Synthesis of Bis(η^{2}-alkyne) Trinuclear Zwitterionic Platinum Hydride Complexes by Reaction of $\left[\text { trans- } \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CR})_{2}\right]^{2-}$ with the Solvento Species [trans-PtHL ${ }_{2}$ (acetone)] ${ }^{+}$

Irene Ara, ${ }^{\dagger}$ J esús R. Berenguer, \ddagger J uan F orniés,*,† Elena Lalinde,,*, ${ }^{*}$ and M. Teresa Moreno ${ }^{\ddagger}$
Departamento de Quími ca Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain, and Departamento de Química, Universidad de La Rioja, 26001 Logroño, Spain

Received October 17, 1995^{*}

Abstract

The alkynylation of trans-[Pt($\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ (tht) $)_{2}$ ($\mathrm{tht}=$ tetrahydrothiophene) with $\mathrm{LiC} \equiv \mathrm{CR}$ in diethyl ether ($\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3}$) or THF $\left(\mathrm{R}=\mathrm{t}^{\mathrm{t}} \mathrm{Bu}\right)$ leads to novel dianionic species [trans-Pt$\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CR})_{2}\right]^{2-}\left(\mathrm{R}=\mathrm{Ph}(\mathbf{1}), \mathrm{SiMe}_{3}(\mathbf{2})\right.$, $\left.\mathrm{tBu}(\mathbf{3})\right)$ which have been isolated as tetrabutylammonium salts. Treatment of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CR})_{2}\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right)$ with 2 equiv of cationic hydride reagents of the type [trans-PtHL ${ }_{2}$ (acetone)] ${ }^{+}\left(L=\mathrm{PPh}_{3}, \mathrm{PEt}_{3}\right)$ in acetone form, via a ligand replacement, simple bis(η^{2}-alkyne) trinuclear zwitterionic complexes trans, trans, trans- $\left\{\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(u-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{PtHL})_{2}\right\}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{PPh}_{3}(\mathbf{4 a})\right.$, $\mathrm{PEt}_{3}(\mathbf{4 b}) ; \mathrm{R}=\mathrm{SiMe}_{3}, \mathrm{~L}=\mathrm{PPh}_{3}(\mathbf{5 a}), \mathrm{PEt}_{3}(\mathbf{5 b}) ; \mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{L}=\mathrm{PEt}_{3}(\mathbf{6 b})$). The structure of complex $\mathbf{4 b}$ has been determined by X-ray diffraction methods.

Introduction

A large number of transition σ-alkynyl complexes have been described, and it is well-known that the reactivity of the alkynyl ligand is a sensitive function of the nature of the alkynyl substituent, the attached metal and its ligands, and the overall charge of the complex. ${ }^{1}$ It is well documented that alkynyl complexes containing electron-donating transition metal fragments generally undergo α-attack by nucleophiles and β-attack by electrophiles. ${ }^{1 \text { bd }, 2}$ This reactivity has been rationalized on the basis of resonance forms A and B (Chart 1), with form B becoming more important as the electron density on the complex increases and as the ligands and the alkynyl substituents become more electron releasing.

The insertion of acetylenes into a $\mathrm{M}-\mathrm{H}$ bond, which is a fundamental step of many catalytic cycles, is a wellknown process; ${ }^{3}$ however, in spite of the similarity between σ-alkynyl complexes and acetylenes, the reactions of transition-metal hydrides with metal-alkynyl

[^0]
Chart 1

compounds have been scarcely explored. The few cases that have been published show quite a normal behavior on the basis of the established trends in reactivity of metal-al kynyl complexes and metal hydrides (Scheme 1). For example, Bullock et al. have shown that relatively acidic transition-metal hydrides, such as Cp $(\mathrm{CO})_{3} \mathrm{MH}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$, protonate the β-carbon of metal-alkynyl complex [$\mathrm{Cp}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{RuC} \equiv \mathrm{CMe}$] rendering the cationic ruthenium vinylidene with a metal anion as counterion (Scheme 1a). ${ }^{4}$ Opposite regiochemistry has been observed in the reaction of the same alkynyl complex with the hydridic metal hydride $\left[\mathrm{Cp}_{2}-\right.$ $\mathrm{ZrHCl}]_{n}$ which provides the corresponding 1,2-dimetalloal kene (Scheme 1b). ${ }^{5}$ Lukehart and co-workers have also nicely demonstrated that the $\mathrm{Pt}-\mathrm{H}$ bond of [trans$\operatorname{PtH}\left(\mathrm{PEt}_{3}\right)_{2}$ (acetone) $]^{+}$adds regioselectively across the $\mathrm{C} \equiv \mathrm{C}$ triple bond of terminal alkynyl ligands to give homo- or heterodinuclear complexes containing bridging alkenylidene ligands (Scheme 1c). ${ }^{6}$ The mechanism for these $\mathrm{Pt}-\mathrm{H}$ addition reactions has not been fully proved, although it has been pointed out that the regiochemistry observed is that expected for having initial coordination of the $\mathrm{C} \equiv \mathrm{C}$ multiple bond to the coordinatively unsaturated complex $\left[\mathrm{HPt}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}$, followed by 1,2-addition of the polarized bond $\mathrm{Pt}^{\delta-}-\mathrm{H}^{\delta+}$ across the unsaturated

[^1]
Scheme 1

(a)

(b)

(c)
a) $\mathrm{L}^{\prime}{ }_{n} \mathrm{M}=\mathrm{Cp}(\mathrm{CO})_{3} \mathrm{M}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}) ; \mathrm{L}=\mathrm{PMe}_{3}$
b) $\mathrm{ML}^{\prime}{ }_{n}=\mathrm{Cp}_{2} \mathrm{ZrCl} ; \mathrm{L}=\mathrm{PMe}_{3} ; \mathrm{R}=\mathrm{Me}, \mathrm{H}$
c) $\mathrm{ML}_{n}^{\prime}=\mathrm{ML}_{2} \mathrm{C} \equiv \mathrm{CR}(\mathrm{M}=\mathrm{Pt}, \mathrm{R}=\mathrm{Ph}, \mathrm{Me}, \mathrm{H}$ or $\mathrm{M}=\mathrm{Pd}, \mathrm{Ni} ; \mathrm{R}=\mathrm{Ph})$, $\mathrm{AuPPh}_{3}, \mathrm{AuL}, \mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Fe}$ or $\mathrm{Cp}(\mathrm{CO})_{3} \mathrm{~W} ; \mathrm{L}=\mathrm{PEt}_{3}$
bond, with the H ligand adding to the β-carbon atom. In the course of the last few years we have been investigating the ability of the very reactive anionic alkynyl substrates $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{4}\right]^{2-}$ and $\left[\mathrm{cis-Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ $\left.(\mathrm{C} \equiv \mathrm{CR})_{2}\right]^{2-}$ to stabilize polynuclear platinum complexes bearing alkynyl groups as unique bridging ligands. ${ }^{7}$ Continuing our work in this field, here we describe the syntheses and characterization of the corresponding dianionic $\left[\text { trans- } \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CR})_{2}\right]^{2-}$ species stabilized with $\mathrm{NBu}_{4}{ }^{+}$cations as counterions and al so report their reactions with [trans-PtHL ${ }_{2}$ (acetone) $]^{+}\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PEt}_{3}\right)$ in a $1: 2$ molar ratio. Surprisingly and in contrast with Lukehart's results, these reactions afford simple trinuclear zwitterionic complexes trans,trans,trans- $\{$ [Pt$\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(u-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{PtHL})_{2}\right)_{2}$, in which the starting precursor $\left[R C \equiv C P P t L ~_{2} \mathrm{C} \equiv C R\right]^{2-}\left(\mathrm{L}=\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ is only acting as a bridging diyne ligand between two different cationic [trans- $\left.\mathrm{PtHL}_{2}\right]^{+}$fragments. The crystal structure of trans,trans, trans- $\left\{\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right][\mathrm{PtH}-\right.$ ($\left.\left.\mathrm{PEt}_{3}\right)_{2} 2_{2}\right\}$ (4b) is reported.

Results and Discussion

While heteroleptic neutral alkynyl mononuclear complexes of platinum are relatively common, ${ }^{1 a, 8}$ similar mixed organo-alkynyl anionic compounds are quite rare. ${ }^{9}$ Recently, we have described the synthesis of anionic $\left(\mathrm{NBu}_{4}\right)_{2}\left[\mathrm{cis}-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CR})_{2}\right]\left(\mathrm{R}=\mathrm{Ph},{ }^{\mathrm{t}} \mathrm{Bu}^{7 \mathrm{bb}}\right.$ $\mathrm{SiMe}_{3}{ }^{7 \mathrm{e}}$) and have shown that they are suitable precursors for the synthesis of homo- and heterobinuclear complexes stabilized through a doubly alkynyl bridging system. ${ }^{7 \text { ce,f }}$ In view of these results, we considered the preparation of the isomeric trans anionic species [trans$\left.\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CR})_{2}\right]^{2-}$ of interest since the presence of π donor ligands in trans positions make them suitable precursors to di- or trinuclear mono μ-C \equiv CR complexes.

So, complexes ($\left.\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CR})_{2}\right]$ can be synthesized by prol ongated treatment (24 h) of trans$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{tht})_{2}\right]$ (tht =tetrahydrothiophene) with an excess of $\mathrm{LiC} \equiv \mathrm{CR}$ in diethyl ether ($\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3}$) or tetrahydrofuran ($\mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}$) (eq 1). This causes the

[^2]\[

$$
\begin{aligned}
& {\left[\text { trans-Pt }\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { (tht })_{2}\right]+} \\
& \mathrm{LiC}=\mathrm{CR}+\mathrm{NBu}_{4} \mathrm{Br}(\text { excess }) \rightarrow \\
& \left.\left(\mathrm{NBu}_{4}\right)_{2} \operatorname{trans}-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{R})_{2}\right]+2 \mathrm{LiBr}+2 \text { tht (1) } \\
& \mathrm{R}=\mathrm{Ph}(\mathbf{1}), \mathrm{SiMe}_{3}(\mathbf{2}), \mathrm{t}^{\mathrm{Bu}}(\mathbf{3})
\end{aligned}
$$
\]

displacement of both tht ligands and leads to the formation of the anionic species [trans- $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-$ $\left.(\mathrm{C} \equiv \mathrm{R})_{2}\right]^{2-}$, which, by addition of $\mathrm{NBu}_{4} \mathrm{Br}$, can be crystallized as $\mathrm{NBu}_{4}{ }^{+}$salts in excellent yields (eq 1; see Experimental Section).

Their analytical and spectroscopic data are given in the Experimental Section. In agreement with the trans geometry ($\mathrm{D}_{2 \mathrm{~h}}$) assigned to complexes 1-3, their IR spectra show a single band ($2077 \mathrm{~cm}^{-1}$ (1), $2014 \mathrm{~cm}^{-1}$ (2), $\left.2091 \mathrm{~cm}^{-1}(3)\right)$ due to $v(\mathrm{C} \equiv \mathrm{C})\left(\mathrm{B}_{2 u}\right)$ along with one band due to the X -sensitive mode of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group. ${ }^{10}$ As expected, the ${ }^{19}$ F NMR spectra exhibit signals due to only one type of $\mathrm{C}_{6} \mathrm{~F}_{5}$ ligand and the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ and $\mathbf{3}$ show only singlet resonances for the methyl groups of the trimethylsilyl or tert-butylal kynyl ligands, respectively. The ${ }^{13} \mathrm{C}$ NMR spectra of 1 show, in addition to the expected resonances due to phenyl and NBu_{4} groups, two singlet signals at 103.9 and 121.5 ppm , which can be tentatively assigned to the acetylenic carbon resonances C_{α} and C_{β}, respectively. However, complexes $2\left(R=\right.$ SiMe3 $\left._{3}\right)$ and $\mathbf{3}\left(R={ }^{\text {tBu }}\right.$) show only a singlet signal in the acetylenic region due to C_{α} or C_{β} atoms (δ 102.1, 2; δ 107.5, 3).
The trans-bis(al kynyl)bis(pentafluorophenyl)platinate(II) derivatives $\mathbf{1 - 3}$ can be regarded as simple metallo-1,4-diynes and should be expected to be highly nucleophilic and reactive due to the negative charges on the complexes. Since the $\mathrm{Pt}-\mathrm{H}$ bond of the cationic hydride reagents [trans-PtH $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}$is known to add, without exception, across the alkynyl $\mathrm{C} \equiv \mathrm{C}$ triple bonds of metallo ${ }^{6}$ or elementa (main group) substituted alkynyl compounds, ${ }^{11}$ we decided initially to explore their reactivity toward these anionic substrata ($\mathbf{1}-\mathbf{3}$) in order to ascertain the nature of the resulting products, as well as the mechanism involved in this type of process.
Treatment of the in situ generated cationic hydride reagents [trans- PtHL_{2} (acetone)] $\left(\mathrm{CIO}_{4}\right)\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PEt}_{3}\right)$ (see Experimental Section) with ($\left.\mathrm{NBu}_{4}\right)_{2}[$ trans-Pt$\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CR})_{2}\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3},{ }^{\text {t }} \mathrm{Bu}\right)$ in acetone solution at room temperature for $\mathrm{R}=\mathrm{Ph}$, or at low temperature

[^3]$\left(-10^{\circ} \mathrm{C}\right)$ for $\mathrm{R}=\mathrm{SiMe}_{3}$ or ${ }^{\mathrm{t}} \mathrm{Bu}$, in a 2:1 molar ratio, afforded, unexpectedly, the simple bis(μ-alkyne) trinuclear zwitterionic neutral complexes trans,trans,-trans- $\left\{\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]\left(\mathrm{PtHL}_{2}\right)_{2}\right\}$ in moderate ($\mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{PPh}_{3}(\mathbf{4 a}), \mathrm{PEt}_{3}(\mathbf{4 b})$) or low yield $(\mathrm{R}=$ $\mathrm{SiMe}_{3}, \mathrm{~L}=\mathrm{PPh}_{3}(5 \mathbf{a}), \mathrm{PEt}_{3}(5 \mathbf{b}) ; \mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{L}=\mathrm{PEt}_{3}$ (6b)), according to eq 2. However, all attempts to syn-

$R=P h ; L=P P h_{3} 4 a, \mathrm{PEt}_{3} 4 b$
$\mathrm{R}=\mathrm{SiMe}_{3} ; \mathrm{L}=\mathrm{PPh}_{\mathbf{3}} \mathbf{5 a}, \mathrm{PEt}_{3}$ 5b
$R={ }^{\mathrm{A}} \mathrm{Bu} ; \mathrm{L}=\mathrm{PEt}_{3} 6 \mathrm{~b}$
thesize the analogue derivative $\mathbf{6 a}$ by treating $\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C} \equiv \mathrm{C}^{\text {n }}{ }^{\mathrm{B}}\right)_{2}$] with 2 equiv of [trans$\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)_{2}$ (acetone) $]^{+}$were unsuccessful, since the reactions gave mixtures of products which have not been further investigated.

Compounds $\mathbf{4 a}, \mathbf{b}, \mathbf{5 a}, \mathbf{b}$, and $\mathbf{6 b}$ were characterized by elemental analyses and spectroscopic methods (see Experimental Section). The IR spectra showed a similar pattern in the $v(\mathrm{Pt}-\mathrm{H})$ and $v(\mathrm{C} \equiv \mathrm{C})$ regions for all compounds. They exhibit one strong absorption in the $2145-2160 \mathrm{~cm}^{-1}$ range, which can be assigned to the $v(\mathrm{Pt}-\mathrm{H})$ vibrations and which is typical for terminal hydride ligands. ${ }^{12}$ The values observed in our complexes are lower than those reported for the chloride precursor trans-[PtHCIL 2] $\left(2220 \mathrm{~cm}^{-1}\right.$ for $\mathrm{L}=\mathrm{PPh}_{3}{ }^{13}$ and $2210 \mathrm{~cm}^{-1}$ for $\mathrm{L}=\mathrm{PEt}_{3}{ }^{14}$) but higher than those reported for complexes of the type trans-[PtH(C $\equiv \mathrm{CR})$ $\left.\mathrm{L}_{2}\right]^{15}$ (2015-2050 cm^{-1}), suggesting that the alkynyl ligands bound in a π fashion exert a lower trans influence than when they are σ-bonded but higher than the Cl atom.

On the other hand, there is a very strong $v(\mathrm{C} \equiv \mathrm{C})$ absorption (two for $\mathbf{4 b}$ and $\mathbf{5 a}$) in the expected region (1836-1963 cm ${ }^{-1}$) for side-on $\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CR}$ groups. ${ }^{7}$ The ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra give evidence of highly symmetric systems. Thus, the ${ }^{19} \mathrm{~F}$ NMR spectra exhibit

[^4]

Figure 1. Molecular structure of complex 4b, showing the atom-numbering scheme.
the typical pattern of three signals in a 2:1:2 ratio (2 $F_{o}: F_{p}: 2 F_{m} ; \mathbf{4 b}, \mathbf{5 b}$, and $\mathbf{6 b}$) or two signals in a $2: 3$ ratio ($2 \mathrm{~F}_{0}: \mathrm{F}_{\mathrm{p}}$ and $2 \mathrm{~F}_{\mathrm{m}}$; 4a and 5a) due to two equivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, for which the plane of coordination is a mirror plane. Moreover, the ${ }^{31}$ P NMR spectra exhibit a singlet with platinum satellites, consistent with the trans arrangement of the phosphine ligands in the $\left[P t H L_{2}\right]$ moieties. Finally, the presence of the hydride ligand is evidenced by a triplet (-9.08 to -11.39 ppm) due to coupling to two equivalent phosphine ligands (${ }^{2} \mathrm{~J}$ H- $\mathrm{P}_{\mathrm{cis}}$ $\cong 13.5 \mathrm{~Hz}$), accompanied by the expected platinum satellites. The relatively high values of ${ }^{11}$ Pt-H (10801255 Hz) is indicative of the terminal nature of the hydride ligand ${ }^{12}$ and the relatively low trans influence of the π-bonded alkynyl ligands. The low stability in solution of $\mathbf{4 b}, \mathbf{5}$, and $\mathbf{6 b}$ and low solubility of $\mathbf{4 a}$ prevented their characterization by ${ }^{13} \mathrm{C}$ NMR spectroscopy.

The definitive characterization of 4-6 as $\operatorname{bis}\left(\eta^{2}-\right.$ alkyne) trinuclear complexes came from a single-crystal X-ray diffraction study on complex 4b. A view of the molecular geometry of this complex is shown in Figure 1. A summary of the fundamental crystallographic data and stuctural parameters is given in Table 1. Final positional parameters appear in Table 2, and selected interatomic distances and angles are listed in Table 3. This study supports the spectroscopic data and confirms that the starting dianionic fragment [trans- $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}$ $\left.(\mathrm{C} \equiv \mathrm{CPh})_{2}\right]^{2-}$ is acting only as a bridging diyne ligand between two identical cationic [trans-PtH $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}$units [related by an inversion center located on $\mathrm{Pt}(1)$], which indicates that the trans geometries around the platinum centers have been preserved throughout the reaction.

The central $\mathrm{Pt}(1)$ atom is located in an approximately square-planar environment formed by the two $\mathrm{C}_{\mathrm{ipso}}$ atoms of $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups (mutually trans) and one C_{α} carbon atom of each $\mathrm{C} \equiv \mathrm{CPh}$ ligand, the $\mathrm{Pt}(1)-\mathrm{C}$ distances being similar to those found in the anions \{cis$\left.\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1}: \mu^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right] \mathrm{Ag}\left(\mathrm{PPh}_{3}\right)\right\}^{-16}$ or [cis-Pt$\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)_{2} \mathrm{ML}_{n}\right]^{-}\left[\mathrm{M} \mathrm{L}_{\mathrm{n}}=\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{7,}{ }^{7 \mathrm{e}}\right.$ $\mathrm{HgBr}_{2}{ }^{7 \mathrm{f}} \mathrm{f}$. The coordination of the terminal platinum atoms $\operatorname{Pt}(2)$ and $\mathrm{Pt}(2 \mathrm{a})$ can be described as distorted

[^5]Table 1. Crystallographic Data and Structure Refinement Parameters for trans,trans,trans$\left\{\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{\mathbf{2}}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]\left[\mathrm{PtH}\left(\mathrm{PEt}_{3}\right)_{\mathbf{2}}\right]_{2}\right\}$ (4b)

empirical formula fw	$\begin{aligned} & \mathrm{C}_{52} \mathrm{H}_{72} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pt}_{3} \\ & 1596.30 \end{aligned}$	
cryst system	triclinic	
space group		
unit cell dimens	$\begin{aligned} & \mathrm{a}=10.438(3) \AA, \alpha=89.98(2)^{\circ}, \alpha \\ & \mathrm{b}=11.863(4) \AA, \beta=73.88(2)^{\circ} \end{aligned}$	
	$\mathrm{c}=13.071(4) \AA, \gamma=69.68(2)^{\circ}$	
V	$1449.81 \AA^{3}$	
Z	2	
D(calc)	$1.10 \mathrm{Mg} / \mathrm{m}^{3}$	
abs coeff	$7.39 \mathrm{~mm}^{-1}$	
F (000)	768.0	
cryst size	$0.23 \times 0.34 \times 0.11 \mathrm{~mm}$	
temp	200(1) K	
wavelength	$0.71073 \AA$	
2θ range for data collcn	$4-47^{\circ}$	
index ranges	$\begin{aligned} -12 & \leq h \leq 12,-13 \leq k \leq 13, \\ 0 & \leq \mathrm{l} \leq 15 \end{aligned}$	
reflcns collcd	4329	
indepdt reflcns	3863 ($\mathrm{R}_{\text {int }}=0.0347$)	
data/restraints/params	2999/0/324	
goodness-of-fit indicator ${ }^{\text {a }}$	1.131	
R indices [2999 reflcns with $\mathrm{I}>2 \sigma(\mathrm{I})]^{\mathrm{a}}$	$\mathrm{R}=0.0325, w R=0.0437$	
R indices (all 3863 data) ${ }^{\text {a }}$	$\mathrm{R}=0.0462, w R=0.0473$	
mean, max \|shift/esd	, final cycle	0.000, 0.000
largest diff peak and hole	1.15 and -0.91 e/A ${ }^{3}$	

${ }^{\mathrm{a}} \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| . \mathrm{wR}=\left[\Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\mid \mathrm{F}_{\mathrm{c}}\right)^{2} \Sigma \mathrm{w}\left|\mathrm{F}_{\mathrm{o}}\right|^{2}\right]^{1 / 2}$. Goodness-of-fit $=\left[\Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} /\left(\mathrm{N}_{\text {obs }}-\mathrm{N}_{\text {param }}\right)\right]^{1 / 2} . \mathrm{w}=1 / \sigma^{2}$ $(F)+0.001051 \mathrm{~F}^{2}$.
square-planar. The $\operatorname{Pt}(2)$ atom is linked to two phosphine ligands (mutually trans) and π bonded to the carbon-carbon triple bond of the $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Ph}$ alkynyl group with the fourth position occupied by the hydrido ligand. This latter atom has not been directly located by this analysis, but its position (trans to the η^{2}-alkyne interaction) can be inferred from the NMR data and from the arrangement of the heavy atoms. The $\mathrm{Pt}(2)-\mathrm{P}$ distances, 2.274(3) and 2.289(3) \AA, fall in the range of distances usually observed in $\mathrm{Pt}(\mathrm{II})$ phosphine complexes. ${ }^{12 b-f, 15}$ The coordination of the alkynyl fragment to $\mathrm{Pt}(2)$ causes, as expected, the reduction of the $\mathrm{P}(1)-$ $\mathrm{Pt}(2)-\mathrm{P}(2)$ angle to the value of $165.5(1)^{\circ}$ due to the lesser steric demand of the hydride ligand.

The $\mu-\eta^{1}: \eta^{2}-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Ph}$ ligand is unsymmetrically bonded to $\mathrm{Pt}(2)$ with the C_{β} atom closer to $\mathrm{Pt}(2)[\mathrm{Pt}(2)-$ $\mathrm{C}(8)=2.265(10) \AA$] than the C_{α} atom $[\mathrm{Pt}(1)-\mathrm{C}(7)=$ 2.443(10) \AA]. This contrasts with the symmetrical π linkage found in the dinuclear derivative cis,trans-[(CO)$\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)_{2}\right](7)^{17}$ and suggests some degree of participation of the metalsubstituted vinylidene resonance structure B (Chart $2 B$), in addition to the dominant contribution of the π-complex A (Chart 2A). ${ }^{2 d, 18}$

In accord with this consideration, (i) the $\mathrm{Pt}(1) \cdots \mathrm{Pt}(2)$ distance of 3.904(2) \AA is longer than that observed in the related monoalkynyl bridged complex 7^{17} and (ii) the acetylenic skeleton $\mathrm{Pt}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ acquires a cis-bent arrangement in such a way that the deviation from linearity is more pronounced at $C_{\beta}[C(7)-C(8)-$

[^6]Table 2. Atomic Coordinates ($\times 1 \mathbf{1 0}^{4}$) and Equivalent I sotropic Displacement Coefficients ($\AA^{\mathbf{2}} \times 1 \mathbf{1 0}^{\mathbf{3}}$) for trans,trans,trans-
$\left\{\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]\left[\mathrm{PtH}\left(\mathrm{PEt}_{3}\right)_{2}\right]_{2}\right\}$ (4b)

	x	y	z	$\mathrm{U}(\mathrm{eq})^{\text {a }}$
Pt(1)	0	5000	5000	32(1)
$\mathrm{Pt}(2)$	552(1)	3116(1)	2360(1)	44(1)
P (1)	-1620(3)	3117(2)	3344(2)	52(1)
$\mathrm{P}(2)$	2583(3)	2948(3)	1022(2)	56(1)
F(2)	-3038(5)	4902(5)	6458(4)	56(2)
F(3)	-3690(7)	3495(7)	7914(6)	89(4)
F(4)	-1573(8)	1694(8)	$8452(7)$	126(5)
F(5)	1205(7)	1431(7)	7537(7)	105(4)
F(6)	1897(5)	2854(5)	6081(5)	61(3)
C(1)	-507(9)	3943(7)	6191(7)	40(4)
C(2)	-1927(11)	4056(9)	6691(8)	55(5)
C(3)	-2296(11)	3320(11)	7436(9)	64(5)
C(4)	-1244(14)	2421(11)	7722(10)	80(6)
C(5)	166(11)	2298(9)	7263(9)	65(5)
C(6)	484(10)	3067(8)	6517(8)	47(4)
C(7)	1069(9)	3488(7)	4013(7)	36(3)
C(8)	1797(9)	2466(8)	3551(7)	44(4)
C(9)	2906(11)	1261(9)	$3359(8)$	60(5)
C (10)	4077(13)	1082(11)	3787(9)	86(6)
C(11)	5182(16)	15(15)	3605(12)	118(8)
C(12)	5159(19)	-911(14)	3033(13)	116(9)
C(13)	4041(18)	-794(12)	2604(12)	104(8)
C(14)	2881(14)	319(8)	2756(9)	78(6)
C(15)	-1521(12)	2196(10)	4467(11)	$74(6)$
C(16)	-2935(25)	2069(24)	5015(20)	78(12)
C(16')	-804(31)	938(27)	4453(26)	105(15)
C(17)	-2961(10)	4612(9)	3950(10)	67(5)
C(18)	-3296(14)	5451(11)	3080(13)	95(7)
C(19)	-2508(15)	2537(14)	2559(13)	98(8)
C (20)	-1704(24)	1400(16)	1912(17)	146(13)
C(21)	2234(15)	3948(17)	-20(11)	109(10)
C (22)	1532(18)	5304(14)	444(14)	105(9)
C(23)	3447(16)	1428(14)	240(12)	105(8)
C (24)	2550(18)	941(15)	-143(14)	125(10)
C (25)	4024(11)	3132(13)	1394(9)	77(6)
C(26)	5384(14)	3052(18)	458(11)	115(10)

a Equivalent isotropic U defined as one-third of the trace of the orthogonalized \mathbf{U}_{ij} tensor.
Table 3. Selected Interatomic Distances (\AA) and Angles (deg) for trans, trans,trans$\left\{\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1} \cdot \boldsymbol{\eta}^{2}-\mathrm{C} \equiv \mathbf{C P h}\right)_{2}\right]\left[\mathrm{PtH}\left(\mathrm{PEt}_{3}\right)_{2} \mathbf{1}_{2}\right\}(\mathbf{4 b})\right.$

$\mathrm{Pt}(1)-\mathrm{C}(1)$	$2.068(9)$	$\mathrm{Pt}(1)-\mathrm{C}(7)$	$1.984(8)$
$\mathrm{Pt}(2)-\mathrm{P}(1)$	$2.274(3)$	$\mathrm{Pt}(2)-\mathrm{P}(2)$	$2.289(3)$
$\mathrm{Pt}(2)-\mathrm{C}(7)$	$2.443(10)$	$\mathrm{Pt}(2)-\mathrm{C}(8)$	$2.265(10)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.232(11)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.462(12)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(7)$	$87.7(3)$	$\mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{P}(2)$	$165.5(1)$
$\mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{C}(7)$	$89.6(2)$	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{C}(7)$	$104.8(2)$
$\mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{C}(8)$	$99.5(2)$	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{C}(8)$	$92.1(2)$
$\mathrm{C}(7)-\mathrm{Pt}(2)-\mathrm{C}(8)$	$30.0(3)$	$\mathrm{Pt}(1)-\mathrm{C}(7)-\mathrm{Pt}(2)$	$123.4(4)$
$\mathrm{Pt}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$169.1(8)$	$\mathrm{Pt}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$66.9(6)$
$\mathrm{Pt}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$83.0(7)$	$\mathrm{Pt}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.3(7)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$156.6(11)$		

Chart 2

$\left.\mathrm{C}(9)=156.6(11)^{\circ}\right]$ than at the $\mathrm{C}_{\alpha}[\mathrm{Pt}-\mathrm{C}(7)-\mathrm{C}(8)=$ 169.1(8) ${ }^{\circ}$. As expected, the C(7)-C(8) vector is oriented essentially perpendicular to the local coordination plane of $\mathrm{Pt}(2)$ [the angle formed by the vector defined by Pt(2) and the midpoint of the $\mathrm{C} \equiv \mathrm{C}$ bond and the $\mathrm{C}(7)-$ $C(8)$ vector is $\left.81.4(5)^{\circ}\right]$ and is inclined by $1.01(8)^{\circ}$ to this
plane [least-squares plane defined by $\mathrm{Pt}(2), \mathrm{P}(1), \mathrm{P}(2)$, and the midpoint of $C(7)-C(8)]$.

Concluding Remarks

As noted in the Introduction, metallo or elementa (main group) substituted alkynyl substrates insert easily into the $\mathrm{Pt}-\mathrm{H}$ bond of $\left[\text { trans }-\mathrm{PtH}\left(\mathrm{PEt}_{3}\right)_{2} \text { (solvento) }\right]^{+}$ to give cis addition complexes as the kinetic products. It has been suggested that the first step in these reactions, as well as in the insertion of alkynes into a $\mathrm{Pt}-\mathrm{H}$ bond of related complexes, ${ }^{19}$ is the formation of a complex in which the $\mathrm{C} \equiv$ C triple bond of the alkyne (or alkynyl fragment) is η^{2}-coordinated to the metal center. In this context, the synthesis of the trinuclear complexes $\mathbf{4 - 6}$ is unexpected and the structure of $\mathbf{4 b}$ provides a strong indication that such species exist. The dianionic nature of the starting precursors [trans- $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-$ $\left.(\mathrm{C} \equiv \mathrm{CR})_{2}\right]^{2-}$, and perhaps the presence of $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, seems to be influential on the behavior of 1-3 as simple 3-platinapenta-1,4-diyne ligands toward the very reactive species [trans-PtHL 2 (acetone)] ${ }^{+}$. However, it should be noted that the influence of the electronic factor is not clear. We have recently found ${ }^{20}$ that the reaction between cis-[Pt($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{THF})\right]$ (THF $=$ tetrahydrofuran) and trans-[PtH $\left(\mathrm{C} \equiv \mathrm{CPh}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ affords the binuclear μ-phenylethenylidene complex $\left[(\mathrm{OC})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\right.$ -$(u-\mathrm{C} \equiv \mathrm{C}(\mathrm{Ph}) \mathrm{H}) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$] (8). The formation of this complex 8 could be the result of an initial alkynylation of the cis-[Pt($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$ fragment and simultaneous formation of a binuclear zwitterionic species cis,trans$\left[(\mathrm{OC})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}^{-}(u-\mathrm{C} \equiv \mathrm{CPh}) \mathrm{Pt}^{+} \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, which probably evolves via cis,cis isomerization and cis 1,2 addition to yield the final μ-phenylethenylidene complex 8.

Experimental Section

All manipulations were performed under N_{2} atmosphere using standard Schlenk techniques. All solvents were distilled from appropriate drying agents. Elemental analyses of C, H, and N and IR spectra were obtained as described el sewhere. ${ }^{7}$ ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on either a Varian XL-200 or a Bruker ARX 300 instrument. Chemical shifts are reported in ppm relative to external standards ($\mathrm{SiMe}_{4}, \mathrm{CFCl}_{3}$, and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$). Conductivities were measured in ca. $5 \times 10^{-4} \mathrm{M}$ acetone solutions using a Phillips 9501/ 01 conductimeter, and mass spectra were obtained in a VG Autospec spectrometer. Starting materials trans- $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ (tht) $\left.)_{2}\right]^{21}$ and trans-[PtHCIL ${ }_{2}$] ($\mathrm{L}=\mathrm{PPh}_{3}{ }^{13 \mathrm{~b}} \mathrm{PEt}_{3}{ }^{13 \mathrm{C}}$) were prepared according to literature procedures. AgClO_{4} was prepared by following a method previously described ${ }^{22}$ but using $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ as precursor.

Preparation of $\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathbf{C} \equiv \mathbf{C R})_{2}\right](\mathrm{R}=$ Ph (1), $\mathbf{S i M e}_{\mathbf{3}}$ (2), ${ }^{\text {t }} \mathbf{B u}$ (3)). A typical preparation for complex $\mathbf{1}$ was as follows: A solution of $\mathrm{Li}{ }^{\mathrm{n}} \mathrm{Bu}$ in hexane ($2.36 \mathrm{M}, 1.47$ $\mathrm{mL}, 3.47 \mathrm{mmol}$) was added dropwise during 5 min to a di ethyl ether solution (30 mL) of $\mathrm{PhC} \equiv \mathrm{CH}(0.36 \mathrm{~g}, 3.48 \mathrm{mmol})$ at -10 ${ }^{\circ} \mathrm{C}$. After 20 min of stirring, trans- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{tht})_{2}\right](0.491 \mathrm{~g}$, 0.696 mmol) was added and the mixture stirred for 24 h at room temperature. The resulting white suspension was evaporated to dryness, and the residue was treated with

[^7]deoxygenated water (50 mL). The aqueous solution was filtered and added dropwise to a solution of $\mathrm{NBu}_{4} \mathrm{Br}(0.570 \mathrm{~g}$, 1.532 mmol) in water (10 mL), causing the precipitation of 1 as a white solid, which was filtered off, washed repeatedly with deoxygenated water, and, finally, air dried ($0.443 \mathrm{~g}, 87 \%$ yield). Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{82} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{Pt}$: $\mathrm{N}, 2.30$; C, 59.25; H, 6.79. Found: N, 2.06; C, 58.96; H, 6.68. IR (cm^{-1}): $v(\mathrm{C} \equiv \mathrm{C}) 2077$ (vs); $v\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{\mathrm{x} \text {-sensitive }} 765$ (s). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta-111.5$ $\left(\mathrm{d}, \mathrm{F}_{0},{ }^{3}{ }^{\text {J }}{ }_{\mathrm{pt}-\mathrm{Fo}}=415 \mathrm{~Hz}\right) ;-170.5\left(\mathrm{t}, \mathrm{F}_{\mathrm{p}},{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=20.5 \mathrm{~Hz}\right) ;-168.5$ ($\mathrm{m}, \mathrm{F}_{\mathrm{m}}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 150-135\left(\mathrm{br}, \mathrm{C}_{6} \mathrm{~F}_{5}\right) ; 132.0$ ($\mathrm{C}_{\text {ipso }}, \mathrm{Ph}$); 130.4, $126.8,121.5$ (s, Ph); 120.1 (s, C_{β}, platinum satellites not observed); 103.9 (s, C_{α}, platinum satellites not observed); 58.0 (s, N-CH ${ }_{2}{ }^{n} B u$); 23.2 (s, $-\mathrm{CH}_{2}-$, ${ }^{n} \mathrm{Bu}$); 19.0 (s, $\left.-\mathrm{CH}_{2}-\mathrm{CH}_{3},{ }^{n} \mathrm{Bu}\right) ; 12.6\left(\mathrm{~s}, \mathrm{CH}_{3},{ }^{n} \mathrm{Bu}\right) . \Lambda_{\mathrm{M}}$ (in acetone) $=$ $182 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Complexes 2 and 3 were obtained similarly but using a larger excess of $\mathrm{LiC} \equiv \mathrm{CR}(\mathrm{LiC} \equiv \mathrm{CR} / \mathrm{Pt}=8 / 1)$, and in the case of 3, THF was used as solvent.

2: $\mathrm{Li}^{n B u}(2.36 \mathrm{M}, 2.40 \mathrm{~mL}, 5.67 \mathrm{mmol}), \mathrm{SiMe}_{3} \mathrm{C} \equiv \mathrm{CH}(0.56$ $\mathrm{g}, 5.67 \mathrm{mmol})$, trans-[Pt(C6F5) $\left.)_{2}(\mathrm{tht})_{2}\right](0.5 \mathrm{~g}, 0.7 \mathrm{mmol}) ; 0.400 \mathrm{~g}$, 78% yield. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{90} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{PtSi}_{2}: \mathrm{N}, 2.32$; C , $53.67 ; \mathrm{H}, 7.51$. Found: $\mathrm{N}, 2.27 ; \mathrm{C}, 53.61 ; \mathrm{H}, 8.07$. IR $\left(\mathrm{cm}^{-1}\right)$: $v(\mathrm{C} \equiv \mathrm{C}) 2014(\mathrm{~s}, \mathrm{sh}) ; \nu\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{\mathrm{X} \text {-sensitive }} 759$ (s). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta-0.16\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right) ; 0.89\left[\mathrm{t},-\mathrm{CH}_{3},{ }^{\mathrm{n} B u}\right] ; 1.29\left[\mathrm{~m},-\mathrm{CH}_{2},{ }^{\mathrm{n}} \mathrm{Bu}\right]$; 1.59 [m, $\left.-\mathrm{CH}_{2}-, \mathrm{nBu}\right] ; 3.35\left[\mathrm{~m}, \mathrm{NCH}_{2}, \mathrm{nBu}\right] .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-112.1\left(\mathrm{~d}, \mathrm{~F}_{0},{ }^{3}{ }^{3}{ }_{\mathrm{Pt}-\mathrm{Fo}}=339 \mathrm{~Hz}\right) ;-169.8\left(\mathrm{t}, \mathrm{F}_{\mathrm{p},}{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}\right.$ $=19.3 \mathrm{~Hz}) ;-169.2\left(\mathrm{~m}, \mathrm{~F}_{\mathrm{m}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3},-50^{\circ} \mathrm{C}\right)$: $\delta 102.1\left(\mathrm{~s}, \mathrm{C}_{\alpha}\right.$ or C_{β}); $57.3\left(\mathrm{~s}, \mathrm{~N}-\mathrm{CH}_{2},{ }^{\mathrm{n} B u}\right) ; 22.7\left(\mathrm{~s},-\mathrm{CH}_{2}-\right.$, $\left.{ }^{n} B u\right) ; 18.7\left(\mathrm{~s},-\mathrm{CH}_{2}-\mathrm{CH}_{3},{ }^{\mathrm{n}} \mathrm{Bu}\right) ; 12.5\left(\mathrm{~s}, \mathrm{CH}_{3},{ }^{n} \mathrm{Bu}\right) ; 0.81(\mathrm{~s}$, SiMe ${ }_{3}$). Λ_{M} (in acetone) $=142 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

3: LinBu ($2.36 \mathrm{M}, 1.83 \mathrm{~mL}, 4.31 \mathrm{mmol}$), tBuC $\equiv \mathrm{CH}(0.35 \mathrm{~g}$, $4.31 \mathrm{mmol})$, trans-[$\left.\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { tht })_{2}\right](0.38 \mathrm{~g}, 0.54 \mathrm{mmol}) ; 0.335$ $\mathrm{g}, 90 \%$ yield. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{90} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{Pt}$: $\mathrm{N}, 2.38$; C, 57.18; $\mathrm{H}, 7.71$. Found: $\mathrm{N}, 2.20 ; \mathrm{C}, 56.91 ; \mathrm{H}, 8.01$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C})$ 2091 (vs); $\nu\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{X}$-sensitive 756 (s). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 0.97$ (s, ${ }^{\mathrm{tBu}}$); 0.89 [t, $-\mathrm{CH}_{3}, \mathrm{nBu}$]; 1.35 [m, $\left.-\mathrm{CH}_{2}, ~ \mathrm{nBu}\right] ; 1.78$ [m, $-\mathrm{CH}_{2}-$, nBu]; 3.54 [m, $\mathrm{NCH}_{2},{ }^{n \mathrm{Bu}}$]. ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$: $\delta-110.0\left(\mathrm{~d}, \mathrm{~F}_{\mathrm{o}}{ }^{3} \mathrm{~J}_{\mathrm{Pt}-\mathrm{Fo}}=398 \mathrm{~Hz}\right) ;-171.8\left(\mathrm{t}, \mathrm{F}_{\mathrm{p},}{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=19.5\right.$ $\mathrm{Hz}) ;-169.8\left(\mathrm{~m}, \mathrm{~F}_{\mathrm{m}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 107.5\left(\mathrm{~s}, \mathrm{C}_{\alpha}\right.$ or C_{β}); 59.2 (s, $\mathrm{N}-\mathrm{CH}_{2},{ }^{\mathrm{n} B u}$); 33.4 (s, ${ }^{\mathrm{t} B u}$); 24.3 ($\mathrm{s},-\mathrm{CH}_{2}-$, ${ }^{\mathrm{n} B u}$); $19.8\left(\mathrm{~s},-\mathrm{CH}_{2}-\mathrm{Me},{ }^{\mathrm{n}} \mathrm{Bu}\right) ; 13.4\left(\mathrm{~s}, \mathrm{CH}_{3},{ }^{\mathrm{n}} \mathrm{Bu}\right) . \Lambda_{\mathrm{M}}$ (in acetone) $=169 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Preparation of trans, trans, trans- $\left\{\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{2-}\right.\right.\right.$ $\left.\mathbf{C} \equiv \mathbf{C P h})_{2} \mathbf{]}\left(\mathbf{P t H L}_{2}\right)_{2}\right\} \quad\left(\mathbf{L}=\mathbf{P P h}_{\mathbf{3}}(\mathbf{4 a}), \mathbf{P E t}_{3}(4 b)\right)$. To a filtered solution of 0.198 mmol of [trans-PtH $\left(\mathrm{PPh}_{3}\right)_{2}$ (acetone)]$\left(\mathrm{ClO}_{4}\right)$ (prepared from $0.15 \mathrm{~g}(0.198 \mathrm{mmol})$ of trans-[PtHCl$\left(\mathrm{PPh}_{3}\right)_{2}$] and $\mathrm{AgClO}_{4}(0.041 \mathrm{~g}, 0.198 \mathrm{mmol})$ in 30 mL of acetone) was added $0.115 \mathrm{~g}(0.095 \mathrm{mmol})(0.95$ molar equiv) of $\mathbf{1}$, giving a deep yellow solution. After 10 min of stirring at room temperature, a yellow solid precipitated. The mixture was stirred for 30 min and then concentrated to ca. 10 mL . The solid was filtered off, washed with acetone (1 mL), and air dried ($0.119 \mathrm{~g}, 58 \%$ yield). Anal. Calcd for $\mathrm{C}_{100} \mathrm{H}_{72} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pt}_{3}: \mathrm{C}$, 55.28; H, 3.34. Found: C, 54.96; H, 3.69. IR (cm^{-1}): $v(\mathrm{Pt}-$ H) $2145(\mathrm{~s}) ; v(\mathrm{C} \equiv \mathrm{C}) 1932(\mathrm{vs}) ; v\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ X-sensitive, this absorption can not be assigned unambiguously. FAB mass spectrum: molecular peak not observed, $\mathrm{m} / \mathrm{z} 719,\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}, 100 \%$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.27\left(\mathrm{~m}, 60 \mathrm{H}, \mathrm{PPh}_{3}\right) ; 6.70\left(\mathrm{t}, 2 \mathrm{H}_{\mathrm{p}}, \mathrm{Ph}\right), 6.44$ (t, $4 \mathrm{H}_{\mathrm{m}}, \mathrm{Ph}$); $5.70\left(\mathrm{~d}, 4 \mathrm{H}_{\mathrm{o}}, \mathrm{Ph}\right) ;-9.08\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Pt}-\mathrm{H}, \mathrm{l}_{\mathrm{Jt}-\mathrm{H}}=\right.$ $1088 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{p}-\mathrm{H}}=13.4 \mathrm{~Hz}$). ${ }^{19} \mathrm{~F}$ NMR (CDCl_{3}): $\delta-109.2(\mathrm{~d}$, $\left.\mathrm{F}_{\mathrm{o}}{ }^{3}{ }^{3} \mathrm{Pt}-\mathrm{Fo}=351 \mathrm{~Hz}\right) ;-165.7\left(\mathrm{~m}, \mathrm{~F}_{\mathrm{p}}\right.$ and $\left.\mathrm{F}_{\mathrm{m}}\right)$. ${ }^{31 \mathrm{P}} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 24.11\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{pt}-\mathrm{p}}=2986 \mathrm{~Hz}\right)$.

Using a similar procedure, the reaction between trans[$\left.\mathrm{PtHCl}\left(\mathrm{PEt}_{3}\right)_{2}\right](0.120 \mathrm{~g}, 0.256 \mathrm{mmol}), \mathrm{AgClO}_{4}(0.053 \mathrm{~g}, 0.256$ $\mathrm{mmol})$, and $\left(\mathrm{NBu}_{4}\right)_{2}\left[\right.$ trans $\left.-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{C} \equiv \mathrm{CPh})_{2}\right](0.148 \mathrm{~g}, 0.122$ mmol) gave $\mathbf{4 b}$ as a yellow solid ($0.101 \mathrm{~g}, 52 \%$ yield). Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{72} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pt}_{3}$: C, 39.13; $\mathrm{H}, 4.55$. Found: C, 39.46 ; $\mathrm{H}, 4.60$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{Pt}-\mathrm{H}) 2151(\mathrm{~s}) ; \nu(\mathrm{C} \equiv \mathrm{C}) 1989(\mathrm{~m}), 1949$ (vs). FAB mass spectrum: molecular peak not observed, m / z 431, $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}, 100 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.29,7.10(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ph}) ; 1.64\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{PEt}_{3}\right), 0.95\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{PEt}_{3}\right)$; $-9.6\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Pt}-\mathrm{H},{ }^{1} \mathrm{~J} \mathrm{pt}-\mathrm{H}=1255 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{p}-\mathrm{H}}=13.5 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$

NMR (CDCl_{3}): $\delta-113.0\left(\mathrm{~d}, \mathrm{~F}_{\mathrm{o}}{ }^{3}{ }^{3}\right.$ pt-Fo $=346 \mathrm{~Hz} ;-166.8(\mathrm{t}$, $\left.\mathrm{F}_{\mathrm{p},}{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}=20 \mathrm{~Hz}\right) ;-166.1\left(\mathrm{~m}, \mathrm{~F}_{\mathrm{m}}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.44$ ($\mathrm{s}, \mathrm{I}_{\mathrm{pt}-\mathrm{p}}=2640 \mathrm{~Hz}$).

Preparation of trans,trans,trans-\{ $\left[\mathrm{Pt}_{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{2}-\right.\right.$ $\left.\left.\mathbf{C} \equiv \mathbf{C S i M e}_{3}\right)_{2} \mathbf{]}\left(\mathrm{PtHL}_{2}\right)_{2}\right\} \mathbf{(L}=\mathbf{P P h}_{\mathbf{3}}$ (5a), $\mathbf{P E t}_{\mathbf{3}}$ (5b)). To an acetone solution $(40 \mathrm{~mL})$ of trans-[$\left.\mathrm{PtHCl}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.222 \mathrm{~g}, 0.29$ $\mathrm{mmol})$ was added $0.060 \mathrm{~g}(0.290 \mathrm{mmol})$ of AgClO_{4}, and the mixture was stirred at room temperature for 1 h . The resulting AgCl was removed by filtration through Celite, and the filtrate was concentrated to ca. 15 mL and cooled to -10 ${ }^{\circ} \mathrm{C}$. Then, $0.178 \mathrm{~g}(0.140 \mathrm{mmol})$ of $\mathbf{2}$ was added, resulting in the formation of a yellow solution. The mixture was stirred for 20 min , and the white solid formed was filtered off and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane. Under these conditions 5a crystallizes with one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (observed by ${ }^{1} \mathrm{H}$ NMR) ($0.038 \mathrm{~g}, 12 \%$ yield). Anal. Calcd for $\mathrm{C}_{95} \mathrm{H}_{82} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pt}_{3} \mathrm{Si}_{2} \mathrm{Cl}_{2}$: C , 50.71; H, 3.67. Found: C, 50.75; H, 3.19. IR (cm^{-1}): $\nu(\mathrm{Pt}-$ H) $2160(\mathrm{~m}) ; v(\mathrm{C} \equiv \mathrm{C}) 1872(\mathrm{sh}), 1836(\mathrm{~s}, \mathrm{br}) . \mathrm{FAB}$ mass spectrum: molecular peak not observed, $\mathrm{m} / \mathrm{z} 719,\left[\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$, $100 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.52\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ph}, \mathrm{PPh}_{3}\right) ; 7.38$ (m, $36 \mathrm{H}, \mathrm{Ph}, \mathrm{PPh}_{3}$); -1.09 (s, $18 \mathrm{H}, \mathrm{SiMe}_{3}$); -10.39 (t, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{H}$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{pt}-\mathrm{H}}=1088.6 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=13.5 \mathrm{~Hz}\right)$. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $-111.5\left(\mathrm{dm}, \mathrm{F}_{\mathrm{o}},{ }^{3} \mathrm{JPt-Fo}=360 \mathrm{~Hz}\right) ;-165.2\left(\mathrm{~m}, \mathrm{~F}_{\mathrm{p}}\right.$ and $\left.\mathrm{F}_{\mathrm{m}}\right) .{ }^{31 \mathrm{p}}$ NMR (CDCl_{3}): $\delta 22.90\left(\mathrm{~s},{ }^{1} \mathrm{~J} \mathrm{pt-p}=3006 \mathrm{~Hz}\right)$.

Complex 5b was prepared by following a similar procedure using trans-[PtHCl(PEt $\left.\left.)_{3}\right)_{2}\right](0.161 \mathrm{~g}, 0.344 \mathrm{mmol}), \mathrm{AgClO}_{4}(0.07$ $\mathrm{g}, 0.344 \mathrm{mmol})$, and 2 ($0.200 \mathrm{~g}, 0.165 \mathrm{mmol}$) as starting materials. The white solid was not recrystallized ($0.052 \mathrm{~g}, 20 \%$ yield). Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pt}_{3} \mathrm{Si}_{2}$: C, 34.78; $\mathrm{H}, 5.07$. Found: C, 35.05; H,5.22. IR (cm^{-1}): $v(\mathrm{Pt}-\mathrm{H}) 2148(\mathrm{~s}) ; ~ v(\mathrm{C} \equiv \mathrm{C})$ 1886 (vs). FAB mass spectrum: m/z 1587 ([M] ${ }^{+}, 20 \%$), 1420 $\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}\right]^{+}, 15 \%\right), 1009\left(\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{3}\left(\mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)\right]^{+}\right.$, $51 \%), 890\left(\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{CSiMe} 3)\right]^{+}, 47 \%\right), 695$ ($[\mathrm{Pt}-$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{CSiMe})_{3}\right]^{+}, 54 \%\right), 597\left(\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}, 90 \%\right)$, 431 ($\left.\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}, 100 \%\right) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.67(\mathrm{~m}, 24 \mathrm{H}$, $\left.\mathrm{CH}_{2}, \mathrm{PEt}_{3}\right), 0.94\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{PEt}_{3}\right) ;-0.13\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right)$, -11.12 (t, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{H},{ }^{1} \mathrm{~J}_{\mathrm{pt}-\mathrm{H}}=1249 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=13.6 \mathrm{~Hz}$). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-113.2\left(\mathrm{dm}, \mathrm{F}_{0}{ }^{3}{ }^{3}{ }^{3} \mathrm{Pt}-\mathrm{Fo}=371 \mathrm{~Hz} ;-167.4(\mathrm{t}\right.$, $\mathrm{F}_{\mathrm{p},}{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 19.9 \mathrm{~Hz}$); -166.7 ($\mathrm{m}, \mathrm{F}_{\mathrm{m}}$). ${ }^{31} \mathrm{P}$ NMR (CDCl_{3}): $\delta 19.80$ ($\mathrm{s},{ }^{1}$ J pt-p $=2683 \mathrm{~Hz}$).

Preparation of trans,trans,trans- $\left\{\operatorname{Pt}_{(1)} \mathbf{C}_{6} \mathbf{F}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{2-}\right.$ $\left.\left.\left.\mathbf{C} \equiv \mathbf{C}^{\mathrm{t} B u}\right)_{2}\right]\left[\mathrm{PtH}\left(\mathbf{P E t}_{3}\right)_{2}\right]_{2}\right\}(6 b)$. To a cooled $\left(-10^{\circ} \mathrm{C}\right)$ solution $(4 \mathrm{~mL})$ of [trans- $\mathrm{PtH}\left(\mathrm{PEt}_{3}\right)_{2}$ (acetone)] $\left(\mathrm{ClO}_{4}\right)$, prepared from $0.200 \mathrm{~g}(0.428 \mathrm{mmol})$ of trans-[PtHCl($\left.\left.\mathrm{PEt}_{3}\right)_{2}\right]$ and AgClO_{4} ($0.089 \mathrm{~g}, 0.428 \mathrm{mmol}$) in acetone (40 mL), was added an acetone solution (5 mL) of $\mathbf{3}(0.201 \mathrm{~g}, 0.171 \mathrm{mmol})$. The mixture was stirred for 15 min , and then the resulting yellow solid was filtered off, washed with cold acetone (1 mL , $-20^{\circ} \mathrm{C}$), and air dried ($0.101 \mathrm{~g}, 38 \%$ yield). Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{80} \mathrm{~F}_{10} \mathrm{P}_{4} \mathrm{Pt}_{3}$: C, 37.04; H, 5.18. Found: C, 36.70; H, 5.15. IR (cm^{-1}): $v(\mathrm{Pt}-\mathrm{H}) 2147(\mathrm{~s}) ; v(\mathrm{C} \equiv \mathrm{C}) 1955(\mathrm{~s}, \mathrm{br}) . \mathrm{FAB}$ mass spectrum: molecular peak not observed, m/z 593 ($\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{C}^{\mathrm{t}}\right.\right.$ $\left.\left.\mathrm{Bu})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}, 38 \%\right), 511\left(\left[\mathrm{Pt}\left(\mathrm{C} \equiv \mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}, 35 \%\right), 431$ ($[\mathrm{Pt}-$ $\left.\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}, 100 \%\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.70\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right.$,
$\left.\mathrm{PEt}_{3}\right) ; 0.98\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{PEt}_{3}\right) ; 0.84\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{tBu}^{2}\right) ;-9.90(\mathrm{t}$, $2 \mathrm{H}, \mathrm{Pt}-\mathrm{H}, \mathrm{J}_{\mathrm{pt}-\mathrm{H}}=1147 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{p}-\mathrm{H}}=13.5 \mathrm{~Hz}$). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 112.5\left(\mathrm{~d}, \mathrm{~F}_{\mathrm{o}}{ }^{3}{ }^{3} \mathrm{pt-Fo}=378 \mathrm{~Hz}\right) ;-168.2\left(\mathrm{t}, \mathrm{F}_{\mathrm{p},}{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}}\right.$ $=20.3 \mathrm{~Hz} ;-167.1\left(\mathrm{~m}, \mathrm{~F}_{\mathrm{m}}\right) .{ }^{31} \mathrm{P}$ NMR (CDCl_{3}): $\delta 19.48(\mathrm{~s}, \mathrm{~J} \mathrm{pt}-\mathrm{p}$ $=2708 \mathrm{~Hz}$).

X-ray Crystal Structure Determination of trans,-
 Single crystals of $\mathbf{4 b}$ in the form of pale yellow plates were obtained by slow diffusion of n-hexane into a CHCl_{3} solution of the bulk solid at room temperature. A representative crystal was fixed with epoxy on top of a glass fiber and transferred to the cold gas stream (200 K) of a Siemens STOE/AE D2 fourcircle diffractometer (graphite-monochromated Mo K α radiation). Cell constants were obtained from setting angles of 25 carefully measured reflections in the range $20<2 \theta<28^{\circ}$. Data were collected by the $\omega / 2 \theta$ method in the range $4<2 \theta<47^{\circ}$. Threecheck reflections, measured after every 360 min of beam exposure, showed no systematic variations in decay. Data were corrected for Lorentz and polarization effects. An absorption correction based on ψ-scans (9 reflections) was applied, with transmission factors of 1.000 and 0.498 . The structure was solved by the heavy-atom method, which revealed the positions of the Pt atoms. The remaining nonhydrogen atoms were located in succeeding difference F ourier syntheses and subjected to anisotropic full-matrix leastsquares refinement. One of the C atoms, $C(16)$, was found to be disordered at half-occupacy over two sites. Hydrogen atoms were included at calculated positions ($\mathrm{C}-\mathrm{H}=0.96 \AA$). A total of 2999 reflections with $\mathrm{I}>2 \sigma \mathrm{I}_{0}$ were used to refine 324 parameters. Final residuals were $R=0.0325$ and $w R=$ 0.0437 . The highest peaks in the final difference map (≤ 1.15 e \AA^{-3}) are close to one of the Pt atoms and have no chemical significance.

All cal culations were performed on a local area VAX cluster (VAXNMS V5.5) with the Siemens SHELXTL PLUS software package. ${ }^{23}$

Acknowledgment. We thank the Comisión Interministerial de Ciencia y Tecnología (Spain; Project PB 92-0364) for financial support and for a grant (toj .R.B.). E.L. and M.T.M. thank the Instituto de Estudios Riojanos for financial support.

Supporting Information Available: Tables of anisotropic thermal parameters, hydrogen atom positional parameters and U values, and complete bond lengths and angles for $\mathbf{4 b}$ (4 pages). Ordering information is given on any current masthead page.

OM 950827 F
(23) SHELXTL-PLUS, Software Package for the Determination of Crystal Structures, Release 4.0; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 1990.

[^0]: † Universidad de Zaragoza.
 \# Universidad de La Rioja.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, March 1, 1996.
 (1) (a) Nast, R. Coord. Chem. Rev. 1982, 47, 89. (b) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983, 22, 59. (c) Bruce, M. I. Pure Appl. Chem. 1990, 62, 1021. (d) Bruce, M. I. Chem. Rev. 1991, 91, 197.
 (2) (a) Davison, A.; Selegue, J. P. J. Am. Chem. Soc. 1980, 102, 2455. (b) Davison, A.; Selegue, J. P. J. Am. Chem. Soc. 1978, 10, 7763. (c) Wong, A.; Pawlick, R. V.; Thomas, Ch. G.; Leon, D. R.; Liu, L.-K. Organometallics 1991, 10, 530. (d) Akita, M.; Terada, M.; Oyama, S.; Moro-Oka, Y. Organometallics 1990, 9, 816 and references therein. (e) Kelley, C.; Lugan, N.; Terry, M. R.; Geoffroy, G. L.; Haggerty, B. S.; Rheingold, A. L. J . Am. Chem. Soc. 1992, 114, 6735 and references therein. (f) For a theoretical treatment see: Kostic, N. M.; Fenske, R. F. Organometallics 1982, 1, 974.
 (3) (a) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals; Wiley: New York, 1988; pp 142-162. (b) Masters, C. Homogeneous Transition-Metal Catalysis. A GentleArt; Chapman and Hall: New York, 1981.

[^1]: (4) Bullock, R. M. J. Am. Chem. Soc. 1987, 109, 8087.
 (5) (a) Bullock, R. M.; Lemke, F. R.; Szalda, D. J. J . Am. Chem. Soc 1990, 112, 3244. (b) Lemke, F. R.; Szalda, D. J .; Bullock, R. M. J . Am. Chem. Soc. 1991, 113, 8466. (c) A similar Zr/Zr dimetalloalkene has been obtained from [$\left.\mathrm{Cp}^{\prime} \mathrm{Zr}(\mathrm{C} \equiv \mathrm{CMe}) \mathrm{Cl}\right]$: Erker, G.; Frömberg, W.; Angermund, K.; Schlund, R.; Krüger, C. J. Chem. Soc., Chem. Commun. 1986, 372.
 (6) (a) Afzal, D.; Lukehart, C. M. Organometallics 1987, 6, 546. (b) Afzal, D.; Lenhert, P. G.; Lukehart, C. M. J. Am. Chem. Soc. 1984, 106, 3050.

[^2]: (7) (a) Espinet, P; F orniés, J .; Martínez, F.; Tomás, M.; Lalinde, E.; Moreno, M. T.; Ruiz, A.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1990, 791. (b) Espinet, P.; Forniés, J.; Martínez, F.; Lalinde, E.; Moreno, M. T.; Ruiz, A.; Welch, A. J.J. Organomet. Chem. 1991, 403, 253. (c) Forniés, J .; Gómez-Saso, M. A.; Lalinde, E.; Martínez, F.; Moreno, M. T. Organometallics 1992, 11, 2873. (d) Forniés, J.; Lalinde, E.; Martín, A.; Moreno, M. T. J . Chem. Soc., Dalton Trans. 1994, 135. (e) Berenguer, J. R.; Forniés, J .; Lalinde, E.; Martínez, F. J . Organomet. Chem. 1994, 470, C15. (f) Berenguer, J. R.; Forniés, J .; Lalinde, E.; Martín, A.; Moreno, M. T. J. Chem. Soc., Dalton Trans. 1994, 3343. (g) Berenguer, J. R.; Forniés, J.; Lalinde, E.; Martínez, F. J.'Chem. Soc., Chem. Commun. 1995, 12227.
 (8) Cross, R. J.; Davidson, M. F. J . Chem. Soc., Dalton Trans. 1986, 1987 and references therein.
 (9) Sebald, A.; Wrackmeyer, B.; Theocharis, Ch. R.; J ones, W. J . Chem. Soc., Dalton. Trans. 1984, 741.

[^3]: (10) Maslowsky, E., J r. Vibrational Spectra of Organometallic Compounds; Wiley: New York, 1977; p 437 and references therein.
 (11) (a) Lukehart, C. M.; McPhail, A. T.; McPhail, D. R.; Myers, J. B., J r.; Soni, H. K. Organometallics 1989, 8, 1007. (b) Dema, A. C.; Li, X.; Lukehart, C. M.; Owen, M. D. Organometallics 1991, 10, 1197 and references therein. (c) Lukehart, C. M.; McP hail, A. T.; McPhail, D. R. Organometallics 1991, 10, 372 and references therein. (d) Dema, A. C.; Lukehart, C. M.; McPhail, A. T.; McPhail, D. R. J . Am Chem. Soc. 1989, 111, 7615. (e) Ibid. 1989, 112, 7229.

[^4]: (12) (a) Michelin, R. A.; Ros, R. J. Chem. Soc., Dalton Trans. 1989, 1149 and references therein. (b) Packett, D. L.; Syed, A.; Trogler, W. C. Organometallics 1988, 7, 159. (c) Clark, H. C.; Ferguson, G.; Hampden-Smith, M. J.; Ruegger, H.; Ruhl, B. L. Can. J . Chem. 1988, 66, 310. (d) Michelin, R. A.; Bertani, R.; Mozzon, M.; Zanotto, L; Benetollo, F.; Bombieri, G. Organometallics 1990, 9, 1449. (e) Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750. (f) Michelin, R. A.; Ros, R.; Guadalupi, G.; Bombieri, G.; Benetollo, F.; Chapuis, G. I norg. Chem. 1989, 28, 840. (g) Minghetti, G.; Cinellu, M. A.; Stoccoro, S.; Chelucci, G.; Zucca, A. Inorg. Chem. 1990, 29, 5138. (h) Mullica, D. F.; Sappenfield, E. L.; Hampden-Smith, M. J. Polyhedron 1991, 10, 867. (i) Lalif, L. A.; Eaborn, C.; Pidcock, A. D.; Weng, Ng. S. J. Organomet. Chem. 1994, 474, 217. (j) Leoni, P.; Manetti, S.; Pasquali, M. Inorg. Chem. 1995, 34, 749.
 (13) (a) Chatt, J.; Shaw, B. L. J . Chem. Soc. A 1962, 5075. (b) Bailar, J. C.; Itatani, H. I norg. Chem. 1965, 4, 1618. (c) Parshall, G. W. Inorg. Synth. 1970, 12, 28.
 (14) (a) Bergamini, P.; Sostero, S.; Traverso, O.; Venanzi, L. M. Inorg. Chem. 1990, 29, 4376. (b) Church, M. J.; Mays, M. J. J . Chem. Soc. A 1968, 3074.
 (15) (a) Furlani, A.; Licoccia, S.; Russo, M. V.; Chiesi Villa, A.; Guastini, C. J. Chem. Soc., Dalton Trans. 1982, 2449. (b) Glockling, F.; Hooton, K. A. J. Chem. Soc. A 1967, 1066.

[^5]: (16) Forniés, J.; Lalinde, E.; Martínez, F .; M oreno, M. T.; Welch, A. J. J. Organomet. Chem. 1993, 455, 271.

[^6]: (17) Berenguer, J. R.; F orniés, J.; Lalinde, E.; Martínez, F.; UrrioIabeitia, E.; Welch, A. J.J.Chem. Soc., Dalton Trans. 1994, 1291.
 (18) (a) Kolobova, N. E.; Skripkin, V. V.; Rozantseva, T. V.; Struchkov, Yu. T.; Aleksandrov, G. G.; Andrianov, V. G. J . Organomet. Chem. 1981, 218, 351. (b) Frank, K. G.; Selegue, J. P. J. Am. Chem. Soc. 1990, 112, 6414. (c) Akita, M.; Ishii, N.; Takabuchi, A.; Tanaka, M; M oroOka, Y. Organometallics 1994, 13, 258 and references therein.

[^7]: (19) (a) Attig, T. G.; Clark, H. C.; Wong, C. S. Can. J. Chem. 1977, 55, 189. (b) Clark, H. C.; J ablonski, C. R.; Wong, C. S. Inorg. Chem. 1975, 14, 1332. (c) Clark, H. C.; Wong, C. S. J . Organomet. Chem. 1975, 92, C31.
 (20) Ara, I.; Berenguer, J. R.; Forniés, J.; Lalinde, E.; Tomás, M. Organometallics, in press.
 (21) U són, R.; Forniés, J .; Martínez, F.; Tomás, M. J. Chem. Soc., Dalton Trans. 1980, 888.
 (22) Smith, G. F.; Ring, F. J. Am. Chem. Soc. 1937, 59, 1889.

