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Abstract8

This study presents a new soft computing method to create an accurate9

and reliable model capable to determine three key points of the compre-10

hensive force-displacement curve of bolted components from steel struc-11

tures. To this end, a database with the results of a set of finite element12

(FE) simulations, which represent real responses of bolted components,13

is utilized to create a stacking ensemble model that combines the predic-14

tion of different parsimonious base models. The innovative proposal of15

this study is to use GA-PARSIMONY, a previously published GA-method16

which searches parsimonious models by optimizing feature selection and17

hyperparameter optimization processes. Therefore, parsimonious solu-18

tions created with a variety of machine learning methods are combined19

by means of a nested cross-validation scheme in a unique meta-learner in20

order to increase diversity and minimize the generalization error rate. The21

results reveal that efficiently combining parsimonious models provides22

more accurate and reliable predictions as compared to other methods.23
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Therefore, the informational model is able to replace costly FE simulations24

without significantly comprising accuracy, and could be implemented in25

structural analysis software.26

Keywords:27
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1. Introduction30

Structural steel connections play an essential role in the stability of31

frames and buildings. Since the introduction of the semi-rigid concept [1]32

numerous methods have been developed to accurately predict the moment-33

rotation response of steel connections [2]. The semi-rigid approach repre-34

sented an important breakthrough in the design of these elements which35

led to significant reductions in weight and costs. Nevertheless, complex36

and advanced analyses were required to tackle the nonlinearities involved37

in the calculation process.38

Nowadays, the use of component-based models for the assessment39

of semi-rigid steel connections is widely accepted among practitioners.40

Their principle basis consists of dividing the connection into individual41

components represented as springs, each one characterized by their force-42

displacement response in terms of initial stiffness and maximum strength.43

The moment-rotation curve of the connection is then determined by as-44

sembling the individual responses of all components in a mechanical sys-45

tem. For example, in beam-to-column bolted joints (Fig. 1a), tensile com-46

ponents represent the main source of deformability; hence, they are re-47
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Figure 1: Tension zone in steel connections. (a) End-plate beam-to-column connection,

(b) Equivalent T-stub model and (c) Force-displacement curve of the T-sub model to be

obtained.

sponsible for the rotation capacity of the entire joint. These components48

can be effectively characterized by means of the equivalent T-stub model49

(Fig. 1b).50

Regulatory codes such as Eurocode 3 [3] have adopted this approach51

which is suitable for hand calculation and reasonably accurate in deter-52

mining rotational stiffness and moment resistance. However, further re-53

search is still necessary to adequately characterize components and obtain54

the connections comprehensive non-linear response, including its rotation55

capacity (Fig. 1c). Alternatives to the existing analytical models [4] should56

be able to handle material plasticity, contacts, progressive damage and fail-57

ure. At the same time, practitioners need cost-effective methods in terms58

of computational effort that are also suitable to be implemented into steel59

structure software.60

To date, numerical simulations based on the finite element (FE) method61
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Figure 2: Characterization of the force-displacement curve of a bolted component with

an FE model validated with experimental tests.

represent one of the most accurate ways to predict the behavior of steel62

connections (Fig. 2). Nevertheless, the FE method continues to be a time-63

consuming process in spite of growing computer power. The complexity64

of the analysis codes seems to keep pace with continuous advances in soft-65

ware and hardware [5]. Thus, the FE method remains inefficient in terms66

of current requirements when design and optimization are required for67

hundred of joints in a steel structure. Hence, a second level of abstrac-68

tion is needed that would alleviate the computational burden required by69

numerical simulations.70

Machine learning models created from an FE simulation database rep-71

resent a low-cost approximation of computationally expensive simulations72

[6]. These models capture the underlying relationship between input vari-73

ables and FE simulation results that can be expressed mathematically as:74

y = f (x, ϕ) + ε (1)

where y is the actual value of the output, f contains the modeling function,75
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x = [x1, ..., xn] represents the array of n input variables, Φ = [ϕ1, ..., ϕm]76

denotes the array of m unknown parameters to adjust the function f , and77

ε includes both the error of fitting the machine learning model to the sim-78

ulation results and the intrinsic error corresponding to the simulation.79

Concerning steel structures, artificial neural network (ANN) models80

were utilized by Shahin et al. [7] to predict the ultimate pure bending of81

steel circular tubes. A specific example of the design of semi-rigid joints82

can be found in the work reported by Diaz et al. [8] who employed krig-83

ing and genetic algorithms (GA) for cost-optimization of bolted end-plate84

connections. Recently, Fernandez-Ceniceros et al. [9, 10] have also offered85

insight into the use of machine learning models for the assessment of steel86

bolted connections.87

Model generalization capability corresponds with the ability to pre-88

dict correct responses for new designs. This capability will depend on89

the machine learning algorithm, the model complexity and the training90

process. In the context of modeling the steel bolted connection behav-91

ior, the challenge is to obtain models capable of predicting highly accu-92

rate force-displacement curves for new designs trained with a relatively93

small database, which has been created with FE simulations. Selecting94

the most appropriate method for each case study remains a defiance for95

practical design. This model accuracy is generally influenced by several96

factors, such as the nature of the output variables, the number of com-97

putational FE experiments necessary to approximate the model, and the98

dimensionality of the problem in terms of number of input features. Re-99

garding the former, highly non-linear problems may require more flexible100
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modeling techniques to capture their complex behavior. However, flexible101

techniques provide excellent fit for computer experiments at the expense102

of lower generalization capacity. Therefore, a methodology to obtain an103

efficient trade-off between flexibility and generalization capability is in-104

evitable in order to overcome the phenomenon of over-fitting.105

This article presents a new hybrid methodology which couples numer-106

ical and informational models to predict key parameters of steel connec-107

tions such as initial stiffness, maximum resistance and displacement at108

failure. To this end, numerical models based on the finite element method109

(FEM) are developed first to reproduce the real response of bolted com-110

ponents selected with a design of experiments. These models incorporate111

progressive damage mechanisms and failure criteria to accurately estimate112

the displacement at fracture. In order to minimize the computational bur-113

den of the FEM, the results of a set of simulations are utilized to create a114

database and then, construct a stacking ensemble model, also called meta-115

ensemble model, capable of determining the curve parameters with accu-116

racy for unseen data.117

The primary innovation of this proposal is that it uses a soft comput-118

ing (SC) method previously published by the authors, GA-PARSIMONY119

[11], to obtain parsimonious and accurate base solutions with different120

algorithms, such as ANN, support vector machines (SVM), CUBIST, gra-121

dient boosting machines (GBM) and ridge regression, among others. GA-122

PARSIMONY obtains accurate parsimonious models for the first level by123

selecting the best features and parameters with a special parsimonious124

model selection (PMS) process based on a dual criteria which considers ac-125
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curacy and complexity separately. Finally, the predictions of the best par-126

simonious models obtained with each algorithm are combined with a sec-127

ond level stacking ensemble learner, also optimized with GA-PARSIMONY,128

in order to reduce variance and improve the generalization capability.129

The rest of the article is organized as follows: Section 2 begins by130

introducing methods for improving model generalization capability and131

how its related with new SC techniques. Section 3 presents the proposed132

methodology which combines FE method to construct a database and, by133

using it with GA-PARSIMONY, to build an accurate stacking ensemble134

model based on parsimonious base models created with different machine135

learning algorithms. Section 4 describes the experiments performed for136

the case study of a T-stub component. Then, Section 5 deals with the137

results of the proposed method and compares them with previous ap-138

proaches. And lastly, Section 6 presents the conclusions and contributions139

of this research.140

2. Related research on using soft computing for improving generaliza-141

tion capability142

In machine learning, the generalization capability is the ability of the143

model to handle unseen data. A model can perform well with the training144

data, but it may fail to predict the response in a new dataset. This capa-145

bility depends on a correct training process and on the model complexity.146

Thus, a poor generalization is obtained when the model is over-trained or147

when its degree of freedom is higher than that of the training data [12].148

This second aspect is related to the complexity of the model, which can149
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be defined by the internal structure [13] as the number of leafs or lev-150

els in model trees or the sum of squared coefficients in ridge regression,151

among others. For instance, the sum of squared weights is used in neu-152

ral networks because too large weights can magnify the noise from the153

inputs and propagate it to the output [14]. Therefore, this metric defines154

the ”flatness” of the model, which is directly related to the variance of the155

prediction. Other complexity metrics are the Vapnik-Chervonenkis (VC) di-156

mension [15], the degrees of freedom (GDF) [16] or the number of input fea-157

tures selected (NSF), which is included in the penalty terms of the Akaike158

information criterion [17] and the Bayesian information criterion (BIC) [18].159

In this context, it is well known that, among several accurate models,160

the least complex model (more parsimonious) should be selected. This161

model will probably be more robust and reliable against new data, pertur-162

bations and noise.163

2.1. Trade-off between bias and variance164

Models should be tested with unseen patterns in order to find their165

generalization capability. Suppose that a real value y is explained as y =166

f (x) + ε, where f (x) is the real function of the problem with n indepen-167

dent attributes xi, and ε is the intrinsic error with zero mean and variance168

σ2. Minimizing a metric such as the Mean Squared Error (MSE) allows to169

search models f̂ (x) as close as possible to f (x). Then, the expected MSE170

with an unseen sample x, also known as generalization error (GE), can be171

decomposed as follows [19]:172

E[(y− f̂ (x))2] = Bias[ f̂ (x)]2 + Var[ f̂ (x)] + σ2 (2)
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with:173

Bias[ f̂ (x)] = E[ f̂ (x)− f (x)] (3)
174

Var[ f̂ (x)] = E[ f̂ (x)2]− E[ f̂ (x)]2 (4)

where the Bias2 is related to the accuracy of the model, Var is the vari-175

ance and represents the model repeatability or how much f̂ (x) will move176

around the mean, and σ2 is the irreducible error that was present in the177

original data.178

The complexity of the model has opposite effects in the reduction of179

bias and variance. Figure 3 shows the training error and U-shaped MSE180

curves for two test samples of unseen data in relation with model complex-181

ity (horizontal axis). A high-flexible model like M3 obtains a low training182

MSE but the variance increases in the test samples. On the other hand,183

a low complex model as M1 shows a high bias because it cannot adapt184

correctly to the data. Controlling the the bias-variance trade-off is there-185

fore necessary to obtain strong overall models within the zone of lower186

generalization errors, as it occurs with model M2. This control is called187

regularization and it takes into account both, complexity and accuracy of188

prediction, in the training process.189
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Figure 3: Bias-Variance and its relation with the model complexity. M1 is a under-fitted

simple model with high bias but low variance. M3 is a over-fitted high-flexible model

with low bias but high variance in unseen data. M2 obtains a trade-off between bias and

variance to achieve good expected error with the test samples.

2.2. Regularization of wrapper models using soft computing190

Regularization is included in the training process by minimizing a reg-191

ularized ”Loss+Penalty” function [19]:192

minimize
β0,β1,...,βp

{L(X, y, β) + λP(β)} (5)

where X is the input data, y the response variable, and β the model weights.193

The objective is to reduce L(X, y, β), which is the loss function that quan-194

tifies how the model fits the training data (X, y), and P(β), which is the195
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penalty term for the complexity of the model. λ is a non-negative parame-196

ter that balances both terms and must be adjusted along with other tuning197

parameters.198

An increasing number of studies have reported SC strategies where the199

optimization process considers the whole KDD-wrapper scheme. These200

schemes generally include not only hyperparameter optimization (HO)201

but also other tasks such as feature selection (FS), feature engineering (FE),202

data transformation (DT), or the use of several learners. Ma and Xia [20]203

presented a tribe competition-based genetic algorithm for FS in pattern204

classification to obtain an optimal feature subset and produce more accu-205

rate classifiers. Wei et al. [21] developed a binary particle swarm optimiza-206

tion (BPSO) with SVM based on memory renewal and enhanced mutation207

mechanisms for FS. Perez-Rodriguez et al. [22] demonstrated that using208

evolutionary computation for simultaneous instance and feature selection209

plus feature weighting can improve model accuracy significantly. Huang210

and Chang [23] proposed GA for FS and HO a SVM in microarray clas-211

sification. Ding [24] used PSO in hyperspectral classification of remote212

sensing images. Vieira et al. [25] employed a binary PSO with a wrap-213

per SVM approach to predict survived or deceased patients with septic214

shock. Huang and Dun [26] designed a distributed PSO for FS and HO.215

Wan et al. [27] presented a modified binary coded ant colony optimization216

algorithm combined with genetic algorithm for FS. Ahila et al. [28] used217

PSO for classification of power system disturbances. Dhiman et al. [29]218

proposed a hybrid approach with a GA-SVM scheme for FS and HO in219

detecting epileptic seizures from background electroencephalogram sig-220
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nals. Winkler et al. [30] reported a variety of evolutionary strategies to221

optimize different machine learning models in the identification of tumor222

markers. Wang et al. [31] performed HO and FS in medical diagnoses with223

a chaotic moth-flame optimization strategy. Medjahed et al. [32] proposed224

the use of a gray wolf optimizer in hyperspectral image classification.225

In general, these works use a more or less complex fitness function, but226

they only include a regularization mechanism in the training algorithm227

and not in the whole wrapper model selection process. Few method-228

ologies search the best parsimonious solution based on minimizing the229

cost and complexity of the whole wrapper. Chen et al. [33] used an230

evolutionary approach to simultaneously reduce complexity and optimize231

weights of learning vector quantification networks for bankruptcy predic-232

tion. Avalos et al. [34] presented a methodology based in two penalization233

schemes, PAM1 and PAM2, for carrying out both function estimation and234

variable selection to obtain parsimonious additive models (PAM). Escobar235

and Morales-Menendez [35] developed a penalized maximum probability236

of correct decision (PMPCD) model selection criterion to efficiently solve237

the trade-off between NSF and prediction in an ultrasonic metal welding238

quality control application. With this methodology, selected parsimonious239

model had only 4 inputs from a highly unbalanced database formed by 54240

features.241

2.3. Searching parsimonious solutions with GA-PARSIMONY242

Small differences in the cost can be superfluous in many real appli-243

cations. For example, researchers looking for a model that predicts the244

temperature set points (within 700-1000◦C) of a steel furnace prefer robust245
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solutions with few inputs rather than marginal reductions of the cost. A246

difference between two models below ±1◦C can be insignificant. How-247

ever, obtaining a parsimonious solution with high accuracy can be very248

useful to mitigate the uncertainty caused by perturbations in the produc-249

tion lines, such as noise and the tolerance of sensors. Simpler models are250

also easier to implement, update and understand.251

For this purpose, Sanz-Garcia et al. [11] presented GA-PARSIMONY,252

a SC methodology based on GA to search accurate parsimonious mod-253

els. This SC method optimizes a KDD-wrapper scheme with GA by using254

a parsimonious model selection (PMS). In each GA generation, the best255

solutions are first sorted by their cost (J), and then individuals with less256

complexity are moved to the top positions when the absolute difference257

between their Js is lower than a threshold value (α). Therefore, the se-258

lection of less complex solutions among those with similar accuracy pro-259

motes the evolution of robust models with better generalization capabili-260

ties. Another advantage of this methodology is that it eliminates the use261

of the regularization penalty weight λ because complexity and cost are262

evaluated separately.263

Figure 4 shows an example of how the selection process of GA-PARSIMONY264

works with four individuals and α = 1. The process begins by defining265

an initial population of chromosomes Λ0 : {λ1
0, λ2

0, ..., λ
p
0} using a Latin266

Hypercube Sampling (LHS()):267

Λ0 : {λi
0, i = 1, ..., P} ← LHS() (6)

where λi
0 is the i chromosome of the first generation (g = 0) and P is268

the number of individuals. The maximum number of generations (G), the269
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Figure 4: Flowchart of GA-PARSIMONY with a little example how the selection process

works for four individuals with α = 1.
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cost function (J) and α have to be defined as well. Each chromosome i270

composed by two parts: (i) a binary coded array (Qi) that represents the271

inputs used, and (ii) the parameters of the wrapper model being optimized272

(Wrapperparams) (Eq. 7).273

λi
g = [Qi, Wrapperparams] (7)

The evaluation and selection processes consist on a separated evalu-274

ation of cost and complexity. Following the example of temperature set275

points, in the first step, individuals are sorted by their J, which is ob-276

tained with the Root Mean Squared Error (RMSE) using repeated cross-277

validation. Differences smaller than 1◦C are considered not significant.278

Therefore, in the second step, individuals are rearranged by their Complex-279

ity if the difference between their Js is lower than α = 1.0. Consequently,280

the parsimonious individual with Complexity = 80 and a difference with281

the lowest J of 0.7 is moved to the first position.282

GA-PARSIMONY has been successfully applied with support vector283

regression (SVR), random forest (RF), ANN and GBM in a wide range of284

fields such as solar radiation forecasting [36], industrial processes [37] or285

hotel room demand estimation [38]. Besides, GA-PARSIMONY has been286

already used for predicting the force-displacement of bolted components287

[10]. In that study, GA-PARSIMONY was used to optimize the search of288

parsimonious SVR models for seven key parameters of the curve. The SC-289

based models reported a high degree of accuracy with new predictions.290
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2.4. Ensembled methods for reducing bias and variance291

Ensemble methods (EM) combine multiple models into one more accu-292

rate than the best of them. EM are useful when the predictive accuracy of293

the problem is more important than model interpretability. Bagging [39] is294

one of the most popular methods among some classic EM such as Random295

Forest (RF), AdaBoost, Stacking or Gradient Boosting Machines (GBM). It296

consists of creating n base models with different random samples obtained297

with replacement from the original dataset. The response is calculated by298

averaging the fitted learners, for regression problems, or with the plural-299

ity vote or the mean of probabilities, for classification. The advantages of300

bagging [13] are that it reduces the test error by smoothing out variance301

leaving the bias unchanged, it does not over-fit the data when the number302

of base models increase significantly, and it is easily parallelizable.303

Stacking, also called meta ensembling or stacked generalization, is an-304

other well-known method used to minimize the generalization error rate305

by deducing biases of the generalizers [40]. It combines the outputs of306

multiple predictive models (level-0 base models) as training data for an-307

other model (level-1 stacked model) to approximate the same target func-308

tion. The second level model knows where each base learner performs309

better giving an improved prediction accuracy [41]. This meta-model can310

be also extended to 3 or more levels, with level-n models learning from311

level (n-1). The main improvement occurs when there is a high diver-312

sity between the base model predictions [42]. Therefore, the second level313

model can improve the learning process when several algorithms are used314

to construct level-0 models because they provide different points of view315
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Figure 5: Meta ensemble model constructed with n parsimonious bagging models in the

first level, and a second level parsimonious model which learn from original database

and predictions of level-0 base learners. Each parsimonious model are performed with

GA-PARSIMONY by optimizing FS, HO and MPO.

of the problem.316

3. Stacking ensemble model with GA-PARSIMONY317

Despite the reasonable prediction capability of SVR models in the char-318

acterization of steel bolted components [10], more accurate tools are re-319

quired to deal with the demanding quality requirements of structural de-320

sign. Therefore, a stacking ensemble model constructed with parsimo-321

nious solutions and different algorithms has been considered in this study.322
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The stacking structure is showed in Figure 5. The basic idea is to com-323

bine parsimonious models of different types in a unique meta-learner to324

increase diversity and minimize the generalization error rate. First level is325

formed by n parsimonious models created with different algorithms: lin-326

ear ridge regression, multilayer perceptron, regression tree, support vector327

regression, etc. In order to reduce variance and hence smooth the general-328

ization error rate of the base learners, a bagging model is created with each329

algorithm. Then, level-1 model use the predictions of base models plus the330

original database to reduce biases and improve accuracy. This stacking ap-331

proximation is called Restacking because it considers not only the outputs332

of previous models, but also the original database as inputs. Besides, the333

search of good accurate parsimonious bagging models is performed with334

GA-PARSIMONY by optimizing feature selection (FS), hyper-parameter335

optimization (HO) and model parsimonious selection (MPO). Therefore, a336

robust and reliable model is obtained for each algorithm and level.337

In order to avoid leaking in the training process, the stacked generaliza-338

tion method with GA-PARSIMONY is based on a nested cross-validation339

scheme (see Fig. 6). A training dataset is divided in n outer folds. For340

each i outer fold, the best parsimonious model (OF-i model) is constructed341

with the other n-1 outer folds by using GA-PARSIMONY. The evaluation342

of each individual in the GA selection is performed with an inner k-fold343

cross-validation (CV) process. Finally, we use the best OF-i model to pre-344

dict the response for the i outer fold. The response with a new dataset can345

be also obtained with the average of the n OF-models predictions.346

Fig. 6 shows an example of how a nested cross-validation scheme works347

18



Outer 

Fold-1

Outer 

Fold-3

Outer 

Fold-2

Outer 

Fold-4

Inner 

Fold-1

Inner 

Fold-2

Inner 

Fold-3

Inner 

Fold-4

Inner 

Fold-5

Model OF-4

Best

parsimonious

model 

obtained with

GA-PARSIMONY

Cost in the

GA process is

performed with

a 5-fold CV

Original

Training 

Database

New 

Database

DB for

Inner 

5-fold

CV

Predicted

response of 

Model OF-4 

with Outer 

Fold-4

Training DB

for Model OF-4

Predicted

response of 

Model OF-3 

with Outer 

Fold-3

Predicted

response of 

Model OF-2 

with Outer 

Fold-2

Predicted

response of 

Model OF-1 

with Outer 

Fold-1

Average
The final predicted

response for the 

New DB is the average of 

the four OF models' 

predictions

Predicted 

response of

Model OF-2 

with the

New DB

Predicted 

response of

Model OF-3 

with the 

New DB

Predicted 

response of

Model OF-1 

with the 

New DB

Predicted 

response of

Model OF-4 

with the

New DB

Model OF-4
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for n = 4 and k = 5. In this case, the training database is divided in n = 4348

outer folds. For the i = 4 outer fold, GA-PARSIMONY method is used349

to search for the best parsimonious OF-4 model by FS, HO and PMS, and350

with a dataset created with the 1, 2, and 3 outer folds. Evaluation of the351

best individuals in the GA process is performed with this dataset and a352

k = 5 inner CV. When the GA optimization process ends, the best parsi-353

monious OF-4 model is used to predict the response for the outer 4-fold354

and also, for the new database. At the end of the process, the predictions355

for all outer folds are obtained and four predictions for the new database356

that can be averaged into a single response.357

The process can be carried out with each algorithm (ANN, CUBIST,358

SVR, GBM, Ridge Linear Regression, etc.) but the following settings must359

be defined before using GA-PARSIMONY:360

• α, which is the maximum absolute difference between two model361

costs (J) to be considered similar.362

• A complexity function which measures the model parsimony.363

• The ranges of the parameters that need to be tuned.364

• GA settings: number of individuals per population, maximum of365

generations, percentage of elitism and mutation, etc.366

Once the best parsimonious models have been created, the second step367

is to build the stacking ensemble model (Fig. 7). Our proposal creates a368

new training database by combining the original one and the response pre-369

dictions with each OF-i model and for each i outer fold. Furthermore, the370

20



Fold-1

Fold-2

Fold-3

Fold-4

Fold-5

Searching

the best

model with

GA-PARSIMONY

Cost in the

GA process is

performed with

a 5-fold CV

Original

Training 

Database

New 

Database

Predicted

response of a 

SVR 

Model OF-1 

with Outer 

Fold-1

Average of

the four 

SVR 

OF-Models 

predictions 

with the

New DB

Final 

predicted 

response

for the 

New DB

Predicted

response of a 

SVR 

Model OF-2 

with Outer 

Fold-2

Predicted

response of a 

SVR 

Model OF-3 

with Outer 

Fold-3

Predicted

response of a 

SVR 

Model OF-4 

with Outer 

Fold-4

Predicted

response of a 

MLP 

Model OF-1 

with Outer 

Fold-1

Average of

the four 

MLP 

OF-Models 

predictions 

with the

New DB

Predicted

response of a 

MLP

Model OF-2 

with Outer 

Fold-2

Predicted

response of a 

MLP 

Model OF-3 

with Outer 

Fold-3

Predicted

response of a 

MLP 

Model OF-4 

with Outer 

Fold-4

Predicted

response of a 

XGB 

Model OF-1 

with Outer 

Fold-1

Average of

the four 

XGB

OF-Models 

predictions 

with the 

New DB

Predicted

response of a 

XGB 

Model OF-2 

with Outer 

Fold-2

Predicted

response of a 

XGB 

Model OF-3 

with Outer 

Fold-3

Predicted

response of a 

XGB 

Model OF-4 

with Outer 

Fold-4

...

...

New Features

Training Data for the Stacking Model 

New Database for the Stacking Model 

Stacking ModelDB for 

5-fold CV

Figure 7: Stacking ensemble model with a training dataset built with the original datasets

plus the predictions of best parsimonious models created with different algorithms and

using GA-PARSIMONY.
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new database is constructed in the same way. Finally, a stacking ensemble371

model is created with this training database and using GA-PARSIMONY372

with a robust machine learning algorithm.373

4. Experiments374

4.1. T-stub component and FE model375

The T-stub component comprises two t-shape profiles tied by their376

flanges with one or more bolt rows (Fig. 1b) [43]. The tensile load applied377

to the web is transferred by the flange in bending and the bolts in tension.378

During this process, the contact between flanges produces a prying action379

that increases the forces developed in the bolts. The contact area, as well380

as the pressure magnitude, evolves during the loading process, render-381

ing an adequate evaluation of the force-displacement response difficult.382

Non-linear material laws, large deformations and the existence of differ-383

ent failure patterns also represent significant sources of complexity in the384

calculation of the T-stub component.385

Numerical approaches such as the FE method constitute a reliable tool386

for assessing steel connections. An advanced FE model of the T-stub com-387

ponent is described in detail by the authors in [44]. The FE model includes388

complete stress-strain nonlinear material relationships and a refined char-389

acterization of the bolt, including threaded length, nut and washers (Fig. 8a).390

Additionally, the main novelty of the numerical model is the implemen-391

tation of a continuum damage mechanics model to simulate the failure of392

the bolted connection. Thus, the force-displacement response of the T-stub393

can be fully characterized, from the initial stiffness up to the fracture point394
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Figure 8: Advanced FE model of the T-stub bolted component [44]. a) FE simulation:

equivalent plastic strain (PEEQ); b) Force-displacement response: FE model vs. experi-

mental test.

(Fig. 8b).395

4.2. Generation of the training and test dataset with Design of Computer Exper-396

iments397

Design of Computer Experiments (DoCE) accounts for the determinis-398

tic nature of computer experiments assuming that numerical noise is neg-399

ligible. For these cases, space-filling sampling techniques are appropriate400

because they uniformly distribute the points over the entire design space.401

One of the most widely used space-filling designs is the Latin Hyper-402

cube Sampling (LHS) [45]. LHS divides each input into n equally probable403

intervals and selects a random value in each interval. The principal advan-404

tage of this method is that each input variable is represented in every di-405

vision of its range [46]. These space-filling designs are especially useful in406

conjunction with non-parametric metamodeling techniques, as employed407
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Figure 9: T-stub geometry.

in this study.408

The primary goal of the DoCE is to gain as much information as pos-409

sible using the minimum number of sample points. However, determin-410

ing sample size still remains a challenge for practitioners. This parame-411

ter relies mainly on the complexity and nonlinearity of the function to be412

approximated, the dimensionality of the problem, and the modeling tech-413

nique selected.414

To create the training dataset, the LHS method was used to define the415

input values of 820 FE simulations experiments. This number was experi-416

mentally determined by prior research [44]. Additionally, two test datasets417

composed of 76 samples were generated separately so as to check the ac-418

curacy and generalization capacity of meta-models in the prediction of419

unseen data, but also, one of them was used to select the best α parame-420
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Table 1: Ranges of the input features included in the DoCE.

Variable Description [units] Range

dbolt Nominal bolt diameter [-] [M12 - M27]

clearance Difference between bolt hole and bolt diameter [mm] [0.50 - 3.50]

t f lange Flange thickness of the T-shape profile [mm] [8.00 - 30.00]

tweb Web thickness of the T-shape profile [mm] [5.00 - 20.00]

L f lange Flange length of the T-shape profile [mm] [52.00 - 180.00]

r Flange-to-web connection radius [mm] [9.75 - 43.00]

n Dist. from center of bolt hole to flange’s free edge [mm] [15.75 - 106.00]

b Width of the T-shape profile [mm] [42.00 - 187.00]

Lthread Thread length of the bolt [mm] [2.50 - 60.25]

σy Yield strength of the structural steel [MPa] [200 - 400]

σu Stress at the maximum tensile load of the structural steel [MPa] [300 - 800]

Eh Strain-hardening coefficient of the structural steel [MPa] [1000 - 3000]

σyb Yield strength of the bolt steel [MPa] [640 - 1098]

σub Stress at the maximum tensile load of the bolt steel [MPa] [800 - 1200]

εub Strain at the maximum tensile load of the bolt steel [-] [0.07 - 0.14]
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ter. Therefore, for each combination of input values, a FE simulation was421

conducted to characterize the response of the T-stub component. Regard-422

ing the outputs, the performance of meta-models was evaluated for their423

prediction of three key parameters of the force-displacement curve: ini-424

tial stiffness (ki), maximum strength (Fu) and displacement at failure (d f )425

(Figure 1c).426

Table 1 describes the feasible ranges of geometrical parameters and me-427

chanical properties of hot-rolled profiles and bolts used herein. A graphi-428

cal description of the T-stub geometry is also included in Fig. 9.429

4.3. Regression techniques430

Once the training and test dataset was generated, the next step was to431

create the most parsimonious solutions to be included in the first level of432

the stacking ensemble model. In this study, six popular regression algo-433

rithms were selected:434

• Linear ridge regression (LIN) [47].435

• Model tree algorithm (CUBIST) which is based on Quinlan’s M5 model436

tree [48] and uses a separate-and-conquer strategy to create a tree437

with linear models in each leaf.438

• Instance-based learning (KNN) method [49] which is a popular k-439

nearest neighbors regressor.440

• Single-hidden-layer artificial neural network (ANN) [50] with Broyden-441

Fletcher-Goldfarb-Shanno (BFGS) training algorithm and weight de-442

cay.443
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Table 2: Range of the parameters for the regression techniques.

Algorithm Parameter Description Range

LIN Ridge - Regularization parameter [0.00000001 - 0.99999999]

CUBIST committe - Number of boosting committes [1 - 20]

neighbors - Number of neighbors in prediction [1 - 9]

IBK k - Number of nearest neighbours [1 - 40]

distW - Type of distance weighting [0=No, 1=1/dist 2=1-dist]

ANN n - Number of hidden neurons [1 - 25]

decay - Weight decay [0.0001 - 0.9999]

maxit - Maximum number of iterations 1000

SVR C - Error penalty coefficient 10[(−3.9) − 2.5]

γ - Parameter of the RBF kernel [0.000001 - 0.999999]

ε - Insensitive loss parameter [0.000001 - 0.999999]

XGB max depth - Max. depth of a tree [1 - 3]

min child - Min. sum of instance weight in a child [0.10 - 50.00]

subsample - Subsample ratio of training instance [0.50 - 1.00]

alpha - L1 regularization term on weights [0.00 - 1.00]

num trees - Number of trees [10 - 2000]

col sample - Subsample ratio of columns for split 1.0

eta - Step size shrinkage in update (learning rate) 0.05

• Support vector regression (SVR) technique [51] with radial-basis func-444

tion (RBF).445

• EXtreme Gradient Boosting (XGB) machines [52] which is based on446

gradient boosting machines (GBM) [53].447

Table 2 shows the ranges of setting parameters included in the GA-448

PARSIMONY optimization process.449
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In addition, model complexity was defined as follows:450

Complexity = 106NSF + Cmod (8)

where NSF is the number of input selected features and Cmod is the in-451

ternal model complexity [54]. This expression gives priority to the NSF452

term to penalize individuals with more number of input features. Internal453

complexity plays importance when two models have the same number of454

inputs. Due to NSF is weighted with a high value (106), Cmod is trunked455

to a value of 999999 if it exceeds this upper limit. This hybrid complexity456

metric has demonstrated good behavior in PMS within previous experi-457

ments developed by the authors [11, 36, 55, 37, 38]. The following Cmod458

metrics were defined for each regression technique:459

• LIN: Cmod = ∑ β2
i where βi are the coefficients of the equation.460

• CUBIST: Cmod corresponds to the mean of the number of trees rules.461

• KNN: Cmod = (106/K)− 1 where K are the number of nearest neigh-462

bors.463

• ANN: Cmod = ∑ wi
2 where wi are the weights of the network.464

• SVR: Cmod corresponds to the number of support vectors.465

• XGB: Cmod = 104max depth which depends on the tree depth.466

Finally, bagging ensemble model with 10 bags was considered to re-467

duce variance as base model for each technique: BaggLIN, BaggCUBIST,468

BaggKNN, BaggANN, BagSVR, and BaggXGB.469
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4.4. GA-PARSIMONY settings470

For each i outer-fold and regression technique, GA-PARSIMONY searched471

the best parsimonious OF-i model by validating the individuals with an472

inner 5-CV Root Mean Squared Error (J = RMSEval). Besides, several ex-473

periments were performed with different α values for each method and474

response variable (ki, Fu and d f ), to promote parsimonious solutions into475

the PMS process.476

The GA optimization process was performed with the following set-477

tings. A population size of 80 and a maximum number of generations of478

100 but with an early stopping strategy when J of the best individual does479

not decrease in 10 generations. Starting with the PMS selection method at480

the 10th generation. The mutation percentage was 10% for all individu-481

als except the three best elitists of each generation. The elitism percentage482

was 20%. The selection method was based on linear-rank, heuristic blend-483

ing for parameter crossing [56], and binary random swapping for feature484

crossing.485

All experiments were conducted with the statistical software R [57],486

GAparsimony package [58] and nine Intel 24-core servers of Beronia HPC487

cluster (Intel ®Xeon ®E5-2670 @ 2.30GHz).488

5. Results489

Table 3 shows J, Complexity, and the RMSE with a new test dataset490

(RMSEtst) of the best BaggSVR models for d f and different values of α.491

In this table, a clear trend of increasing RMSEval can be observed when α492

grows but, inversely, model complexity decreases when α is higher. The493
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Table 3: J, RMSEtst and Complexity of the best BaggSVR models for d f response. Par-

simonious models were obtained with GA-PARSIMONY and different α values for con-

trolling the trade-off between J and Complexity .

α J = RMSEval Complexity RMSEtst

0 7.699 8 750390.7 6.332

0.001 7.717 8 750353.6 6.315

0.01 7.849 8 500317.0 6.788

0.08 7.707 7 750259.6 6.884

0.1 7.736 7 750209.2 6.170

0.2 7.787 7 500183.8 5.906

0.4 7.880 7 000146.3 5.890

0.7 8.121 7 000108.7 5.783

0.8 8.160 7 000103.0 5.850

0.9 8.413 6 750128.2 6.096

1.0 8.270 7 000099.5 5.765

1.2 9.122 6 750047.5 6.175

1.5 10.403 5 750066.0 7.553

1.7 10.645 5 500047.2 8.396

2.0 10.774 4 750076.4 9.965

2.2 10.657 4 750086.4 10.367

2.5 11.571 4 500056.8 11.610
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Figure 10: Evolution of the OF-1 BaggSVR models for d f and using GA-PARSIMONY

with α = 1.0. White and grey box-plotsrepresent RMSEval and RMSEtst elitist evolution,

respectively. Continuous and dashed-dotted lines show the RMSEval and RMSEtst of

the best individual, respectively. The shaded area delimits the maximum and minimum

number of NFS, and the dashed line, the NFS of the best individual.

best trade-off between J and Complexity is achieved with α = 1.0, re-494

ducing the testing error to 9.83% compared to the best model with Par-495

simony Model Selection (PMS) disabled (α = 0). Therefore, the model496

with the best generalization capability is achieved with GA-PARSIMONY497

and α = 1.0. For this BaggSVR, 7 of 15 initial features are selected, with a498

mean of Cmod = 99.5 support vectors of all SVR models. Similar behavior499

can be observed with other algorithms and response variables.500

Figure 10 displays, for d f response, the search of the best parsimonious501

BaggSVR model for the outer-fold 1 (OF-1 BaggSVR) with GA-PARSIMONY502

and α = 1.0. This figure shows the evolution of negative values of J =503

RMSEval and RMSEtst (in order to represent the best solutions on the top),504
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and the number of model features selected (NFS) of elitists. In this exam-505

ple, with α = 1.0, GA-PARSIMONY starts the PMS method at the 10th506

generation to search parsimonious solutions, in spite of getting worse J.507

Therefore, GA-PARSIMONY improves RMSEtst by reducing model com-508

plexity.509

Table 4 shows the α value of the bagging model with the best general-510

ization capability (best RMSEtst) for each algorithm and response variable.511

J = RMSEval, RMSEtst, and Complexity are also presented. The 7th col-512

umn corresponds to the relative percentage reduction of RMSEtst versus513

the model selected with PMS of GA-PARSIMONY disabled (α = 0). Fi-514

nally, the last column presents the total minutes, in a 24-core server, used515

to search for the best model with GA-PARSIMONY and with the 17 α val-516

ues of Table 3.517

For the three response variables, BaggANN obtains the best solutions518

as compared to the other algorithms. In addition, BaggSVR, BaggCUBIST519

and BaggXGB present accurate solutions for d f . However, the computa-520

tional effort necessary is much greater with these algorithms than com-521

pared to the other methods. Moreover, an important improvement in the522

generalization capability is achieved with PMS (more than 5% RMSEtst523

reduction) in BaggLIN and BaggSVR d f models, and in BaggLIN and Bag-524

gANN Fu models. For ki, BaggANN and BaggSVR obtain the best accu-525

racy, but PMS improves these results slightly.526

Table 5 presents the final results of the stacking model (StackANN)527

that has been trained as explained in Section 3. The training database is528

formed by combining the outer-folds responses from the models of Table 4529
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Table 4: Value of α to obtain the best GA-PARSIMONY model for each response variable

and algorithm. Seventh column shows the percentage of RMSEtst reduction versus the

error of the best model with PMS disabled (α = 0). Last column presents the total elapsed

time in a 24-core server to search the best model with GA-PARSIMONY and with the 17

α values of Table 3.
Resp. Algorithm α RMSEval Complexity RMSEtst RMSEtst Total

reduction minutes

d f BaggCUBIST 0.20 7.842 7 000008.2 5.799 3.59% 2605.4

d f BaggKNN 0.00 12.193 6 258332.3 11.458 0.00% 13.0

d f BaggLIN 0.20 10.438 7 500001.3 8.397 5.30% 26.8

d f BaggANN 0.20 6.494 9 500079.9 4.971 2.10% 1750.8

d f BaggSVR 1.00 8.270 7 000100.0 5.765 9.83% 543.7

d f BaggXGB 0.20 8.330 8 020000.1 5.989 3.45% 376.5

Fu BaggCUBIST 0.40 17.034 9 500006.1 13.785 4.00% 2393.4

Fu BaggKNN 0.00 48.704 6 454165.8 36.301 0.00% 16.2

Fu BaggLIN 1.70 30.546 7 000000.2 26.362 4.82% 33.9

Fu BaggANN 0.20 11.779 11 750039.1 9.469 8.16% 3215.3

Fu BaggSVR 0.08 16.876 10 250314.9 13.180 1.73% 1174.7

Fu BaggXGB 1.00 21.205 8 767500.0 16.566 2.26% 692.9

ki BaggCUBIST 0.08 11.279 9 500011.2 10.968 1.80% 3396.6

ki BaggKNN 0.70 39.641 4 927380.0 34.533 0.32% 14.4

ki BaggLIN 0.10 25.805 9 250001.0 22.582 0.22% 33.9

ki BaggANN 0.10 8.243 11 000039.4 7.822 1.46% 3034.1

ki BaggSVR 0.01 9.603 9 750348.1 8.154 1.21% 1814.3

ki BaggXGB 0.00 17.146 7 770000.0 16.016 0.00% 929.3
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Table 5: Results of the stacking model with PMS (StackANN) versus a stacking model

constructed with the same methodology but with PMS disabled (α = 0) (Stack NOPMS).

Results of the best model of the first level are also displayed (BaggANN from Table 4)

and of a single SVR developed in previous research [10]. Table presents α and RMSEtst.

Additionally, RMSE, and the mean and standard deviation of the squared error with a

new second testing dataset (tst2) are shown.

Resp. Algorithm α RMSEtst RMSEtst2 SEmean
tst2 SEsd

tst2

d f StackANN 0.10 4.709 3.681 13.547 29.378

d f BaggANN(1st level) 0.20 4.971 4.534 20.560 39.934

d f StackNO PMS 0.00 5.237 4.166 17.358 36.555

d f Fernandez-Ceniceros et al. [10] 7.260

Fu StackANN 0.10 9.031 8.640 74.649 125.840

Fu BaggANN(1st level) 0.20 9.469 9.192 84.493 169.375

Fu StackNO PMS 0.00 10.486 10.052 101.038 169.788

Fu Fernandez-Ceniceros et al. [10] 15.970

ki StackANN 0.08 7.637 5.111 26.118 57.892

ki BaggANN(1st level) 0.10 7.822 5.204 27.087 69.772

ki StackNO PMS 0.00 7.823 5.993 35.922 81.273

ki Fernandez-Ceniceros et al. [10] 11.750

and the original training dataset. The last three columns correspond to530

the errors with a new testing database (tst2). Additionally, the RMSEtst2,531

mean (SEmean
tst2 ), and standard deviation (SEsd

tst2) of the squared error with532

this new dataset are included. The objective is to check the models gener-533

alization capability with a new database that has not been used to select534

the best α.535

StackANN corresponds to a stacking parsimonious Bagging ANN model536

which has been built with the original database and the predictions of best537

base models from level-0, as it has been explained in Section 3. Second line538
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corresponds with the results of the best bagging ANN level-0 model (Bag-539

gANN(1st level) of Table 4). Third line shows errors with the stacking540

bagging ANN model (StackNO PMS) constructed with the same method-541

ology, but where all base and second level models were obtained with PMS542

of GA-PARSIMONY disabled (α = 0). Finally, results of a previous study543

[10] are presented.544

The three StackANN models significantly improve errors in both test-545

ing databases versus StackNO PMS models. This proves that incorpo-546

rating PMS into the GA-PARSIMONY process helps to obtain parsimo-547

nious models with better generalization capabilities. Moreover, the stack-548

ing method of StackANN improves results for the first level model (Bag-549

gANN) by increasing diversity and reducing the generalization error rate.550

Finally, it can be observed that SEsd
tst2 is reduced with StackANN for the551

three response variables. Therefore, the proposed methodology creates552

more accurate, robust, and reliable models thanks to the combination of553

parsimonious base models in the first level.554

Figure 11 shows error of StackANN model vs the three measured re-555

sponses from test database. d f and Ki have a normal distribution with the556

median close to 0. Finally, Figure 12 represents relative error in percentage557

that it is defined by:558

Rei = 100
ŷi − yi

yi
(9)

This figure highlights the prediction capability for the three output559

variables. These relative errors represent useful information for structure560

designers about the applicability of the proposed model. Regarding the561

prediction of initial stiffness ki and maximum strength Fu, most of the562
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cases were predicted within a scatter band of ±5%. These results are very563

accurate compared with previous models [10] and represent a great im-564

provement over analytical models included in current regulatory codes,565

such as Eurocode 3.566

As for the prediction of the displacement at failure d f , it presents higher567

relative errors, most of them within a scatter band of ±25%. This lower568

prediction capability compared to the other two variables is explained by569

the intrinsic randomness of the damage process. The variable d f implicitly570

accounts for the degradation mechanisms which lead to the failure of the571

bolted connection. These mechanisms include very non-linear effects such572

as large deformations, necking, nucleation and coalescence of voids, and573

can only be predicted by means of advanced FE simulations. Taking all574

of this into consideration, the obtained relative errors for this variable are575

reasonably accurate. In fact, none of the existing standards and regulatory576

codes are able to predict the displacement at fracture, even though the577

importance of this variable from the design and safety points of view.578

Overall, the proposed model represents a powerful tool able to make579

predictions on-line and with higher accuracy than current regulatory codes.580

This is only possible by the combination of advanced numerical methods581

(FEM) to model complex phenomena with SC techniques to alleviate com-582

putation burden, as used in this work.583
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Figure 11: Scatterplot of the errors obtained with StackANN in the test database.
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Figure 12: Scatterplot of the relative errors obtained with StackANN in the test database.

6. Conclusions584

Current software applications based on machine learning models de-585

mand robust and accurate predictions with unseen new data. Predictions586

of such quality are mandatory in steel structure design from the safety587
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point of view. In particular, in the assessment of steel bolted connec-588

tions, the challenge is to create models capable of estimating the force-589

displacement responses with great precision and reliability.590

Today, FEM is one of the most accurate method to predict behavior of591

steel bolted components but it is a highly time-consuming process and592

hence is inefficient in the design of hundred of joints that form a steel593

structure. Thus, the main objective of this work was to create a robust594

and accurate meta-model that would be used in real-time within the struc-595

tural analysis and desing software. Model learned from a database cre-596

ated with FEM simulations that was developed with a Design of Exper-597

iments (DoCE) in order to obtain an homogeneous distribution of actual598

design solutions. Therefore, this article presents a new methodology for599

building robust and reliable models of three key parameters of the force-600

displacement curve: maximum resistance, initial stiffness and displace-601

ment at failure. The main objective of this study was to develop a robust602

stacking ensemble model with parsimonious base models created with dif-603

ferent machine learning methods.604

For this purpose, GA-PARSIMONY, a GA soft computing methodol-605

ogy based on feature selection, parameter tuning and parsimonious model606

selection was employed. GA-PARSIMONY searched robust and reliable607

bagging models with only one tuning parameter, α, which controls the608

trade-off between accuracy and model flexibility. Finally, in order to achieve609

greater generalization capability, the best parsimonious models obtained610

with different algorithms were combined in a stacking ensemble model by611

means of a nested cross validation process.612
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Experiments performed with a small database created with FE simu-613

lations demonstrated that the combination of parsimonious models in a614

stacking ensemble model improved accuracy with unseen data, against615

classical searching methods based on feature selection and parameter tun-616

ing.617

Although, it seems that Stacking with PMS method included in GA-618

PARSIMONY could improve generalization capability in applications where619

models have to be built from small databases, other experiments will be620

necessary to corroborate this conclusion.621

Finally, this accurate tool could aid the designer to obtain optimized622

steel structures. This means less quantity of steel, lighter structures, cost623

saving and less embodied CO2.624
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