{2}$ to the palladium atom $\mathrm{Pd}(1)$, the following structural features arise: (i) slight bending of the $\mathrm{Pt}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}-\mathrm{C}$ units from linearity (angles at C_{α} $175.8(3)^{\circ} 175.7(3)^{\circ}$ and at $\left.C_{\beta} 166.2(4)^{\circ} / 164.5(4)^{\circ}\right)$ which is comparable to those found in related systems ${ }^{6,9,14-16}$ and (ii) a slight decrease of the bite angle $\mathrm{C}(13)-\mathrm{Pt}$ -(1)-C(21) (81.87(14) ${ }^{\circ}$ with respect to the expected value of 90°. It should be noted that this decrease $\left(\sim 9^{\circ}\right)$ is slightly larger than those found in the tweezer-like derivatives $\left[\left\{\mathrm{Pt}^{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CSiMe}} \mathrm{B}_{2}\right\} \mathrm{MX}_{2}\right] \quad\left(\mathrm{MX}_{2}=\right.$ $\left.\mathrm{HgBr}_{2} 88.0(9)^{\circ},{ }^{15} \mathrm{CoCl}_{2} 86.5(9)^{\circ}{ }^{16}\right)$.
Apart from the above considerations, all other distances and angles in the organometallic platinum fragment cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]$ are within the expected ranges ${ }^{17}$ (see Table 4). In particular, the $\mathrm{C} \equiv \mathrm{C}$ bond lengths 1.189(5), 1.177(5) \AA and angles $165.7(4)^{\circ}$, 177.6(5) ${ }^{\circ}$ in the phosphinoal kyne ligands are those expected for noncoordinated phosphinoalkynes, ${ }^{17}$ although the entity $\mathrm{P}(1)-\mathrm{C}(59)-\mathrm{C}(60)\left(165.7(4)^{\circ}\right)$ is slightly more deviated from linearity, probably due to steric effects.
The relative orientation of the two $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}$ ligands is of interest. The $\mathrm{C}(41) \equiv \mathrm{C}(42)$ bond vector is
(14) (a) J anssen, M. D.; Köhler, K.; Herres, M.; Dedieu, A.; Smeets, W. J. J.; Spek, A. L.; Grove, D. M.; Lang, H.; van Koten, G. J. Am. Chem. Soc. 1996, 118, 4817 and references therein. (b) J anssen, M. D.; Herres, M.; Sepk, A. L.; Grove, D. M.; Lang, H.; Van Koten, G. J Chem. Soc., Chem. Commun. 1995, 925. (c) Lang, H.; Herres, M.; Imohof, W. J . Organomet. Chem. 1994, 464, 283. (d) Lang, H.; Blau, S.; Nuber, B.; Zsolnai, L. Organometallics 1995, 14, 3216 and references therein. (e) Lang, H.; Köhler, K.; Büchner, M. Chem. Ber. 1995, 128, 525.
(15) Berenguer, J. R.; Forniés, J.; Lalinde, E.; Martín, A.; Moreno, M. T. J . Chem. Soc., Dalton Trans. 1994, 3343.
(16) Ara, I.; Berenguer, J. R.; Forniés, J.; Lalinde, E. Inorg. Chim. Acta, in press.
(17) (a) Carty, A. J.; Taylor, N. J.; J ohnson, D. K. J. Am. Chem. Soc. 1979, 101, 5422. (b) J ohnson, D. K.; Rukachaisirikul, T.; Sun, Y.; Taylor, N. J.; Canty, A. J.; Carty, A. J . Inorg. Chem. 1993, 32, 5544.
oriented almost perpendicular to $\mathrm{C}(59) \equiv \mathrm{C}(60)\left(71.9(4)^{\circ}\right)$, but the linear alkynyl moieties do not cross one another. The triple bonds are rotated away from one another, and the separation between the two C_{α} carbon atoms is very large (3.355(5) \AA). Carty et al. have established a relationship between the facility of intramolecular coupling of uncoordinated alkyne triple bonds in phosphinoal kynes and the proximity between the α-carbon atoms of the proximal alkyne units. ${ }^{17 \mathrm{~b}}$ Thus, the dichloro complex cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]$ with the linear alkynyl moieties "crossed" and with a $\mathrm{C}_{\alpha}-\mathrm{C}_{\alpha}$ separation of 3.110 (10) \AA undergoes alkyne coupling under relatively mild conditions. However, our compound with the triple bonds rotated shows no evidence of coupling below its decomposition temperature.

The ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ NMR data for dinuclear complexes 5-12 are consistent with the solid-state structure of complex 10. Thus, ${ }^{1}$ H NMR spectra of tert-butyl-acetylide-bridged complexes ($\mathbf{7}, \mathbf{8}, \mathbf{1 1}$, and 12) show, besides multiplets due to the phenyl protons, a singlet at $0.78(\mathbf{7}, \mathbf{8})$ or $0.76(\mathbf{1 1}, \mathbf{1 2}) \mathrm{ppm}$ due to the equivalent But groups, which remain as singlets even at $-50^{\circ} \mathrm{C}$. In addition, complexes $\mathbf{1 1}$ and $\mathbf{1 2}$ show another singlet at 0.99 (11) or 1.00 (12) ppm attributed to the Bu^{t} groups on the terminal $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$ units, as in complexes 9 and $\mathbf{1 0}(\delta 1.03 \mathrm{ppm})$. The equivalent phosphorus atoms of the terminal phosphinoalkyne ligands in these dinuclear derivatives appear in the ${ }^{31}$ P NMR spectra at systematically lower frequencies (range from $\delta-8.53$ to -13.06) with respect to the values observed in the precursors ($\delta-5.87$ to -7.90). The magnitude of ${ }^{1} \mathrm{JPt-p}$ ($2644-2692 \mathrm{~Hz}$) is slightly larger than in the corresponding mononudear homol ogues with terminal $\mathrm{C} \equiv \mathrm{CR}$ groups ($2311-2360 \mathrm{~Hz}$), suggesting that the trans influence of a bridging alkynyl ligand is presumably smaller.
As is obvious from Figure 1, the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups in these dinuclear derivatives (5-12) are equivalent but the two halves of each $\mathrm{C}_{6} \mathrm{~F}_{5}$ ring are inequivalent. Accordingly, room temperature ${ }^{19}$ F NMR spectra of complexes with tert-butylacetylide bridging ligands ($\mathbf{7}$, 8, 11, and 12) di splay the expected five signals of equal intensity, thus indi cating a rigid structure on the NMR time scale. In contrast, the NMR spectra of complexes $5,6,9$, and 10 with phenylacetylide bridging ligands show only three signals of relative intensity $2: 1: 2$, evidencing that the two halves of each $\mathrm{C}_{6} \mathrm{~F}_{5}$ ring appear equivalent at room temperature and indicating that these complexes are not rigid in solution. By lowering the temperature ($-50{ }^{\circ} \mathrm{C}$), five distinct fluorine resonances are clearly resolved for the di platinum derivatives only ($\mathbf{5}, \mathbf{9}$). When the heterobinuclear derivatives $\left[\mathrm{L}_{2} \mathrm{Pt}(\mu-\mathrm{C} \equiv \mathrm{CPh}) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right] \mathbf{6}\left(\mathrm{L}=\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)$ and $\mathbf{1 0}$ ($\mathrm{L}=\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$) are cooled, their spectra remain unchanged indicating equivalence of the endo and exo o-F atoms (and m-F atoms as well) even at low temperature $\left(-50^{\circ} \mathrm{C}\right)$. This equivalence can be achieved by either of the two following processes: (i) free rotation of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups about the $\mathrm{M}-\mathrm{C}$ linkages or (ii) fast exchange of the $M\left(C_{6} F_{5}\right)_{2}$ unit below and above the 3-platina-1,4-diyne fragments $\mathrm{L}_{2} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}$. Although the first possibility has been previously noted as severely sterically hindered in squareplanar derivatives, ${ }^{18}$ it has been proposed in several systems ${ }^{19}$ and could be accessible via tricoordinate species through the cleavage
of one of the M - alkyne bonds. ${ }^{20}$ The second possibility, previously suggested by us in the related complexes $\left[\mathrm{L}_{2} \mathrm{Pt}(\mu-\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{3}\right.$, dppe, COD), ${ }^{6 \mathrm{a}}$ implies a formal inversion of the central $\mathrm{PtC}_{4} \mathrm{M}$ ($\mathrm{M}=$ Pd, Pt) cores. This inversion could take place via intermediate species with one or both alkynyl ligands symmetrically bridging the two metal centers. ${ }^{21}$ The results indicate that this process is less favorable for the tert-butylalkynide-bridged complexes than for phenyl compounds because of the lower total energy required by the phenyl complexes to reach the transition state which is stabilized by the phenyl π electrons. Notwithstanding, in these derivatives, exchange mechanisms that entail $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}$ participation cannot be excluded either.

The very low stability of the mixed Pt-Pd derivatives ($\mathbf{6}, \mathbf{8}, \mathbf{1 0}$, and 12) in solution prevented their characterization by ${ }^{13} \mathrm{C}$ NMR spectroscopy. This was, however, possible for the diplatinum 5, 7, 9, and 11 compounds (see Experimental Section and Table 3). The most noticeable observation is that upon η^{2}-coordination of the alkynyl ligands to the platinum atoms, the resonances of both C_{α} and C_{β} carbon atoms moves slightly upfield. A similar upfield shift of alkynyl carbon signals has been previously observed in the formation of dimeric $\left[\mathrm{X}_{2} \mathrm{Pt}(\mu-\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{-}\left(\mathrm{X}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{C} \equiv \mathrm{CR}\right)^{9}$ complexes containing alkynyl bridging ligands. It should be noted that this result contrasts with previous observations, showing that η^{2}-complexation of terminal alkynyl ligands to a second metal center results in a downfield shift of these signals. ${ }^{14 d, 22}$ On the other hand, although the alkyne carbon resonances of the phosphinoalkyne ligands are less affected in the formation of these dimeric complexes, the $\mathrm{P}-\mathrm{C}_{\alpha} \equiv$ carbon signals are also slightly shifted upfield while the $\equiv \mathrm{C}_{\beta}-\mathrm{R}$ signals move downfield. In addition, the values of the ${ }^{1} \mathrm{~J} p-\mathrm{C}_{\alpha}$ coupling constants are slightly larger in these complexes ($109-115 \mathrm{~Hz}$) than those observed in the precursors 1-4 ($98.2-105.5 \mathrm{~Hz}$) (see Table 3). It should be noted that in complexes 7 and 11, the signals due to the phenyl rings of the $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}$ ligands are observed to be magnetically inequivalent, probably because of the hindered rotation across the $\mathrm{Pt}-\mathrm{P}$ bonds.

Trinuclear Derivatives. In order to force the coordination of the P -bonded phosphinoalkyneligands, the reactions of the mononuclear complexes $\mathbf{1 - 4}$ with 2 equiv of cis-[$\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ (thf) $)_{2}$] $(\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ were also explored. The results, summarized in Scheme 3, clearly indicate that the course of the reactions and the final products strongly depend on the alkynyl substituents, both in the alkynido and phosphinoal kyne ligands and in the metal centers.

[^6]The tert-butylacetylide complexes cis-[$\left.\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2} \mathrm{~L}_{2}\right]$ ($\mathrm{L}=\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}(\mathbf{2}), \mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$ (4)) react with 2.2 equiv of cis- $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ to give the desired trinuclear derivatives 15A and 18A, respectively, in moderate yield (see Experimental Section). In these complexes (type A), the mononuclear precursors $(\mathbf{2}, 4)$ act as symmetrical bis(cis- $\left.\eta^{2}: \kappa(\mathrm{P}): \eta^{2}\right)$ chelating tetradentate ligands. Therefore, the complexed cis-Pt $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ units are linked to the central platinum atom through both a tert-butylalkynyl fragment ($\left.\mu-\eta^{2}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)$ and a diphenylalkynylphosphine bridging ligand $\left(\mu-\kappa(P): \eta^{2}\right)$, as established by an X-ray diffraction study on complex 15A (vide infra). NMR (${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$) monitoring of both reactions clearly indicates that the formation of complexes 15A and 18A takes place via the corresponding dinuclear derivatives 7 and 11, respectively. Initially (within seconds), the formation of 15A/7 and 18A/11 mixtures in ratios of 80:20 and $\sim 10: 90$, respectively, were observed (see Scheme 3). The gradual di sappearance of 7 and concomitant formation of 15A is clean and takes place completely in $\sim 1 \mathrm{~h}$. However, the evol ution of the reaction system $4 /$ cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ is more complicated due to the much slower formation of 18A and to its Iow stability in solution; it reverts to the dinudear derivative. The greatest amount of 18A in solution is reached after 3 h (18A/11 ratio $\approx 83: 11$), and with longer reaction times, the concentration of 18A decreases while that of $\mathbf{1 1}$ increases (a 55/45 ratio after 7 h). The formation of 15A and 18A through the corresponding dinuclear derivatives requires a reorganization of the bonded cis- $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ unit and a significant reorientation of both phosphinoalkyne groups. It seems likely that this latter process should be somewhat more difficult with the bulkier $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$ groups, thus explaining the observed slower reaction rate for complex 18A. Attempts to prepare the PtPd_{2} anal ogues of 15A and 18A failed. When 2 equiv of cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ $(\text { thf })_{2}$] is reacted with the mononuclear tert-butylalkynido derivatives 2 and 4 in dichloromethane, very dark brown solutions are formed from which only the dinuclear complexes 8 and 12, respectively, can be isolated. In the case of the reaction between 4 and cis$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { thf })_{2}\right]$, the NMR spectra in CDCl_{3} of the reaction mixture reveals that the dinuclear complex 12 is the only phosphorus-containing platinum species present in solution. The ${ }^{19} \mathrm{~F}$ NMR spectrum confirms the presence of excess cis- $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}$ and shows the formation of considerable amounts of decafluorobiphenyl $\left(\mathrm{C}_{6} \mathrm{~F}_{5}-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$. If the $\mathrm{C}_{6} \mathrm{~F}_{5}-\mathrm{C}_{6} \mathrm{~F}_{5}$ formed comes from a possible trinuclear coordination complex, it has a lifetime that is too short to allow observation by NMR spectroscopy. NMR examination of the crude product of the reaction mixture between 2 and cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ $(\text { thf })_{2}$] reveals that, at low temperature $\left(-50{ }^{\circ} \mathrm{C}\right)$, the dinuclear complex 8 is formed almost instantaneously and an excess of cis-[Pd(C6 $\left.\left.\mathrm{F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ is the only other solute present. When the temperature was increased to room temperature, considerable decomposition takes place ($\mathrm{Pd}, \mathrm{C}_{6} \mathrm{~F}_{5}-\mathrm{C}_{6} \mathrm{~F}_{5}$) together with concomitant formation of other new unidentified platinum phosphine complexes (${ }^{31 P}$ NMR $\delta(\mathrm{P}) 37.6$ (d), 33.8 (m), 31.4 (d), 27.5 (d)). Unfortunately, the low relative amounts of these species and the very low stability of the reaction mixture at room temperature precluded their identification.

Scheme 3

A
$[\mathbf{M}]=\mathbf{M}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{2} \quad \mathbf{M}=\mathbf{P t}, \mathbf{P d}$

* 2.2 : 1 Molar ratio

As shown in Scheme 3 (see Experimental Section), similar reactions of 2 equiv of cis- $\left[\mathrm{Pd}^{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { thf })_{2}\right]$ with the cis-bis(phenylacetylide)bis((diphenylphosphino)alkyne) platinum complexes $\mathbf{1}$ and $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ instantaneously yield a new type of triangular PtPd_{2} complexes (14B and 17B) together with small amounts of the corresponding dinuclear derivatives 6 (traces, less than 5%) and $\mathbf{1 0}(\sim 20 \%)$, respectively, as proven by NMR spectroscopy (${ }^{31}$ P and ${ }^{19}$ F). Crystallization of the crude mixture at low temperature $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane interface) gave a pure sample of 17B. Both derivatives are stable at low temperature $\left(\sim-30^{\circ} \mathrm{C}\right)$ as solids but rapidly decompose in CDCl_{3} at room temperature (~ 12 h) to the corresponding dinuclear derivatives, depositing Pd metal and giving, probably through a reductive elimination process, a considerable amount of $\mathrm{C}_{6} \mathrm{~F}_{5}-$ $\mathrm{C}_{6} \mathrm{~F}_{5}$. An anal ogous reaction between complex $\mathbf{3}(\mathrm{L}=$ $\left.\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)$ and 2 equiv of cis-[$\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right] \text { also }}$ gives a similar mixture of 9 and the new triangular Pt_{3} complex 16B instantaneously, which is an isomer of 15A, in an approximate 15:85 mixture from which pure 16B can be isolated as a white microcrystalline solid in high yield (45%) after work-up. The structure of complex 16B, which is stable both as a solid and in solution (CDCl_{3}) has been determined by X -ray crystallography, confirming that in this case the $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$ groups act as terminal ligands and both phenylethy-
nylalkyl fragments behave as six-electron donors ($\mu_{3}-$ $\left.\eta^{2}, \sigma, \pi, \pi\right)$. Finally, the reaction between 1 ($\mathrm{L}=$ $\left.\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)$ and 2 equiv of cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ is less selective, giving both isomers 13A and 13B in a 50:32 ratio and $\sim 80 \%$ conversion (dinuclear complex 5, $\sim 18 \%$, is also present) after a reaction time of 2 h . Interestingly, NMR (${ }^{31}$ P and ${ }^{19}$ F) examination of this reaction shows (Scheme 3) an initial 13A:13B:5 mixture in a 50 : 10:40 ratio. After 2 h , the signals assigned to complex 5 dearly have diminished while the proportion of 13B has increased significantly. No detectible change was observed after 8 h , with the final ratio being $\sim 50: 32: 18$ as mentioned above. Several attempts to separate at least the dominant component (13A) were unsuccessful; therefore, both derivatives have been characterized spectroscopically only on the basis of their NMR properties (mainly ${ }^{31}$), which are similar to these of the rest of the complexes.

Both types of trinuclear complexes (\mathbf{A} and \mathbf{B}) display very characteristic spectroscopic data consistent with the corresponding formulation shown in Scheme 3 and in agreement with the structures of 15A and 16B presented in Figures 2 and 3, respectively. Thus, in the IR spectra of complexes 15A and 18A, there are only characteristic absorptions (see Table 1) in the expected range for complexed carbon-carbon triple bonds, $6,9,14,19 a, 22$ thus confirming that all acetylene fragments are in-

Figure 2. Drawing of the molecular structure of $[\{\mathrm{Pt}(\mu-$ $\left.\left.\kappa(\mathrm{P}): \eta^{2}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\left(u-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBut}_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right], 15 \mathrm{~A}$.

Figure 3. Molecular structure of $\left[\left\{\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2} \mathrm{Pt}\left(\mu_{3}{ }^{-}\right.\right.\right.$ $\left.\left.\left.\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]$, 16B.
volved in side-on coordination. In contrast, the IR spectra of complexes 14B, 17B (PtPd_{2}), and 16B (PtPt_{2}) show two strong $\nu(\mathrm{C} \equiv \mathrm{C})$ absorptions in the range 2151$2210 \mathrm{~cm}^{-1}$, indicating the presence of a terminal phosphinoalkyne ligand. All three complexes exhibit additional weak $\nu(\mathrm{C} \equiv \mathrm{C})$ bands at lower frequencies (1951 cm^{-1} (14B), 1883, 1870 (sh) (16B), and $1951 \mathrm{~cm}^{-1}$ (17B)), evidencing the presence of bridging alkynyl ligands. It should be noted that in accord with the behavior of alkynyl groups as six-electron donors, this shift to lower frequencies (cf $v(\mathrm{C} \equiv \mathrm{C})$ at 2124 and 2117 cm^{-1} in $\mathbf{1}$ and $\mathbf{3}$, respectively) is significantly more pronounced than that observed for the dinuclear complexes in which $\nu(\mathrm{C} \equiv \mathrm{C})$ can be observed (range 2068$2040 \mathrm{~cm}^{-1} ; 1951 \mathrm{~cm}^{-1}$ in 14B vs $2068 \mathrm{~cm}^{-1}$ in 6).

Characteristic of the presence of (diphenyl phosphino)alkyne bridging ligands in complexes of type \mathbf{A} is a considerable downfield shift of the ${ }^{31 \mathrm{P}}(\delta \mathrm{P})$ resonance $(\delta(\mathrm{P})-0.92(\mathbf{1 5 A}),-1.96(\mathbf{1 8 A})$, and 0.67 (13A)) with respect to that observed in the mononuclear precursors (-6.13 (2), -7.76 (4), -5.87 (1)) or in the corresponding dinudear derivatives in which the $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}$ molecules act only as P-donor ligands (-10.56 (7), -13.06 (11), -10.4 (5)). This spectroscopic fact can be attributed to the characteristic formation of (both) dimetallacycles in which the $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}$ ligands are involved as bridging ligands. However, the platinum-phosphorus coupling constants (2488 (15A), 2501 (18A), 2524 Hz (13A)) are less affected, being slightly larger than those observed for the starting precursors (2311 (2), 2335 (4), 2343 Hz (1)) but slightly smaller than those seen for the dinuclear complexes (2674 (7), 2689 (11), $2679 \mathrm{~Hz}(\mathbf{5})$).
In contrast, the equivalent phosphorus atoms of the terminal phosphinoalkyne moieties in complexes of type B appear in the ${ }^{31 P}$ NMR spectra as singlets clearly shifted to lower frequencies ($\delta(\mathrm{P})-19.5$ (13B), -14.10 (14B), -20.55 (16B), -14.80 (17B)) with respect to the values observed in the precursors (-5.87 (1), -7.90 (3)) and in the corresponding dinuclear derivatives (range -8.53 (6) to -12.79 (9)). M oreover, all ${ }^{1}$ J pt-p coupling constants are extraordinarily large (range from 2891 Hz for 14B to 3008 Hz for 16B) compared to the range observed for either mononuclear and dinuclear complexes (see Table 2). This points to a weaker σ-interaction between $\operatorname{Pt}(1)$ and the C_{α} carbon atoms of the alkynyl ligands due to their additional interaction with the remaining two platinum centers $(\sigma-\operatorname{Pt}(1), \pi-\operatorname{Pt}(2)$, $\pi-\mathrm{Pt}(3))$ which seem to be compensated by stronger interactions with the P -bonded phosphinoalkyneligands. Unfortunately, the ${ }^{13} \mathrm{C}$ NMR spectrum of complex 16B is not informative (see Experimental Section and Table 3) since the $\mathrm{Pt}-\mathrm{C}_{\alpha} \equiv$ carbon resonances could not be located in spite of prolonged accumulation. The spectra of 14B and 17B could not be obtained due to their very Iow stability in solution.
The ${ }^{19}$ F NMR spectra of both types of complexes (\mathbf{A} and B) are temperature dependent (see Table 2). For instance, at low temperature ($-50^{\circ} \mathrm{C}$), complex 15A displays two different sets of five fluorine signals (two F_{o}, F_{p}, and two F_{m}), in keeping with the presence of two inequivalent rigid $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups in which both halves of each ring are inequivalent (AFMRX system). When the temperature is increased, the two ortho and two meta fluorine resonances of one of the sets clearly broaden and, finally, collapse to only two broad signals at room temperature ($\sim 288 \mathrm{~K}$) giving a $\Delta \mathrm{G}^{\ddagger}\left(\mathrm{T}_{\mathrm{c}}\right)$ value of approximately $53 \mathrm{KJ} / \mathrm{mol}$ for the process that renders the o-F resonances equivalent. ${ }^{23}$ The remaining five signals due to one of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ rings appear sharp at this temperature (room temperature). The spectra can be tentatively explained by assuming that the presence of different ligands trans to the $\mathrm{C}_{6} \mathrm{~F}_{5}$ rings (alkynyl and phosphinoal kyne) induces different energy barriers on their rotation around the $\mathrm{Pt}-\mathrm{C}_{\mathrm{ipso}}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ bonds. Thus, at low temperature the rotation seems to be stopped for both rings, but at higher temperatures this process is faster for one of them, averaging the two F_{o} (and the two F_{m}) resonances. A similar behavior has been found previously in other complexes containing the cis-Pt-

[^7]Table 5. Selected Bond Lengths (\AA) and Angles (deg) for $15 \mathrm{~A} \cdot \mathbf{0 . 5} \mathrm{C}_{6} \mathrm{H}_{12} \cdot \mathbf{0 . 4 5} \mathrm{C}_{6} \mathrm{H}_{5}$

Pt(1)-C(19)	2.009(8)	$\mathrm{Pt}(3)-\mathrm{C}(7)$	2.020(8)
$\mathrm{Pt}(1)-\mathrm{C}(38)$	2.257(8)	$\mathrm{Pt}(3)-\mathrm{C}(58)$	2.294(8)
$\mathrm{Pt}(2)-\mathrm{C}(25)$	2.012(8)	$\mathrm{P}(1)-\mathrm{C}(37)$	1.769(8)
$\mathrm{Pt}(2)-\mathrm{P}(1)$	2.282(2)	$\mathrm{C}(27)-\mathrm{C}(29)$	1.506(13)
$\mathrm{Pt}(3)-\mathrm{C}(57)$	2.179(8)	$\mathrm{Pt}(1)-\mathrm{C}(37)$	2.219(7)
$\mathrm{Pt}(3)-\mathrm{C}(26)$	2.322(8)	$\mathrm{Pt}(1)-\mathrm{C}(31)$	2.315(8)
C(26)-C(27)	1.489(11)	$\mathrm{Pt}(2)-\mathrm{P}(2)$	2.271(2)
$\mathrm{C}(37)-\mathrm{C}(38)$	1.233(11)	$\mathrm{Pt}(3)-\mathrm{C}(1)$	2.034(8)
$\mathrm{Pt}(1)-\mathrm{C}(13)$	2.046(8)	$\mathrm{Pt}(3)-\mathrm{C}(25)$	2.307(8)
$\mathrm{Pt}(1)-\mathrm{C}(32)$	2.299(8)	$\mathrm{C}(25)-\mathrm{C}(26)$	1.220(11)
$\mathrm{Pt}(2)-\mathrm{C}(31)$	2.015(8)	$\mathrm{C}(31)-\mathrm{C}(32)$	1.211(11)
$\mathrm{C}(19)-\mathrm{Pt}(1)-\mathrm{C}(13)$	85.2(3)	$\mathrm{C}(13)-\mathrm{Pt}(1)-\mathrm{C}(37)$	93.2(3)
$\mathrm{C}(13)-\mathrm{Pt}(1)-\mathrm{C}(38)$	93.6(3)	$\mathrm{C}(19)-\mathrm{Pt}(1)-\mathrm{C}(32)$	86.7(3)
$\mathrm{C}(38)-\mathrm{Pt}(1)-\mathrm{C}(32)$	91.9(3)	$\mathrm{C}(19)-\mathrm{Pt}(1)-\mathrm{C}(31)$	99.1(3)
$\mathrm{C}(37)-\mathrm{Pt}(1)-\mathrm{C}(31)$	77.9(3)	$\mathrm{C}(25)-\mathrm{Pt}(2)-\mathrm{C}(31)$	90.2(3)
$\mathrm{C}(25)-\mathrm{Pt}(2)-\mathrm{P}(2)$	81.5(2)	$\mathrm{C}(31)-\mathrm{Pt}(2)-\mathrm{P}(2)$	169.2(2)
$\mathrm{C}(31)-\mathrm{Pt}(2)-\mathrm{P}(1)$	89.3(2)	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{P}(1)$	99.38(7)
$\mathrm{C}(7)-\mathrm{Pt}(3)-\mathrm{C}(1)$	86.0(3)	$\mathrm{C}(1)-\mathrm{Pt}(3)-\mathrm{C}(57)$	100.9(3)
$\mathrm{C}(1)-\mathrm{Pt}(3)-\mathrm{C}(58)$	80.6(3)	$\mathrm{C}(7)-\mathrm{Pt}(3)-\mathrm{C}(25)$	92.9(3)
$\mathrm{C}(57)-\mathrm{Pt}(3)-\mathrm{C}(25)$	76.0(3)	$\mathrm{C}(7)-\mathrm{Pt}(3)-\mathrm{C}(26)$	92.5(3)
$\mathrm{C}(57)-\mathrm{Pt}(3)-\mathrm{C}(26)$	85.5(3)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{Pt}(2)$	166.5(7)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$162.1(8)$	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{Pt}(2)$	172.7(7)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	153.9(8)	$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{P}(1)$	154.6(7)
C(37)-C(38)-C(39)	160.5(8)	$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{P}(2)$	160.9(7)
C (57)-C(58)-C(59)	160.6(8)	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{Pt}(3)$	35.1(1)

$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{CO}$ fragment, which also has different ligands trans to the pentafluorophenyl groups. ${ }^{19, \mathrm{~b}}$ The behavior of 18A is not clear (see Table 2 for data), as the two sharp F_{p} triplets observed at room temperature, in accord with the two expected types of $\mathrm{C}_{6} \mathrm{~F}_{5}$ rings, also broaden when the temperature is lowered. At $-50^{\circ} \mathrm{C}$, two sets of two overlapping triplets are seen, suggesting that at low temperature the complex is rigid and all $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are inequivalent.

Similarly, in agreement with the behavior of the phenylacetylide precursors $\mathbf{1}$ and $\mathbf{3}$ as chelating tetradentate bridging ligands binding through the alkynyl groups to both dis-M ($\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ units, the ${ }^{19} \mathrm{~F}$ NMR spectra of 14B, 17B, and 16B at room temperature exhibit a single set of three signals ($2: 1: 2 ; 2 \mathrm{~F}_{\mathrm{o}}, \mathrm{F}_{\mathrm{p}}, 2 \mathrm{~F}_{\mathrm{m}}$) evidencing that all $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are equivalent. The resonances assignable to F_{o} and F_{m} are very broad, also suggesting the existence of a dynamic process. On lowering the temperature, splitting occurs and the expected pattern corresponding to an AFMRX system is observed for all complexes at $-50^{\circ} \mathrm{C}$. Using the coalescence temperatures given in Table 2 and the chemi cal shift difference on $F_{\text {o }}$ at $223 \mathrm{~K}, \Delta \mathrm{G}^{\ddagger}\left(\mathrm{T}_{\mathrm{c}}\right)$ values of $52.1(\mathbf{1 4 B}), 47.6$ (16B), and 51.9 ($\mathbf{1 7 B}$) KJ /mol are obtained. ${ }^{23}$ The spectrum of complex 17B remains unaffected in the presence of an excess of cis-[Pd(C6 $\left.\left.\mathrm{F}_{5}\right)_{2}(\text { thf })_{2}\right]$, suggesting an intramolecular exchange process.

Crystal Structures of $\left[\left\{\mathrm{Pt}\left(\mu-k(\mathrm{P}): \eta^{2}-\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}\right)_{2}\right.\right.$ $\left.\left.\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\}\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right] \quad\left(15 \mathrm{~A} \cdot \mathbf{0 . 5 C} \mathrm{C}_{6} \mathrm{H}_{14}\right.$. $\left.0.45 \mathrm{C}_{6} \mathrm{H}_{6}\right)$ and $\left[\left\{\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2} \mathrm{Pt}\left(\mu_{3}-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\}-\right.$ $\left.\left\{\mathbf{P t}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{2}\right\}_{\mathbf{2}}\right](\mathbf{1 6 B})$. The structure of the trinuclear complex 15A is presented in Figure 2 together with the atom-labeling scheme used. Selected bond distances and angles are collected in Table5. As shown, the most remarkable feature is that both terminal cis- $\mathrm{Pt}^{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ moieties are linked to the central platinum atom through both an alkynyl unit ($\mu-\eta^{2}$) and a phosphinoalkyne ligand ($\mu-\kappa(\mathrm{P}): \eta^{2}$). To the best of our knowledge, this is the first organometallic species possessing such a structure.
The platinum atoms have basically square-planar geometries, but their coordination environments are
different. The central $\operatorname{Pt}(2)$ atom is bound to the C_{α} atoms of the two $\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$ groups, which are mutually cis, and to the two P atoms of the two $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}$ ligands. Thealkyne entities ($\mathrm{C} \equiv \mathrm{CBu}{ }^{\mathrm{t}}$ and $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}$) are each η^{2}-coordinated to both terminal $\mathrm{Pt}(1)$ and Pt (3) atoms, which complete their coordination environment with the $\mathrm{C}_{\mathrm{ipso}}$ atoms of the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, also mutually dis. This structural disposition indicates that again the reaction between complex 2 and 2 equiv of cis-[$\left.\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ proceeds with retention of the original configuration about the platinum centers. It should be noted, however, that the formation of complex 15A through the dinuclear derivative $\mathbf{7}$ as an intermediate (complex 15A is also formed starting from 7 and 1 equiv of cis- $\left.\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]\right)$ requires at least a minor movement of the initial cis-Pt $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ unit bonded.

Both terminal platinum atoms $\mathrm{Pt}(1)$ and $\mathrm{Pt}(3)$ are held in the complex by almost symmetrical π-bonding interactions to the carbon-carbon triple bonds (the most asymmetric interaction is found with the $\mathrm{P}-\mathrm{C}(57) \equiv$ $\mathrm{C}(58)-\mathrm{Ph}$ acetylenic fragment $\mathrm{Pt}(3)-\mathrm{C}(57)$ 2.179(8) \AA; $\mathrm{Pt}(3)-\mathrm{C}(58) 2.294(8) \AA$) with typical $\mathrm{Pt}(1,3)-\mathrm{C}_{\alpha, \beta}$ distances (2.179(8)-2.322(8) \AA). ${ }^{6}$ The C-C alkyne distances at the acetylenic carbons of the $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}$ ligands (1.233(11), 1226(11) \AA) are similar to the corresponding ones involving the $\mathrm{C} \equiv \mathrm{CBu}^{t}$ alkynyl groups (1.220(1), $1.211(11) \AA$) but, as expected, longer than those observed for complexes $\mathbf{1 0}$ (average $1.183(5) \AA$) and 16B (average $1.184(13) \AA$) which have terminal $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$ ligands. These distances are within the typical range of an alkyne bonded to transition metals that do not strongly back-bond. 4, 6,15,16,19a The acetylenic skeletons are slightly distorted from linearity, with the bend at the C_{α} carbon atoms more pronounced on the $\mathrm{P}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{Ph}$ entities ($\mathrm{P}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta} 154.6(7)^{\circ}, 160.9(7)^{\circ}$ vs $\left.\mathrm{Pt}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta} 166.5(7)^{\circ}, 172.7(7)^{\circ}\right)$. The angles at the C_{β} carbon atoms are $162.1(8)^{\circ}$ and 153.9(8) ${ }^{\circ}$ on the Pt-$\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)$ entities and $160.5(8)^{\circ}, 160.6(8)^{\circ}$ at the $\mathrm{P}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{C}(\mathrm{Ph})$ fragments. The difference in the values of the platinum coupling constants between the dinuclear and trinuclear derivatives (\mathbf{A} and \mathbf{B}) is not reflected in the platinum-phosphorus bond lengths, which are identical within experimental error (mean values 2.277(2) (15A), 2.271(10)(10), 2.276(2) \AA (16B)). As expected, the compound is not planar. The dihedral angles between the best least-squares coordination planes of each platinum center are $\operatorname{Pt}(1)$ plane $-\operatorname{Pt}(2)$ plane $=82.9^{\circ}, \operatorname{Pt}(2)$ plane $-\operatorname{Pt}(3)$ plane $=80.35^{\circ}$, and $\mathrm{Pt}(1)$ plane $-\mathrm{Pt}(3)$ plane $=68.13^{\circ}$. The observed $\mathrm{Pt}(2)-$ $\mathrm{Pt}(1,3)$ separations ($3.560(1)$ and $3.597(1) \AA$) exclude the possibility of metal-metal bonding.
A perspective drawing of the structure of complex 16B is depicted in Figure 3 together with the atom-numbering scheme. A summary of the important bond distances and angles is given in Table6. As shown, in this complex the precursor fragment $\mathbf{3}$ acts a chelating tetradentate ligand bound through the alkynyl groups, giving a triangular Pt_{3} core with intermetallic angles close to 60°. The Pt_{3} plane is bicapped by two triply bridging phenylacetylide groups which are bonded in a $\mu_{3}-\eta^{2}(\sigma, 2 \pi)$ fashion. Thus, both al kynyl ligands remain σ-bonded to $\operatorname{Pt}(1)(\operatorname{Pt}(1)-\mathrm{C}(1,9) 2.013(9), 2.001(9) \AA$) and are π-bonded to $\operatorname{Pt}(2)$ and $\operatorname{Pt}(3)$ with platinum - carbon distances in the range $2.266(9)-2.408(9) \AA$. It is interesting to note that these distances and the C_{α}

Table 6. Selected Bond Lengths (\AA) and Angles (deg) for 16B

$\mathrm{Pt}(1)-\mathrm{C}(9)$	2.001(9)	Pt(3)-C(71)	2.009(9)
$\mathrm{Pt}(1)-\mathrm{P}(2)$	2.281 (2)	$\mathrm{Pt}(3)-\mathrm{C}(10)$	2.337(9)
$\mathrm{Pt}(2)-\mathrm{C}(59)$	2.009(9)	$\mathrm{P}(1)-\mathrm{C}(17)$	1.742 (9)
$\mathrm{Pt}(2)-\mathrm{C}(1)$	2.330(8)	C(9)-C(10)	1.270(12)
$\mathrm{Pt}(2)-\mathrm{Pt}(3)$	3.0982 (5)	$\mathrm{Pt}(1)-\mathrm{P}(1)$	2.271(2)
$\mathrm{Pt}(3)-\mathrm{C}(9)$	$2.311(8)$	$\mathrm{Pt}(1)-\mathrm{Pt}(2)$	3.2219(5)
$\mathrm{Pt}(3)-\mathrm{C}(2)$	2.375(9)	$\mathrm{Pt}(2)-\mathrm{C}(2)$	2.266(9)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.263(11)	$\mathrm{Pt}(2)-\mathrm{C}(10)$	2.408(9)
$\mathrm{Pt}(1)-\mathrm{C}(1)$	2.013(9)	$\mathrm{Pt}(3)-\mathrm{C}(65)$	2.028(9)
$\mathrm{Pt}(1)-\mathrm{Pt}(3)$	3.1973(5)	$\mathrm{Pt}(3)-\mathrm{C}(1)$	2.360(9)
$\mathrm{Pt}(2)-\mathrm{C}(53)$	2.011(9)	$\mathrm{P}(2)-\mathrm{C}(35)$	1.733(10)
$\mathrm{Pt}(2)-\mathrm{C}(9)$	2.337(8)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.180 (12)
$\mathrm{C}(9)-\mathrm{Pt}(1)-\mathrm{C}(1)$	76.2(3)	$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	96.3(3)
$\mathrm{C}(9)-\mathrm{Pt}(1)-\mathrm{P}(2)$	91.2(2)	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	96.36(9)
$\mathrm{Pt}(3)-\mathrm{Pt}(1)-\mathrm{Pt}(2)$	57.715(12)	$\mathrm{C}(59)-\mathrm{Pt}(2)-\mathrm{C}(53)$	88.9(4)
$\mathrm{C}(53)-\mathrm{Pt}(2)-\mathrm{C}(2)$	87.4(3)	$\mathrm{C}(53)-\mathrm{Pt}(2)-\mathrm{C}(1)$	100.6(3)
$\mathrm{C}(59)-\mathrm{Pt}(2)-\mathrm{C}(9)$	101.7(3)	$\mathrm{C}(1)-\mathrm{Pt}(2)-\mathrm{C}(9)$	64.1(3)
$\mathrm{C}(59)-\mathrm{Pt}(2)-\mathrm{C}(10)$	84.7(3)	$\mathrm{C}(2)-\mathrm{Pt}(2)-\mathrm{C}(10)$	97.8(3)
$\mathrm{Pt}(3)-\mathrm{Pt}(2)-\mathrm{Pt}(1)$	60.744(12)	$\mathrm{C}(71)-\mathrm{Pt}(3)-\mathrm{C}(65)$	87.4(4)
$\mathrm{C}(65)-\mathrm{Pt}(3)-\mathrm{C}(9)$	104.0(3)	$\mathrm{C}(71)-\mathrm{Pt}(3)-\mathrm{C}(10)$	164.0(4)
$\mathrm{C}(65)-\mathrm{Pt}(3)-\mathrm{C}(10)$	91.3(3)	$\mathrm{C}(9)-\mathrm{Pt}(3)-\mathrm{C}(10)$	31.7(3)
$\mathrm{C}(71)-\mathrm{Pt}(3)-\mathrm{C}(1)$	100.2(3)	$\mathrm{C}(65)-\mathrm{Pt}(3)-\mathrm{C}(1)$	154.6(3)
$\mathrm{C}(9)-\mathrm{Pt}(3)-\mathrm{C}(1)$	64.0(3)	$\mathrm{C}(71)-\mathrm{Pt}(3)-\mathrm{C}(2)$	83.7(3)
$\mathrm{C}(10)-\mathrm{Pt}(3)-\mathrm{C}(2)$	96.7(3)	$\mathrm{Pt}(2)-\mathrm{Pt}(3)-\mathrm{Pt}(1)$	61.541(11)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pt}(1)$	163.4(8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	152.5(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Pt}(2)$	76.9(6)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Pt}(3)$	73.9(6)
$\mathrm{Pt}(2)-\mathrm{C}(2)-\mathrm{Pt}(3)$	83.7(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{Pt}(1)$	168.9(7)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{Pt}(3)$	75.3(5)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	150.9(9)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{Pt}(3)$	73.0(6)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{Pt}(2)$	71.4(5)
$\mathrm{Pt}(3)-\mathrm{C}(10)-\mathrm{Pt}(2)$	81.5(3)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{P}(1)$	170.2(9)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	178.6(10)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	176.6(11)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{P}(2)$	175.6(10)		

(168.9(7) $\left.{ }^{\circ}, 163.4(8)^{\circ}\right)$ and $\mathrm{C}_{\beta}\left(150.9(9)^{\circ}, 152.5(9)^{\circ}\right)$ bending of the alkynyl ligands are comparable to the parameters found in [(dppe) $\left.\mathrm{Pt}\left(\mu-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ (Pt(2)-C 2.269(13)-2.345(12) Å; angles at $\mathrm{C}_{\alpha} 167.2^{\circ}$ 159.2° and at $\mathrm{C}_{\beta} 164.6^{\circ} / 156.2^{\circ}$) in which the 3 -platina-1,4-alkyne fragment chelates only one $\mathrm{Pt}^{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \text { frag- }}$ ment. ${ }^{6 a}$ However, the carbon-carbon triple bond distances are, as expected, slightly longer (1.270(12), 1.263(11) \AA in 16B vs 1.229(17), 1.234(16) A in the dinuclear derivative), ${ }^{6 \mathrm{a}}$ and the bite angle $\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(9)$ of $76.2(3)^{\circ}$ is only slightly smaller than that found in [(dppe)Pt $\left.\left(\mu-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]\left(79.3(4)^{\circ}\right)$.
The platinum-platinum distances $(\operatorname{Pt}(1)-\operatorname{Pt}(2,3)$ $3.2219(5), 3.1973(5) \AA$ and $\operatorname{Pt}(2)-\operatorname{Pt}(3) 3.0982(5) \AA$) are consistent with nonbonding interactions. As expected, the geometry around the platinum atoms is approximately square planar. An interesting structural feature is that, probably due to the presence of two $\left.\mathrm{Pt}_{(} \mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ units above and below the $\mathrm{Pt}(1)$ coordination plane, the chelating platinadiyne fragment $[\mathrm{Pt}(1) \mathrm{C}(1) \mathrm{C}(9) \mathrm{C}(2) \mathrm{C}-$ (10)] is nearly planar (max deviation $0.020 \AA$ for C(9)) with the phenyl substituents of the alkynyl ligands also lying in the same plane. The dihedral angles between these phenyl groups and the above platinadiyne plane are 38.0° and 36.5°, respectively.

The reasons for the final formation of these triangular molecules only with the phenylacetylide $\mathbf{1}$ and $\mathbf{3}$ precursors are difficult to discern, but the steric effects of the bulky tert-butylacetylide ligands cannot be discarded. Although several systems with two bridging alkynyl ligands have been reported so far $\left[\mathrm{Os}_{3}(\mathrm{CO})_{7}\left(\mu-\eta^{2} \mathrm{C} \equiv \mathrm{CPr}^{1}\right)_{2}\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)_{2}\right],{ }^{24 \mathrm{a}}\left[\mathrm{Os}_{3}\left(\mu-\eta^{1}-\mathrm{C}_{2} \mathrm{R}\right)\left(\mu_{3}, \eta^{2}-\mathrm{C}_{2} \mathrm{R}\right)(\mathrm{CO}) 9\right],{ }^{24 \mathrm{~b}, \mathrm{C}}\left[\mathrm{Ru}_{3}(\mu-\right.$

[^8]$\left.\eta^{1}-\mathrm{C}_{2} \mathrm{Bu} u^{\mathrm{t}}\right)\left(\mu-\eta^{2}-\mathrm{C}_{2} \mathrm{Bu}^{\mathrm{t}}\right)\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{CO}_{5}\right)^{\left.\left(\mathrm{PPh}_{2} \mathrm{Bu}^{\mathrm{t}}\right)\right],{ }^{25}\left[\mathrm{Cu}_{3}\left(\mu_{3}-\right.\right.}$ $\left.\left.\eta^{1}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}(\mu-\mathrm{dppm})_{3}\right]\left(\mathrm{BF}_{4}\right)^{26}$ and $\left[\mathrm{PtAg}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\right.$ $\left.\left.\eta^{2}, \mathrm{C} \equiv \mathrm{CR}\right)\left(\mu_{3}-\eta^{1}-\mathrm{C} \equiv \mathrm{CR}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$, ${ }^{27}$ to our knowledge the triangular Pt_{3} core bicapped by two ($\mu-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}$) ligands observed for 16B is unprecedented.

Conclusion

The coordination ability of cis-bis(alkynyl)bis((diphenylphosphino)al kyne)platinum(II) complexes toward cis$\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ has been studied. From this study, it is clear that the alkynyl ($\mathrm{C} \equiv \mathrm{CR}$) is the preferred bridging ligand. Thus, exclusive formation of double alkynyl bridging systems takes place in the formation of all 1:1 adducts (5-12). In addition, complexation via phenylethynyl fragments seems to predominate in the formation of trinuclear derivatives, as deduced from the following results: (i) complexation of the second cis-Pd $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ unit is only straightforward with the phenylethynyl substrates cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2} \mathrm{~L}_{2}\right]$ ($\mathbf{1}$ and $\mathbf{3}$) and takes place via $\mathrm{C} \equiv \mathrm{CPh}$ groups which act as $\mu_{3}-\eta^{2}$ bridging ligands; and (ii) while cis-[Pt($\left.\mathrm{C} \equiv \mathrm{CPh}\right)_{2^{-}}$ $\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}$] (3) binds both cis- $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ units through a double alkynyl bridging system ($\mu_{3}-\eta^{2}-$ $\left.\mathrm{C} \equiv \mathrm{CPh})_{2}, \mathbf{1 6 B}\right), \quad$ cis $-\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right](\mathbf{2})$ forms the isomeric symmetrical adduct $\left[\left\{\mathrm{Pt}\left(\mu-\kappa(\mathrm{P}): \eta^{2}-\right.\right.\right.$ $\left.\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBut}_{2}\right)_{2}\left\{\mathrm{Pt}^{\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right] \text {, 15A }}\right.$, containing $\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}$ bridging ligands. These results establish the order of bonding capability as follows: alkynyl > P-bonded phosphinoalkyne and $\mathrm{C} \equiv \mathrm{CPh}$ units > $\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$ units. Finally, the formation of complexes 15A and 18A clearly shows that the preference for η^{2-} alkyne-metal interactions is higher in platinum than in palladium substrates.

Experimental Section

General Methods. All reactions were carried out under N_{2} using dried solvents purified by known procedures and distilled prior to use. IR spectra were recorded on a PerkinElmer 883 spectrometer from Nujol mulls between polyethylene sheets. NMR spectra were recorded on a Varian Unity 300 and a Bruker ARX 300 spectrometer. Chemical shifts are reported in ppm relative to external standards ($\mathrm{SiMe}_{4}, \mathrm{CFCl}_{3}$, and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$). Elemental analyses were carried out with a Perkin-Elmer 240-B microanalyzer and the mass spectra $\left(\mathrm{FAB}^{+}\right)$on a VG Autospec spectrometer. $\left[\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right]$, ${ }^{28}$ $\left[\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right],{ }^{28}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2} \mathrm{COD}\right],{ }^{29}\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2} \mathrm{COD}\right],{ }^{6 \mathrm{a}}$ and cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]^{30}$ were prepared by published procedures.

Synthesis of cis-[$\left.\operatorname{Pt}(C \equiv C R)_{2} L_{2}\right]\left(L=L^{1}=P P h_{2} C \equiv C P h\right.$,
 $\mathbf{B u}^{\mathrm{t}}$ (4)). A typical preparation (complex 1) was as follows: To a suspension of $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2} \mathrm{COD}\right](0.200 \mathrm{~g}, 0.396 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}(0.226 \mathrm{~g}, 0.791$ mmol), immediately giving an orange solution. After the mixture was stirred for 10 min , the resulting solution was

[^9]evaporated to dryness. Then, the addition of cold diethyl ether ($5 \mathrm{~cm}^{3}$) gave $\mathbf{1}$ as a white solid.

Complexes 2, 3, and 4 were prepared similarly as white solids by using the appropriate starting materials. For complexes 3 and 4, the resulting reaction mixtures were evaporated to dryness and the residue was treated with 'PrOH giving the required products.
cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathbf{C P h})_{\mathbf{2}}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{\mathbf{2}}\right](\mathbf{1}){ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $16{ }^{\circ} \mathrm{C}$): 133.4 ($\mathrm{t}, \mathrm{J} \mathrm{cp}=6.3 \mathrm{~Hz}, \mathrm{C}_{0}, \mathrm{PPh}_{2}$), 131.8 ($\mathrm{s}, \mathrm{C}_{0}$, $\mathrm{P}-\mathrm{C} \equiv \mathrm{CPh}$), 131.3 ($\mathrm{s},{ }^{4} \mathrm{~J}$ pt-c $=8.8 \mathrm{~Hz}, \mathrm{C}_{0}, \mathrm{C} \equiv \mathrm{CPh}$), 130.6 (AXX^{\prime} five line pattern, ${ }^{1} \mathrm{~J} \mathrm{cp}+{ }^{3} \mathrm{~J}_{\mathrm{cp}}=66.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{i}}, \mathrm{PPh}_{2}$), 130.2 (s, $\mathrm{C}_{\mathrm{p}}, \mathrm{PPh}_{2}$), $129.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{p}}, \mathrm{Ph}\right), 127.9\left(\mathrm{t}, \mathrm{J} \mathrm{cp}=5.9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{m}}, \mathrm{PPh}_{2}\right.$), 127.8 (s, Cm, Ph), 126.8 (s, Cm, Ph), 124.9 (s, Ph), 120.6 (s, Ph), 109.3 (AXX ' five line pattern, ${ }^{3} \mathrm{~J} \mathrm{CP}$ trans ${ }^{2}+{ }^{3} \mathrm{~J} \mathrm{CP}_{\text {is }}=36.5 \mathrm{~Hz}$, ${ }^{2} \mathrm{~J}$ Pt- $\left.\mathrm{C}_{\beta}=313.8 \mathrm{~Hz}, \mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right)$, $107.9\left(\mathrm{AXX}^{\prime},{ }^{2} \mathrm{~J} \mathrm{cp}+\right.$ $\left.{ }^{4} \mathrm{~J} \mathrm{CP}=15.1 \mathrm{~Hz}, \mathrm{C}_{\beta}, \mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 101.3\left(\mathrm{dd},{ }^{2} \mathrm{~J} \mathrm{CP}_{\text {trans }}=156.5\right.$ $\left.\mathrm{Hz},{ }^{2} \mathrm{~J}_{\mathrm{CP} \text { is }}=21.2 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{C}_{\alpha}}=1150 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 81.0$ (dd, ${ }^{1} \mathrm{~J} \mathrm{cp}=101.6 \mathrm{~Hz},{ }^{3} \mathrm{~J} \mathrm{cp}=1.2 \mathrm{~Hz},{ }^{2} \mathrm{~J} \mathrm{pt}-\mathrm{c} \approx 17 \mathrm{~Hz}, \mathrm{C}_{\alpha}$, $\left.\mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right)$.
cis- $\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{\mathbf{2}}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{\mathbf{2}}\right](2){ }^{13} \mathrm{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $16{ }^{\circ} \mathrm{C}$): 133.6 ($\mathrm{t}, \mathrm{J} \mathrm{cp}=6.2 \mathrm{~Hz},^{3} \mathrm{~J} \mathrm{pt}-\mathrm{c}=28.8, \mathrm{C}_{0}, \mathrm{PPh}_{2}$), 131.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{p}}, \mathrm{PPh}_{2}$), 131.4 (AXX five line pattern, ${ }^{1} \mathrm{Jcp}+{ }^{3} \mathrm{~J} \mathrm{cp}=65$ $\mathrm{Hz}, \mathrm{C}_{\mathrm{i}}, \mathrm{PPh}_{2}$), 129.8 ($\mathrm{s}, \mathrm{C}_{0}, \mathrm{Ph}$), 129.2 ($\mathrm{s}, \mathrm{C}_{\mathrm{p}}, \mathrm{Ph}$), 127.7 ($\mathrm{s}, \mathrm{C}_{\mathrm{m}}$, $\mathrm{Ph}), 120.9\left(\mathrm{~m}, \mathrm{C}_{\mathrm{i}}, \mathrm{Ph}\right), 117.0\left(\mathrm{AXX}^{\prime}\right.$ five line pattern, ${ }^{3} \mathrm{~J} \mathrm{CP}_{\text {trans }}+$ ${ }^{3} \mathrm{~J}_{\mathrm{CP}}=35.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}$ pt-c $\left.=309 \mathrm{~Hz}, \mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}\right), 107.2(\mathrm{~m}$, $\mathrm{C}_{\beta}, \mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}$), 84.7 (dd, ${ }^{2} \mathrm{~J}_{\mathrm{CP}}{ }^{\text {trans }}=158 \mathrm{~Hz},{ }^{2} \mathrm{~J} \mathrm{cP}_{\text {is }}=21.4 \mathrm{~Hz}$, ${ }^{1} \mathrm{~J} \mathrm{Pt}-\mathrm{C}_{\alpha}=1145 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}$), $81.8\left(\mathrm{dd},{ }^{1} \mathrm{~J} \mathrm{cP}=98.2 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J} \mathrm{cp}=1.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{pt}-\mathrm{c}}=14 \mathrm{~Hz}, \mathrm{C}_{\alpha}, \mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 31.45\left(\mathrm{~s},{ }^{4} \mathrm{~J}_{\mathrm{pt}-\mathrm{C}}\right.$ $\left.=7.9 \mathrm{~Hz},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.6\left(\mathrm{~s},{ }^{3} \mathrm{~J} \mathrm{pt}-\mathrm{c}=21.4 \mathrm{~Hz},-\mathrm{CMe}_{3}\right)$.
$\mathbf{c i s}-\left[\mathrm{Pt}(\mathbf{C} \equiv \mathbf{C P h})_{\mathbf{2}}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathbf{C B u}\right)_{\mathbf{2}}\right](3){ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, $16{ }^{\circ} \mathbf{C}$): 133.4 ($\mathrm{t}, \mathrm{J} \mathrm{cp}=6.2 \mathrm{~Hz}, \mathrm{Ph}, \mathrm{C}_{0}, \mathrm{PPh}_{2}$), $131.97\left(\mathrm{AXX}^{\prime}\right.$ five line pattern, ${ }^{1}$ cp $+{ }^{3} \mathrm{~J} \mathrm{cP}=66 \mathrm{~Hz}, \mathrm{C}_{\mathrm{i}}, \mathrm{PPh}_{2}$), $131.3(\mathrm{~s}, \mathrm{Ph})$, 130.0 ($\mathrm{s}, \mathrm{C}_{\mathrm{p}}, \mathrm{PPh}_{2}$), 127.7 ($\mathrm{t}, \mathrm{J} \mathrm{cp}=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{m}}, \mathrm{PPh} \mathrm{L}_{2}$), 126.8 (s , $\mathrm{Ph}), 124.7$ (s, Ph), 118.3 (t, J cP $=7 \mathrm{~Hz}, \mathrm{C}_{\beta},-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}$), 108.8
 Ph), $102.3\left(\mathrm{dd},{ }^{2} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\text {trans }}=136 \mathrm{~Hz},{ }^{2} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\mathrm{is}}=21 \mathrm{~Hz}\right.$, Pt satellites are not observed, $\mathrm{C}_{\alpha},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}$), 70.7 ($\mathrm{d}, \mathrm{J} \mathrm{cP}=105.5 \mathrm{~Hz}, \mathrm{C}_{\alpha}$, $\left.\mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 29.6\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.1\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{Me}_{3}\right)\right)$.
cis- $\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{\mathbf{2}}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{\mathbf{2}}\right](4){ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $16{ }^{\circ} \mathrm{C}$): 133.6 ($\mathrm{t}, \mathrm{J} \mathrm{cp}=6.2 \mathrm{~Hz},{ }^{3} \mathrm{~J} \mathrm{pt}-\mathrm{c}=28.4, \mathrm{C}_{0}, \mathrm{PPh}_{2}$), 132.8 (five line pattern $A X X^{\prime},{ }^{1 J} \mathrm{Jp}+{ }^{3} \mathrm{~J} \mathrm{cp}=65 \mathrm{~Hz}, \mathrm{C}_{\mathrm{i}}, \mathrm{PPh}_{2}$), 129.5 ($\mathrm{s}, \mathrm{C}_{\mathrm{p}}, \mathrm{PPh}_{2}$), $127.3\left(\mathrm{t}, \mathrm{J} \mathrm{cP}=5.8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{m}}, \mathrm{PPh}_{2}\right), 117.5(\mathrm{t}, \mathrm{J} \mathrm{cp}=$ $\left.6.5 \mathrm{~Hz}, \mathrm{C}_{\beta},-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}\right), 116.4\left(\mathrm{AXX}^{\prime},{ }^{3} \mathrm{~J}_{\mathrm{c}-\mathrm{P}_{\text {trans }}}+{ }^{3} \mathrm{~J}_{\mathrm{c}-\mathrm{P}_{\text {ci }}}=\right.$ $\left.35.7 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{Pt}-\mathrm{C}_{\beta}}=307 \mathrm{~Hz}, \mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{But}\right), 85.4\left(\mathrm{dd},{ }^{2} \mathrm{~J} \mathrm{C}-\mathrm{P}_{\text {trans }}\right.$ $=158.7 \mathrm{~Hz},{ }^{2} \mathrm{~J} \mathrm{C}-\mathrm{P}_{\text {is }}=21.2 \mathrm{~Hz},{ }^{1} \mathrm{~J} \mathrm{Pt}_{\mathrm{c}}=1135 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{C}_{\alpha} \equiv \mathrm{C}^{-}{ }^{-}$ Bu^{t}, $71.45\left(\mathrm{~d},{ }^{1} \mathrm{~J} \mathrm{cp}=101.7 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{Pt}-\mathrm{C}}=17.9 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta-}\right.$ Bu^{t}), $31.4\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 29.6\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta^{-}}\right.$ Bu^{t}), $28.5\left(\mathrm{~s},{ }^{3} \mathrm{~J} \mathrm{Pt}-\mathrm{C}=21.7 \mathrm{~Hz},-\mathrm{C}\left(\mathrm{Me}_{3}\right), \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} B \mathrm{u}^{\mathrm{t}}\right.$), $28.0(\mathrm{~s}$, $\left.-\mathrm{C}\left(\mathrm{Me}_{3}\right),-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}\right)$.

Synthesis of $\left[\left\{\mathbf{L}_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathbf{C} \equiv \mathbf{C R}\right)_{2}\right\} \mathbf{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]\left(\mathrm{L}=\mathrm{L}^{1}\right.$ $=P P^{2} \mathbf{C}=\mathbf{C P h}, \mathbf{R}=\mathbf{P h}, \mathbf{M}=\mathbf{P t}$ (5), $\mathbf{P d}$ (6); $\mathbf{R}=\mathbf{B u}^{\mathbf{t}}, \mathbf{M}=$
 Pd (10); R = But, M = Pt (11), Pd (12)). Synthesis of 5 . To a solution of cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right](0.140 \mathrm{~g}, 0.144$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added cis- $\left.\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \text { (thf) }\right)_{2}\right]$ (0.097 $\mathrm{g}, 0.144 \mathrm{mmol}$), and the mixture was stirred at room temperature for 15 min . The resulting solution was concentrated to small volume ($2 \mathrm{~cm}^{3}$). Addition of n -hexane ($3 \mathrm{~cm}^{3}$) and standing at $-30^{\circ} \mathrm{C}$ gave 5 as a white crystalline product. Complexes 6-12 were prepared similarly using the appropriate starting materials.
$\left[\left\{\left(\mathbf{P h C} \equiv \mathbf{C P h}_{2} \mathrm{P}\right)_{2} \mathbf{P t}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathbf{C P h}\right)_{2}\right\} \mathbf{P t}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](5){ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, \mathbf{1 6}^{\circ} \mathbf{C}$): 147.8, 144.8, 137.7, $134.5\left(\mathrm{br}, \mathrm{C}_{6} \mathrm{~F}_{5}\right)$, 132.9 (t, J cp $=6.6 \mathrm{~Hz}, \mathrm{C}_{0}, \mathrm{PPh}_{2}$), 131.96 (s, Ph), 131.9 (s, Ph), 130.98 (s, Ph), 130.2 (AXX ' five line pattern, ${ }^{1} \mathrm{~J} \mathrm{cP}+{ }^{3} \mathrm{~J} \mathrm{cP}=69$ $\mathrm{Hz}, \mathrm{C}_{\mathrm{i}}, \mathrm{PPh}_{2}$), 130.1 (s, $\mathrm{C}_{\mathrm{p}}, \mathrm{Ph}$), 128.4 (t, J cp $=6.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{m}}$, PPh_{2}), 127.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{m}}, \mathrm{Ph}$), 127.8 ($\mathrm{s}, \mathrm{C}_{\mathrm{p}}, \mathrm{Ph}$), 126.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{m}}, \mathrm{Ph}$), $124.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{i}}, \mathrm{Ph}\right), 119.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{i}}, \mathrm{Ph}\right), 109.3\left(\mathrm{AXX}^{\prime},{ }^{2} \mathrm{~J} \mathrm{cp}+{ }^{4} \mathrm{~J} \mathrm{cp}=\right.$ $17.3 \mathrm{~Hz}, \mathrm{C}_{\beta}, \mathrm{P}-\mathrm{C} \equiv \mathrm{CPh}$), 103.8 (AXX^{\prime}, five line pattern ${ }^{3} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\text {trans }}$ $\left.+{ }^{3} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\mathrm{cis}}=30.5 \mathrm{~Hz}, \mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 90.5\left(\mathrm{dd},{ }^{2} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\text {trans }}=145.5\right.$ $\mathrm{Hz},{ }^{2} \mathrm{~J} \mathrm{c}_{\mathrm{P}} \mathrm{P}$ is $\left.=19.8 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 78.7\left(\mathrm{~d},{ }^{1} \mathrm{~J} \mathrm{cP}=112 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{\alpha},-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right)$.
$\left[\left\{\left(\operatorname{PhC} \equiv \mathrm{CPh}_{2} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](7){ }^{13} \mathrm{C}$ NMR (CDCI ${ }_{3}, 16{ }^{\circ} \mathbf{C}$): 148.1 (m), 145.1 (m), $137.8(\mathrm{~m}), 134.6$ (m) (br, $\mathrm{C}_{6} \mathrm{~F}_{5}$), 133.0 (m , overlapping of two triplets, $\mathrm{C}_{0}, \mathrm{PPh}_{2}$), 131.8 ($\mathrm{s}, \mathrm{C}_{0}, \mathrm{Ph}$), 131.2 ($\mathrm{AXX} \mathrm{X}^{1} \mathrm{I}^{\mathrm{J}} \mathrm{cP}+{ }^{3} \mathrm{~J} \mathrm{cp}=45.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{i}}, \mathrm{PPh}_{2}$), $\sim 130.3\left(\mathrm{C}_{\mathrm{i}}, \mathrm{PPh}_{2}\right), 130.8$ ($\mathrm{s}, \mathrm{C}_{\mathrm{p}}, \mathrm{PPh}_{2}$), 130.6 ($\mathrm{s}, \mathrm{C}_{\mathrm{p}}, \mathrm{PPh}_{2}$), 129.8 ($\mathrm{s}, \mathrm{C}_{\mathrm{p}}, \mathrm{Ph}$), 128.1 (m , overlapping of two triplets, $\mathrm{C}_{\mathrm{m}}, \mathrm{PPh}_{2}$), 127.8 (s, $\mathrm{C}_{\mathrm{m}}, \mathrm{Ph}$), 120.1 ($\mathrm{s}, \mathrm{C}_{\mathrm{i}}, \mathrm{Ph}$), 113.9 ($\mathrm{m}, \mathrm{C}_{\beta}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}, \mathrm{Pt}$ satellites are not observed), 108.6 ($\mathrm{m}, \mathrm{C}_{\beta}, \mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}$), ~ 83.2 $\left(\mathrm{C}_{\alpha},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}\right), 79.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{cp}}=109 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 30.7$ (s, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.1\left(\mathrm{~s}, \mathrm{CMe}_{3}\right)$.
$\left[\left\{\left(\mathrm{Bu}^{\mathbf{t}} \mathrm{C} \equiv \mathrm{CPh}_{2} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\} \mathbf{P t}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](9){ }^{13} \mathrm{C}$ NMR (CDCI ${ }^{2}, 16{ }^{\circ} \mathbf{C}$): 147.8 (m), 144.9 (m), 137.6 (m), 134.4 ($\mathrm{m}, \mathrm{br}, \mathrm{C}_{6} \mathrm{~F}_{5}$), $132.9\left(\mathrm{t}, \mathrm{Jcp}=6.6 \mathrm{~Hz}, \mathrm{C}_{0}, \mathrm{PPh}_{2}\right), 131.9(\mathrm{~s}, \mathrm{Ph})$, 131.6 (AXX' five line pattern, ${ }^{1} \mathrm{Jcp}+{ }^{3} \mathrm{~J} \mathrm{CP}=69 \mathrm{~Hz}, \mathrm{C}_{\mathrm{i}}, \mathrm{PPh}_{2}$), 130.8 ($\mathrm{s}, \mathrm{C}_{\mathrm{p}}, \mathrm{PPh}_{2}$), $128.2\left(\mathrm{t}, \mathrm{J} \mathrm{cp}=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{m}}, \mathrm{PPh}_{2}\right.$), 127.7 (s , $\mathrm{C}_{\mathrm{p}}, \mathrm{Ph}$), 126.9 ($\mathrm{s}, \mathrm{C}_{\mathrm{m}}, \mathrm{Ph}$), 124.3 ($\mathrm{s}, \mathrm{C}_{\mathrm{i}}, \mathrm{Ph}$), $120.0\left(\mathrm{~m}, \mathrm{C}_{\beta}\right.$, $\left.-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}\right), 103.2\left(\mathrm{~m},{ }^{3} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\text {trans }}+{ }^{3} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\mathrm{cis}}=30.6 \mathrm{~Hz}, \mathrm{C}_{\beta}\right.$, $\left.-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 91.3\left(\mathrm{dm},{ }^{2} \mathrm{~J} \mathrm{c}_{\mathrm{P} \text { trans }} \approx 145 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 68.7$ (d, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}}=115 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{PC}_{\alpha}=\mathrm{C}_{\beta} \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 29.5\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.3$ ($\mathrm{s}, \mathrm{CMe}_{3}$).
$\left.\left[\left\{\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{C} \equiv \mathrm{CPh}_{2} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}{ }^{1} \eta^{2}-\mathrm{C} \equiv \mathbf{C B u}\right)_{2}\right)_{2}\right\} \mathbf{P t}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](11){ }^{13} \mathrm{C}$ NMR (CDCI ${ }_{3}, \mathbf{1 6}^{\circ} \mathbf{C}$): $133.1\left(\mathrm{C}_{0}\right), 133.02\left(\mathrm{C}_{0}\right)$ (overlapping of two triplets PPh_{2}), $132.20\left(\mathrm{C}_{\mathrm{i}}\right), 132.17\left(\mathrm{C}_{\mathrm{i}}\right)$ (overlapping of two AXX' fine line patterns), $130.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{p}}, \mathrm{PPh}_{2}\right), 127.97\left(\mathrm{C}_{\mathrm{m}}\right), 127.85$ $\left(\mathrm{C}_{\mathrm{m}}\right)$ (overlapping of two triplets PPh_{2}), $119.2(\mathrm{t}, \mathrm{J} \mathrm{cP}=7.6 \mathrm{~Hz}$, $\mathrm{C}_{\beta}, \mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}$), 113.3 ($\mathrm{AXX}^{\prime},{ }^{3} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\text {trans }}+{ }^{3} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\text {cis }}=29.4 \mathrm{~Hz}, \mathrm{Pt}$ satellites are not observed, $\mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}{ }^{\mathrm{t}}$), 84.1 (dd, ${ }^{2} \mathrm{~J}$ c- $\mathrm{P}_{\text {trans }}$
 $112 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}$), 30.7 ($\mathrm{s},-\mathrm{CH}_{3}$), 30.08 (s, CMes), 29.5 ($\mathrm{s},-\mathrm{CH}_{3}$), $29.2\left(\mathrm{~s}, \mathrm{CMe}_{3}\right)$.

Reaction of cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2} \mathrm{~L}^{1}{ }_{2}\right](1)$ with cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right.$ (thf) $)_{2}$ (Molar Ratio of 1:2). A mixture of cis- $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ $(0.015 \mathrm{~g}, 0.022 \mathrm{mmol})$ and cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]$ ($0.0108 \mathrm{~g}, 0.011 \mathrm{mmol}$) was dissolved in $0.6 \mathrm{~cm}^{3}$ of CDCl_{3}, and the reaction was immediately monitored by NMR spectroscopy. Integration of the NMR signals shows an approximate 50:10: 40 proportion of 13A, 13B, and $\mathbf{5}$ (Scheme 3). After 2 h , the intensity of the signal due to the dinuclear derivative 5 decreases while the signal attributed to $\mathbf{1 3}$ increases with the final proportion being 13A:13B:5 50:32:18. An identical ratio was observed after 8 h .

All attempts to separate 13A or 13B from this reaction mixture were unsuccessful; thus, the complexes 13A and 13B were only characterized by spectroscopy: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $\mathrm{ppm}) \delta 8.00-6.8(\mathrm{~m}, \mathbf{1 3 A}+\mathbf{1 3 B}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ -116.5 (br), $-117.2(\mathrm{~s}, \mathrm{br})\left(\mathrm{F}_{\mathrm{o}}, \mathbf{1 3 A}+\mathbf{1 3 B}\right),-160.97(\mathrm{t}),-161.1$ (t$)$, -161.5 (t) $\left(3 \mathrm{~F}_{\mathrm{p}}\right.$: 2 inequivalent F_{p} from 13A and $1 \mathrm{~F}_{\mathrm{p}}$ from 13B), $-164.1(\mathrm{~m}),-164.6(\mathrm{~m})\left(\mathrm{F}_{\mathrm{m}}, 13 \mathrm{~A}+13 \mathrm{~B}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) 0.67$ ($\mathrm{s},{ }^{1 〕} \mathrm{Jt}-\mathrm{P}=2524 \mathrm{~Hz}, 13 \mathrm{~A}$), $-19.5\left(\mathrm{~s},{ }^{1} \mathrm{~J} \mathrm{pt}-\mathrm{p}\right.$ $=2996 \mathrm{~Hz}, \mathbf{1 3 B})$. The signal due to complex $5\left(-10.8 \mathrm{I}^{1} \mathrm{Jpt}-\mathrm{p}\right.$ $=2677 \mathrm{~Hz}$) is also present.
Synthesis of $\left[\left\{\mathbf{L}^{1}{ }_{2} \mathbf{P t}\left(\mu_{3}-\eta^{2} \mathbf{C} \equiv \mathbf{C P h}\right)_{2}\right\}\left\{\mathbf{P d}\left(\mathbf{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right], \mathbf{1 4 B}$. cis-[Pd($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.100 \mathrm{~g}, 0.171 \mathrm{mmol})$ was added to a stirred solution of cis-[Pt(C $\left.\equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right](\mathbf{1} ; 0.083 \mathrm{~g}$, $0.086 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$. The resulting solution was immediately evaporated to dryness, and the residue was treated with n-hexane ($5 \mathrm{~cm}^{3}$) to give a white powder (70% yield). The ${ }^{31}$ P NMR spectrum of this solid shows it to be complex 14B with a purity $>95 \%$. Only traces (less 5\%) of complex 6 were al so observed. On standing at room temperature ($\sim 12 \mathrm{~h}$), considerable decomposition to Pd metal takes place and the only species detected thereafter by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}$ spectroscopy were the dinuclear complex 6 and decafluorobiphenyl $\left(\mathrm{C}_{6} \mathrm{~F}_{5}-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$. Identical results were obtained starting from 6 and 1 equiv of cis- $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { thf })_{2}\right]$.

Synthesis of $\left[\left\{\mathbf{P t}\left(\mu-\kappa(P): \eta^{2}-\mathbf{P P h}_{2} \mathrm{C} \equiv \mathbf{C P h}\right)_{\mathbf{2}}\left(\mu-\eta^{1}: \eta^{2}-\right.\right.\right.$ $\left.\left.\mathbf{C} \equiv \mathbf{C B u} \mathbf{t}_{2}\right\}\left\{\mathbf{P t}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{2}\right\}_{2}\right], \mathbf{1 5 A}$. cis-[Pt(C6 $\left.\left.\mathrm{F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.152 \mathrm{~g}$, $0.229 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2-}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right](2 ; 0.100 \mathrm{~g}, 0.107 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$, and the mixture was stirred for 1 h at room temperature. The resulting yellow solution was evaporated to dryness, and the residue was treated with a mixture of diethyl ether/hexane

Table 7. Crystal Data and Structure Refinement Parameters for Complexes $\mathbf{1 0} \cdot \mathbf{M e} \mathbf{C O}$, $15 \mathrm{~A} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14} \cdot \mathbf{0 . 4 5} \mathrm{C}_{6} \mathrm{H}_{6}$, and 16B ${ }^{\text {a }}$

complex	10. $\mathrm{Me}_{2} \mathrm{CO}$	15A $0.5 \mathrm{C}_{6} \mathrm{H}_{14} \cdot 0.45 \mathrm{C}_{6} \mathrm{H}_{6}$	16B
empirical formula fw	$\begin{aligned} & \mathrm{C}_{64} \mathrm{H}_{48} \mathrm{~F}_{10} \mathrm{P}_{2} \mathrm{PdPt} \cdot \mathrm{Me}_{2} \mathrm{CO} \\ & 1428.53 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{76} \mathrm{H}_{48} \mathrm{~F}_{20} \mathrm{P}_{2} \mathrm{Pt}_{3} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{12} \cdot 0.45 \mathrm{C}_{6} \mathrm{H}_{6} \\ & 2065.65 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{76} \mathrm{H}_{48} \mathrm{~F}_{20} \mathrm{P}_{2} \mathrm{Pt}_{3} \\ & 1988.35 \end{aligned}$
unit cell dimens			
a (\AA)	9.863(4)	14.0631(10)	14.8963(12)
b (\AA)	15.314(5)	17.6645(12)	23.5869(11)
$\mathrm{c}(\AA)$	19.840(6)	17.9951(15)	19.8044(11)
α (deg)	88.46(2)	76.082(12)	90
β (deg)	86.71(1)	72.341(10)	100.596(8)
γ (deg)	82.54(2)	86.577(10)	90
volume (\AA^{3}), Z	2966(2), 2	4134.2(6), 2	6839.8(7), 4
wavelength (\AA)	0.71073	0.71073	0.71073
temperature (K)	200	150	150
radiation	graphite-monochromated M o K α	graphite-monochromated Mo K α	graphite-monochromated MoK α
cryst syst	triclinic	tridinic	monoclinic
space group	P1	P1	$\mathrm{P} 21 / \mathrm{c}$
cryst dimens (mm)	$0.74 \times 0.46 \times 0.32$	$0.30 \times 0.20 \times 0.20$	$0.50 \times 0.25 \times 0.25$
abs coeff (mm^{-1})	2.787	5.197	6.267
transmission factors	0.991, 0.630	0.438, 0.350	0.984, 0.625
abs corr	ψ scans	ψ scans	ψ scans
diffractometer	Siemens STOE/AED2	Enraf-Nonius CAD4	Enraf-Nonius CAD4
2θ range for data collection (deg)	2.1-24.0 ($+\mathrm{h}, \pm \mathrm{k}, \pm \mathrm{l})$	2.0-25.0 ($+\mathrm{h}, \pm \mathrm{k}, \pm \mathrm{l})$	2.0-25.0 ($+\mathrm{h},+\mathrm{k}, \pm \mathrm{l})$
no. of reflns collected	11110	15107	12463
no. of indep refins	9268 (R (int) $=0.0238$)	14465 (R (int) = 0.0298)	11971 (R (int) = 0.0366)
refinement method	full-matrix least-squares on F^{2}	full-matrix least-squares on F^{2}	full-matrix least-squares on F^{2}
goodness-of-fit on F^{2}	1.043	1.002 , 0.1077	1.048
final R indices ($1>2 \sigma(1)$)	$\mathrm{R} 1=0.0239, w R 2=0.0539$	$\mathrm{R} 1=0.0415, w R 2=0.1077$	$\mathrm{R} 1=0.0432, w R 2=0.0652$
R indices (all data)	$\mathrm{R} 1=0.0306, w R 2=0.0586$	$\mathrm{R} 1=0.0633, w R 2=0.1178$	$\mathrm{R} 1=0.0945, w R 2=0.0789$

(3/2). Cooling at $-30^{\circ} \mathrm{C}$ for 12 h gives complex 15A as a pale yellow microcrystalline solid (0.18 g).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3},-50{ }^{\circ} \mathrm{C}\right): \sim 146,144,138.1,135.3$ (br, $\mathrm{C}_{6} \mathrm{~F}_{5}$), 134.5-128.5 (Ph), 124.6 ($\mathrm{m}, \mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu} \mathrm{u}^{\mathrm{t}}$), 119.4 (s , $\mathrm{Ph}), 109.5\left(\mathrm{~m}, \mathrm{C}_{\beta},-\mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 87.7$ (dd, ${ }^{2} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\text {trans }}=151.8 \mathrm{~Hz}$, $\left.{ }^{2} \mathrm{~J} \mathrm{c}-\mathrm{P}_{\mathrm{dis}}=15.5 \mathrm{~Hz}, \mathrm{C}_{\alpha},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}\right), 78.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{cP}}=77.76 \mathrm{~Hz}\right.$, $\mathrm{C}_{\alpha}, \mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}$), 30.7 ($\left.\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 31.7, 22.7, 14.4 (s , hexane).

Reaction of cis-[Pt(C $\left.\left.\equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2} \mathrm{~L}^{1}{ }_{2}\right]$ (2) with cis-[Pd-
 ($0.025 \mathrm{~g}, 0.043 \mathrm{mmol}$) was added to a solution of cis-[Pt$\left.\left(\mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right](0.020 \mathrm{~g}, 0.0215 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.6$ cm^{3}), and a ${ }^{31}$ P NMR spectrum was taken immediately. The initial ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this mixture at low temperature $\left(-50^{\circ} \mathrm{C}\right)$ revealed the presence of complex $8(-8.9 \mathrm{ppm})$ as the main component together with the excess of cis-[Pd$\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$. When the temperature was increased to room temperature, considerable decomposition had taken place (Pd metal) and, in addition to complex 8, small signals at ~ 37.6 (d), 33.8 (m), 31.4 (d), and 27.5 (d) ppm were also observed. The ${ }^{19} \mathrm{~F}$ NMR indicated the presence of a considerableamount of $\mathrm{C}_{6} \mathrm{~F}_{5}-\mathrm{C}_{6} \mathrm{~F}_{5} .{ }^{31}$

Synthesis of $\left[\left\{\mathrm{L}^{2} \mathbf{P t}\left(\mu_{3}-\eta^{2} \mathrm{C} \equiv \mathbf{C P h}\right)_{2}\right\}\left\{\mathbf{P t}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right], 16 \mathrm{~B}$. To a solution of cis-[Pt(C $\left.\equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right](\mathbf{3} ; 0.100 \mathrm{~g}$, $0.1075 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $0.145 \mathrm{~g}(0.215$ $\mathrm{mmol})$ of cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$. After 1 h of stirring, the brown solution was evaporated to dryness and the residue was treated with $\operatorname{PrOH}\left(3 \mathrm{~cm}^{3}\right)$ to give a crude solid, which was washed with n-hexane. The ${ }^{31}$ P NMR spectra of this solid indicates that complex 16B is contaminated ($\sim 12 \%$) with the dinuclear derivative 9. Complex 16B is obtained as a white microcrystalline solid by slow crystallization of the crude material in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1:5) mixture at low temperature ($-30^{\circ} \mathrm{C}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (CDCI ${ }_{3},-50{ }^{\circ} \mathbf{C}$): 147.4, 144.3, 138.8 (br, $\mathrm{C}_{6} \mathrm{~F}_{5}$), 133.8-126.8 (Ph), $121.37\left(\mathrm{~m}, \mathrm{C}_{\beta}, \mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}\right), 119.7$ (s, Ph), $67.5\left(\mathrm{~d},{ }^{\mathrm{J}} \mathrm{c}_{\mathrm{c}-\mathrm{p}}=126.7, \mathrm{C}_{\alpha}, \mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right.$), $29.3(\mathrm{~s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.5\left(\mathrm{~s}, \mathrm{CMe}_{3}\right)$.
(31) Gastinger, R. G.; Anderson, B. B.; Klabunde, K. J . Am. Chem. Soc. 1980, 102, 4959.

Synthesis of $\left[\left\{\mathbf{L}^{2} \mathbf{P t}\left(\mu_{3}-\eta^{2} \mathbf{C} \equiv \mathbf{C P h}\right)_{2}\right\}\left\{\mathbf{P d}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{2}\right\}_{2}\right], 17 B$. $\mathrm{cis}-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right](3 ; 0.0608 \mathrm{~g}, 0.0654 \mathrm{mmol})$ and $0.0764 \mathrm{~g}(0.1307 \mathrm{mmol})$ of cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ were mixed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$, and the resulting solution was immediately evaporated to dryness. The residue was extracted with hexane ($2 \times 5 \mathrm{~cm}^{3}$), giving a beige solid (17B:10 $\approx 90: 10$ by ${ }^{31}$ P NMR). Recrystal lization of this solid $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane interface at -30 ${ }^{\circ} \mathrm{C}$) yielded 17B as a colorless powder.

When the reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy at $20^{\circ} \mathrm{C}$, we identified a mixture of $\mathbf{1 7 B}$ and $\mathbf{1 0}$ (ratio 80:20). After longer periods, considerable decomposition of 17B is observed. Thus, in 12 h the intensity of the signal due to 17B decreases, giving a 17B/10 ratio of $\sim 15: 85$. In addition, the ${ }^{19} \mathrm{~F}$ NMR spectrum reveals the presence of considerable amounts of decafluorobiphenyl.

Synthesis of $\left[\left\{\mathbf{P t}\left(\mu-\kappa(\mathbf{P}): \eta^{2}-\mathbf{P P h}_{2} \mathbf{C} \equiv \mathbf{C B u}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\right.\right.\right.$ $\left.\left.\mathbf{C} \equiv \mathbf{C B u} \mathbf{t}_{2}\right\}\left\{\mathbf{P t}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{2}\right\}_{2}\right]$, 18A. Complex 4 ($0.072 \mathrm{~g}, 0.081$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was treated with $0.120 \mathrm{~g}(0.178 \mathrm{mmol})$ of cis- $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ for 3 h . The resulting solution was evaporated to dryness, and the crude solid (18A + $\mathbf{1 1}$ (83:17) by ${ }^{31} \mathrm{P}$ NMR) was treated with n-hexane, giving 18A as a nearly pure solid (less than 5% of $\mathbf{1 1}$ is detected by ${ }^{31}$ P NMR). Yield: 57%. If the initial mixture is stirred for longer periods, complex 18A decomposes increasing the amount of 11. Thus, in 7 h , the intensity of the signal due to $\mathbf{1 1}$ increases, giving an 18A/11 ratio of 55:45.
${ }^{13} \mathrm{C}^{2}$ NMR ($\mathrm{CDCl}_{3},-50^{\circ} \mathrm{C}$): ~147.6, 144.7, 138.9, 137.9 (br, $\mathrm{C}_{6} \mathrm{~F}_{5}$), 135.6-124.6 (Ph), $113.2\left(\mathrm{~s}, \mathrm{C}_{\beta}, \mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right.$, 108.9 (m, br , this signal can tentatively be assigned to $\mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu} \mathrm{u}^{\mathrm{t}}$, 87.18 (dm, signal poorly resolved, $\mathrm{C}_{\alpha},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}$), $70.5\left(\mathrm{~d},{ }^{1} \mathrm{~J} \mathrm{cp}\right.$ $\left.=97.1 \mathrm{~Hz}, \mathrm{C}_{\alpha}, \mathrm{P}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Bu}^{\mathrm{t}}\right)$, $30.6,30.4\left(\mathrm{~s}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.7$, 29.6 (s, br, CMe3).

Reaction of cis-[Pt(C $\left.\left.\equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2} \mathrm{~L}^{2}{ }_{2}\right]$ (4) with 2 Equiv of $\mathbf{c i s}-\left[\operatorname{Pd}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{\mathbf{2}}(\mathbf{t h f})_{2}\right]$. The reaction of $\mathbf{4}(0.0152 \mathrm{~g}, 0.171$ $\mathrm{mmol})$ with cis-[Pd($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.020 \mathrm{~g}, 0.034 \mathrm{mmol}) \mathrm{in} \mathrm{CDCl}_{3}$ $\left(0.6 \mathrm{~cm}^{3}\right)$ was monitored by NMR spectroscopy. The dinuclear derivative $\mathbf{1 2}$ was observed as the only phosphorous-containing platinum complex (${ }^{31}$ P and ${ }^{1} \mathrm{H}$ NMR), and no evolution of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was observed after 4 or 8 h . The presence of the excess of "cis-Pd($\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ " $\left(\sim-117.3\left(\mathrm{~F}_{0}\right),-159.9\right.$
$\left.\left(F_{p}\right),-163.5\left(F_{m}\right)\right)$ together with the signals due to $\mathrm{C}_{6} \mathrm{~F}_{5}-\mathrm{C}_{6} \mathrm{~F}_{5}$ $(-137.6(\mathrm{~m}),-149.9(\mathrm{t}),-160.4(\mathrm{~m}))(60: 40)$ are visible in the ${ }^{19}$ F NMR spectra.

X-ray Crystal Structure Determinations. Suitable arystals of $\mathbf{1 0} \cdot \mathrm{Me}_{2} \mathrm{CO}$ were grown by slow diffusion of n-hexane into a $\mathrm{Me}_{2} \mathrm{CO}$ solution of 10. Suitable crystals of $15 \mathrm{~A} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$. $0.45 \mathrm{C}_{6} \mathrm{H}_{6}$ were grown by slow diffusion of n-hexane into a dichloromethane/benzene solution of 15A. Suitable crystals of $\mathbf{1 6 B}$ were grown by slow diffusion of n-hexane into a $\mathrm{CH}_{2}-$ Cl_{2} solution of 16 B at $-40^{\circ} \mathrm{C}$.

Crystal data and other details of the structure analyses are presented in Table 7. Selected crystals were fixed on top of glass or quartz fibers and mounted on the diffractometers. Unit cell constants were determined from 22 accurately centered reflections with $24^{\circ}<2 \theta<26^{\circ}$ for $\mathbf{1 0} \cdot \mathrm{Me} \mathrm{e}_{2} \mathrm{CO}, 25$ reflections in the range $22.2^{\circ}<2 \theta<30.9^{\circ}$ for $15 \mathrm{~A} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14} \cdot 0.45 \mathrm{C}_{6} \mathrm{H}_{6}$, and 25 reflections in the range $22.2^{\circ}<2 \theta<31.8^{\circ}$ for 16B. Data were collected by the $\omega / 2 \theta$ scans for $10 \cdot \mathrm{Me}_{2} \mathrm{CO}$ and by ω / θ scans for $15 A \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14} \cdot 0.45 \mathrm{C}_{6} \mathrm{H}_{6}$ and 16B. Three check reflections were measured at regular intervals, and noloss of intensity was observed in any case. The position of the heavy atoms were determined from the Patterson map. The remaining atoms were located in successive difference Fourier syntheses. H atoms were added at calculated positions ($\mathrm{C}-\mathrm{H}$ $=0.96 \AA$) with an isotropic displacement parameter assigned 1.2 times (for the phenyl groups) or 1.5 times (for the methyl groups) that of the corresponding C atom. For $\mathbf{1 0} \cdot \mathrm{Me}_{2} \mathrm{CO}$, a molecule of insterstitial acetone was found and refined at full occupancy with anisotropic thermal parameters, and no H atoms were added to the acetone molecule. For $\mathbf{1 5 A} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14} \cdot$ $0.45 \mathrm{C}_{6} \mathrm{H}_{6}$, whereas the positions and thermal parameters of the atoms of the platinum complex were found and refined without difficulty, the electron density corresponding to the solvent molecule atoms was very diffuse. We tried several models and found that the one which gave best results was
the presence of one molecule of n-hexane with an occupancy of 0.5 , one molecule of benzene with an occupancy of 0.3 , and one-half of a molecule of benzene lying around an inversion center whose three carbon atoms had occupancy 0.3 . Both solvents had been used in the obtention of the crystals. The interatomic distances and angles were constrained to ideal ized geometries, and the anisotropic thermal parameters of the carbon atoms of each molecule were constrained to be the same. No attempts to include the solvent hydrogen atoms were made. For $\mathbf{1 0} \cdot \mathrm{Me}_{2} \mathrm{CO}$ and $\mathbf{1 6 B}$, no residual peaks higher than 1 e $/ A^{3}$ remained in the final density map. For 15A$0.5 \mathrm{C}_{6} \mathrm{H}_{14} \cdot 0.45 \mathrm{C}_{6} \mathrm{H}_{6}$, the final difference electron density maps showed eight peaks above 1 e \AA^{-3} (1.08-1.02; largest diff hole $-0.76)$, all of them located in the solvent area. All calculations were carried out using the program SHELXL-93. ${ }^{32}$

Acknowledgment. Wethank the Dirección General de Investigación Científica y Técnica (Spain) (Project Nos. PB 95-0003-C02-01-02 and PB 95-0792) for financial support. E. Lalinde and M. T. Moreno thank the University of La Rioja (Spain) for financial support.

Supporting Information Available: Tables of full atomic positional and equival ent isotropic displacement parameters, anisotropic displacement parameters, full bond distances and bond angles, and hydrogen coordinates and isotropic displacement parameters for the crystal structures of complexes 10, 15A, and 16B (41 pages). Ordering information is given on any current masthead page.
OM970663Y
(32) Sheldrick, G. M. SHELXL-93, a program for crystal structure determination; University of Göttingen: Göttingen, Germany, 1993.

[^0]: ${ }^{+}$Dedicated to Prof. Pascual Royo on the occasion of his 60th birthday.
 \ddagger Universidad de Zaragoza.
 § Universidad de La Rioja.
 ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, December 1, 1997.
 (1) (a) Sappa, E.; Valle, M.; Predieri, G.; Tiripicchio, A. Inorg. Chim. Acta 1984, 88, L23. (b) Wong, Y. S.; J acobson, S. E.; Chieh, P. C.; Carty, A. J . Inorg. Chem. 1974, 13, 284. (c) Berau, G.; Carty, A. J.; Chieh, P. C.; Patel, H. A. J. Chem. Soc., Dalton Trans. 1973, 488.
 (2) (a) Patel, H. A.; Carty, A. J.; Hota, N. K. J. Organomet. Chem. 1973, 50, 247. (b) Carty, A. J.; Paik, H. N.; Ng, T. W. J . Organomet. Chem. 1974, 74, 279.

[^1]: (3) (a) Hota, N. K.; Patel, H. A.; Carty, A. J.; Mathew, M.; Palenik, G. J. J . Organomet. Chem. 1971, 32, C55. (b) Sappa, E.; Predieri, G.; Tiripicchio, A.; Tiripicchio-Camelini, M. J. Organomet. Chem. 1985, 297, 103. (c) Carty, A. J .; Paik, H. N.; Palenik, G. J. I norg. Chem. 1977, 16, 300. (d) Carty, A. J .: Smith, W. F.; Taylor, N. J. J. Organomet. Chem. 1978, 146, C1. (e) O'Connor, T.; Carty, A. J.; Mathew, M.; Palenik, G. J.J. Organomet. Chem. 1972, 38, C15. (f) Carty, A. J.; Dymock, K.; Paik, H. N.; Palenik, G. J. J. Organomet. Chem. 1974, 70, C17. (g) J acobsen, S.; Carty, A. J.; Mathew, M.; Palenik, G. J. J . Am. Chem. Soc. 1974, 96, 4330.

[^2]: (4) F orniés, J.; Lalinde, E.; Martín, A.; M oreno, M. T.; Welch, A. J . J. Chem. Soc., Dalton Trans. 1995, 1333.
 (5) (a) Forniés, J.; Lalinde, E. J. Chem. Soc., Dalton Trans. 1996, 2587. (b) Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 923. (c) Lotz, S.; Van Rooyen, P. H.; Meyer, R. Adv. Organomet. Chem. 1995, 37, 219 and references therein. (c) Nast, R. Coord. Chem. Rev. 1982, 47, 89. (d) Carty, A. J. PureAppl. Chem. 1982, 54, 113. (e) Bruce, M. I. PureAppl. Chem. 1986, 58, 553; 1990, 6, 1021. (f) Raithby, P. R.; Rosales, M. J. Adv. Inorg. Chem. Radiochem. 1985, 29, 169. (g) Sappa, E.; Tiripicchio, A.; Braunstein, P. Coord. Chem. Rev. 1985, 65, 219. (h) Bruce. M. I . Chem. Rev. 1991, 91, 197. (i) Davies, S. G.; McNally, J. P.; Smallridge, A. J. Adv. Organomet. Chem. 1990, 30, 1. (j) Pavan Kumar, P. N. V.; J emmis, E. D. J. Am. Chem. Soc. 1988, 110, 125. (k) J eannin, Y. Transition Met. Chem. 1993, 18, 122. (I) Cauletti, C.; Furlani, C.; Sebald, A. Gazz. Chim. Ital. 1988, 118, 1.

[^3]: (7) (a) Cross, R. J.; Gemmill, J . J . Chem. Soc., Dalton Trans. 1984, 199. (b) Bradshaw, J. D.; Guo, L.; Tessier, C. A.; Youngs, W. J. Organometallics 1996, 15, 2582. (c) Pregosin, P. S.; Kunz, R. W. In NMR Basic Principles and Progress; Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer-Verlag: New York, 1979; Vol. 16, pp 43-45.
 (8) (a) Sebald, A.; Wrackmeyer, B. Z. Naturforsch. 1983, 38b, 1156. (b) Sebald, A.; Wrackmeyer, B.; Beck W. Z. Naturforsch. 1983, 38b, 45. (c) Sebald, A.; Stader, C.; Wrackmeyer, B.; Bensh, W. J . Organomet. Chem. 1986, 311, 233.
 (9) Berenguer, J . R.; F orniés, J .; Lalinde, E.; Martínez, F. Organometallics 1996, 15, 4537.

[^4]: (10) Grindley, T. B.; J ohnson, K. F.; Katritzky, A. R.; Keogh, H. J .; Thirkettle, C.; Topsom, R. D. J. Chem. Soc., Perkin Trans. II 1974, 282.

[^5]: (11) (a) Maitlis, P. M.; Espinet, P.; Rusell, M. J . H. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Vol. 6, Chapters 38.5 and 38.9. (b) Maitlis, P. M. Acc. Chem. Res. 1976, 9, 93. (c) Maitlis, P. M. J. Organomet. Chem. 1980, 200, 161. (d) Huggins, J. M.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 3002. (e) Samsel, E. G.; N orton, J. R. J. Am. Chem. Soc. 1984, 106, 5505.

[^6]: (18) (a) Albéniz, A. C.; Cuevas, J. C.; Espinet, P.; de Mendoza, J.; Prados, P. J. Organomet. Chem. 1991, 410, 257. (b) Abel, E. W.; Orrell', K. G.; Osborne, A. G.; Pain, H. M.; Sik, W.; Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Dalton Trans. 1994, 3441.
 (19) (a) Berenguer, J . R.; Forniés, J.; Lalinde, E.; Martínez, F.; Urriolabeitia, E.; Welch, A. J . Chem. Soc., Dalton Trans. 1994, 1291. (b) Ara, I.; Berenguer, J. R.; Forniés, J.; Lalinde, E.; Tomás, M. Organometallics 1996, 15, 1014. (c) Falvello, L. R.; Forniés, J.; Navarro, R.; Rueda, A.; Urriolabeitia, E. P. Organometallics 1996, 15, 309.
 (20) (a) Casares, J. A.; Coco, S.; Espinet, P.; Lin, Y.-S. Organometallics 1995, 14, 3058. (b) Minniti, D. Inorg. Chem. 1994, 33, 2631.
 (21) Berenguer, J . R.; Falvello, L.; Forniés, J .; Lalinde, E.; Tomás, M. Organometallics 1993, $12,6$.
 (22) (a) Erker, G.; Fromberg, W.; Benn, R.; Mynott, R.; Angermund, K.; Krüger, C. Organometallics 1989, 8, 911. (b) Falvello, L. R.; Fernández, S.; Forniés, J.; Lalinde, E.; Martínez, F.; Moreno, M. T. Organometallics 1997, 16, 1326.

[^7]: (23) Günther, H. NMR Spectroscopy; Wiley: New York, 1980; p 241.

[^8]: (24) (a) Cherkas, A. A.; Taylor, N. J.; Carty, A. J. J. Chem. Soc., Chem. Commun. 1990, 385. (b) Deeming, A.J.; Felix, M. S. B.; Bartes, P. A.; Hursthouse, M. B. J. Chem. Soc., Chem. Commun. 1987, 461. (c) Deeming, A. J.; Felix, M. S. B.; Nuel, D. Inorg. Chim. Acta 1993, 213, 3.

[^9]: (25) Carty, A. J.; Taylor, N. J.; Smith, W. F. J. Chem. Soc., Chem. Commun. 1979, 750.
 (26) (a) Díez, J .; Gamasa, M. P.; Gimeno, J.; Aguirre, A.; GarcíaGranda, S. Organometallics 1991, 10, 380. (b) Díez, J .; Gamasa, M. P.; Gimeno, J.; Lastra, E.; Aguirre, A.; García-Granda, S. Organome tallics 1993, 12, 2213.
 (27) Ara, I.; F orniés, J.; Lalinde, E.; Moreno, M. T.; Tomás, M. J . Chem. Soc., Dalton Trans. 1994, 2735; 1995, 2397.
 (28) Carty, A. J.; Hota, N. K.; Ng, T. W.; Patel, H. A.; O'Connor, T. J. Can. J. Chem. 1971, 49, 2706.
 (29) Cross, R. J .; Davidson, M. F. J . Chem. Soc., Dalton Trans. 1986, 1987.
 (30) U són, R.; Forniés, J.; Tomás, M.; Menjón, B. Organometallics 1985, 4, 1912.

