New synthesis of all four 1-amino-2-hydroxycyclohexanecarboxylic acids

Alberto Avenoza, ${ }^{\text {a, ** }}$ José I. Barriobero, ${ }^{\text {a }}$ Carlos Cativiela, ${ }^{\text {b,* }}$ Miguel A. Fernández-Recio, ${ }^{\text {a }}$ Jesús M. Peregrina ${ }^{\text {a }}$ and Fernando Rodríguez ${ }^{\text {a }}$
${ }^{\text {a }}$ Departamento de Química, Universidad de La Rioja, Grupo de Síntesis Química de La Rioja, U.A.-C.S.I.C., 26006 Logroño, Spain
${ }^{\mathrm{b}}$ Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain

Received 24 November 2000; revised 19 January 2001; accepted 31 January 2001

Abstract

This report describes a new synthesis of the four stereoisomers of 1-amino-2-hydroxycyclohexanecarboxylic acids [(1S,2S)-, $(1 R, 2 R)-,(1 S, 2 R)$ - and $\left.(1 R, 2 S)-\mathrm{c}_{6} \mathrm{Ser}\right]$, four conformationally constrained serine (Ser) analogues, possessing a six-membered carbocyclic ring. Initially, we synthesised cis- c_{6} Ser and trans $-\mathrm{c}_{6}$ Ser in their racemic forms, using as key steps the Diels-Alder reactions of methyl 2-benzamidoacrylate with Danishefsky's diene and 1-methoxy-1,3-butadiene, respectively. The optically active forms were achieved by resolution methods. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Due to the important role that L-serine ($\mathrm{L}-\mathrm{Ser}$) plays in peptides, ${ }^{1-5}$ not only as an hydrophilic residue but also as either an active site or a catalytic site of a variety of enzymatic transformations, in recent years there has been an increasing interest in the synthesis of conformational variants of L-Ser, with the aim of incorporating them into peptides instead of L -Ser.

In this context, 1-amino-2-hydroxycyclohexanecarboxylic acid ($\mathrm{c}_{6} \mathrm{Ser}$) has received considerable attention since high rigidity is achieved in this molecule by having the α-carbon of the amino acid incorporated into a six-membered ring. The first approach to this target molecule was carried out by Christensen and co-workers, ${ }^{6}$ obtaining the serine analogues cis- and trans- c_{6} Ser as a mixture of stereoisomers and in a racemic form via the Bucherer-Libe and Strecker reactions
from 2-hydroxycyclohexanone. These amino acids were used to study the cellular entry of α-amino acids through the plasma membrane of the Ehrlich cell. ${ }^{6}$

Later, Ohfune and co-workers, ${ }^{7,8}$ using an intramolecular version of the asymmetric Strecker reaction, achieved the synthesis of $(1 R, 2 S)$ - and $(1 R, 2 R)-\mathrm{c}_{6}$ Ser and these amino acids were further incorporated into peptides ${ }^{9}$ (Fig. 1).

Particularly, $(1 R, 2 S)-\mathrm{c}_{6}$ Ser was used to synthesise a Leuenkephalin analogue that behaves as a potent agonist of δ-opioid receptors (10 times more potent than the native Leu-enkephalin). ${ }^{10}$

More recently, Frahm and co-workers reported a new synthesis of the four stereoisomers of $\mathrm{c}_{6} \mathrm{Ser}$ starting from 2-methoxycyclohexanone and (S)- or (R)-1-phenylethylamine via an asymmetric Strecker synthesis. ${ }^{11}$
trans stereoisomers:

(1S,2S)-1
$(1 S, 2 S)-\mathrm{c}_{6}$ Ser

$(1 R, 2 R)-1$
$(1 R, 2 R)-\mathrm{c}_{6}$ Ser
cis stereoisomers:

(1S,2R)-1
$(1 S, 2 R)-c_{6} \operatorname{Ser}$

(1R,2S)-1
$(1 R, 2 S)-\mathrm{c}_{6} \operatorname{Ser}$

Figure 1. Structures of the four stereoisomers of 1-amino-2-hydroxycyclohexanecarboxylic acid ($\mathrm{c}_{6} \mathrm{Ser}$).

[^0]

Scheme 1. Reagents and conditions: (a) $\mathrm{TsCl}, \mathrm{DMSO}-\mathrm{DMF}(1: 1)$, TEA, -5 to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 56 \%$; (b) 1,3-butadiene, $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5-25^{\circ} \mathrm{C}, 48 \mathrm{~h}, 62 \%$.

Scheme 2. Reagents and conditions: (a) (i) Danishefsky's diene, dioxane, reflux, 6 d ; (ii) NaF , $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ ($4: 1$), room temperature, 15 h ; (iii) column chromatography, 48%; (b) 1,3 -propanedithiol, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, $36 \mathrm{~h}, 77 \%$; (c) Ni-Raney, H , EtOH , room temperature, $1.5 \mathrm{~h}, 62 \%$; (d) $12 \mathrm{~N} \mathrm{HCl}, 100^{\circ} \mathrm{C}, 7 \mathrm{~d}, 84 \%$; (e) 1-methoxy-1,3-butadiene, toluene, $85^{\circ} \mathrm{C}, 6 \mathrm{~d}, 72 \%$; (f) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$, room temperature, $6 \mathrm{~h}, 99 \%$.

As part of our research work towards the synthesis of conformationally constrained α-amino acids with a cyclohexane skeleton, in particular analogues of phenylalanine (Phe), we have previously reported the synthesis ${ }^{12-14}$ of the four stereoisomers of 1-amino-2-phenylcyclohexanecarboxylic acid ($\mathrm{c}_{6} \mathrm{Phe}$) and their use as conformational probes. ${ }^{15,16}$ Moreover, we have recently obtained 3 - and 4-hydroxycyclohexane- α-amino acids as a new family of constrained hydroxy- α-amino acids, using a methodology that involves the Diels-Alder reaction as a key step. ${ }^{17-19}$ We herein report the extension of this methodology to the synthesis of all stereoisomers of $\mathrm{c}_{6} \mathrm{Ser}$, with the aim of contributing to the development of hydroxylated cyclo-hexane- α-amino acids, analogues of naturally occurring α-amino acids.

2. Results and discussion

In this paper we present a very efficient strategy for the synthesis and resolution of racemic trans- and cis-c ${ }_{6}$ Ser. The resolution method is based on the formation of the corresponding diastereoisomers, which are easily separated by column chromatography. Once separated, these diastereoisomers are selectively cleaved to give, in high yield, the four enantiomerically pure c_{6} Ser isomers.

Scheme 3. Reagents and conditions: (a) 1,3-butadiene, $\mathrm{AlClEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, $4 \mathrm{~d}, 15 \%$.

2.1. Synthesis of racemic trans-c $\mathrm{c}_{6} \mathrm{Ser}$

Initially, in order to obtain the racemic trans-c ${ }_{6}$ Ser 1 and with the similar idea previously described for the synthesis of $\mathrm{c}_{6} \mathrm{Phe},{ }^{12-14}$ we assayed the Diels-Alder reaction of $1,3-$ butadiene with the dienophile 3 , which is easily available from racemic methyl N-benzoylserinate 2 using a modified procedure described in the literature. ${ }^{20}$ After testing several conditions, reaction was only observed when TiCl_{4} was used as a catalyst, obtaining the product 4 (Scheme 1).

We decided to change the strategy, introducing the hydroxyl group in the cyclohexane ring from the diene instead of using oxygenated dienophiles. In the course of our research on hydroxy- α, α-disubstituted- α-amino acids, we had demonstrated that methyl 2-benzamidoacrylate 5 behaves as an excellent dienophile with Danishefsky's diene in the Diels-Alder cycloaddition. ${ }^{21}$ We are now interested in the synthesis of the trans-methoxycyclohexanone 6a, a pivotal product in the synthesis of racemic trans $-\mathrm{c}_{6} \operatorname{Ser} \mathbf{1}$. As a result of the Diels-Alder reaction, a mixture of two cycloadducts was obtained: methyl 1-benzamido-c-2-methoxy-4-tri-methylsilyloxy-3-cyclohexene-r-1-carboxylate and methyl 1-benzamido- t-2-methoxy-4-trimethylsilyloxy-3-cyclohexene-r-1-carboxylate, corresponding to endo and exo attack respectively. This mixture of products was treated with NaF in the presence of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ to give a mixture of the corresponding trans- and cis-methoxycyclohexanones 6a/ $\mathbf{6 b}$ in a ratio 90:10 (Scheme 2).

Ketone 6a was treated with 1,3-propanedithiol in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as a catalyst to give the corresponding spirothioacetal 7. Desulphurisation of 7 by hydrogenolysis with Raney nickel gave the 2-methoxycyclohexane derivative 8, the direct precursor of the amino acid required. The hydrolysis of derivative $\mathbf{8}$ was carried out in an acid

Scheme 4. Reagents and conditions: (a) (i) Danishefsky's diene, toluene, reflux, 72 h ; (ii) $0.005 \mathrm{~N} \mathrm{HCl}-\mathrm{THF}$ (1:4), room temperature, 15 h ; (iii) DBU , $\mathrm{CH}_{2} \mathrm{Cl}{ }_{2}$, $2^{\circ} \mathrm{C}, 24 \mathrm{~h}, 55 \%$ (b) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5^{\circ} \mathrm{C}, 24 \mathrm{~h}, 96 \%$; (c) TMSTfO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, $1 \mathrm{~h}, 100 \%$; (d) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, MeOH, room temperature, $10 \mathrm{~min}, 83 \%$; (e) $\mathrm{NaBH}_{4}, \mathrm{THF},-10^{\circ} \mathrm{C}, 30 \mathrm{~min}, 62 \%$; (f) $\mathrm{MsCl}, \mathrm{TEA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, $14 \mathrm{~h}, 95 \%$.
medium, at reflux, and the cyclic α-hydroxy- α-amino acid rac-trans-1 was obtained as a hydrochloride derivative in a 22% overall yield using four steps (Scheme 2). In order to improve this yield, alternatively, compound $\mathbf{8}$ was obtained in two steps from the same dienophile 5 by the Diels-Alder reaction with 1-methoxy-1,3-butadiene and further hydrogenation of 9a. The Diels-Alder reaction produced two stereoisomers, corresponding to endo-selectivity: the 1,2adduct $9 \mathbf{a}$ and the 1,3-adduct $9 \mathbf{b}$ in a ratio 90:10 in favour of 9a. The exo-adducts were not observed by NMR techniques. This second path was optimised on a multigram scale (4 g of starting material 5) and now, the overall yield of rac-trans-c $\mathrm{c}_{6} \mathrm{Ser} \mathrm{HCl}$ was 59% in three steps (Scheme 2).

2.2. Synthesis of racemic cis-c \mathbf{c}_{6} Ser

To obtain rac-cis-c ${ }_{6}$ Ser and taking into account the excellent behaviour of 4-aryliden-2-phenyl-5(4H)-oxazolones as dienophiles in the Diels-Alder reactions with several dienes, ${ }^{22,23}$ we firstly assayed the cycloaddition of (Z) -4-methoxymethylene-2-phenyl-5(4H)-oxazolone 10 with 1,3butadiene. After testing several conditions, reaction was only observed when AlClEt_{2} was used as a catalyst, obtaining the cycloaddition product $\mathbf{1 2}$ in a low yield (Scheme 3).

In this case, in order to obtain the corresponding cis- β -hydroxycyclohexane- α-amino acid, we introduced the hydroxyl group into the cyclohexane ring using an efficient and easily applicable method, ${ }^{24}$ which involves the stereoselective intramolecular conjugate addition of the benzamide group to cyclohexenone 13. This enone was easily available from the mixture of the Diels-Alder cycloadducts $\mathbf{6 a}$ and $\mathbf{6 b}$, by elimination of both methoxy groups using DBU in MeOH at $5^{\circ} \mathrm{C}$. Alternatively, enone $\mathbf{1 3}$ was directly obtained from dienophile 5 , without purification of methoxy
cycloadducts $\mathbf{6 a}$ and $\mathbf{6 b}$ and carrying out the transformation of the corresponding silyl enol ethers into ketones by treatment with an aqueous solution of HCl (Scheme 4).

The hydroxy-functionalisation on this enone $\mathbf{1 3}$ took place with a very good yield when trimethylsilyl triflate (TMSTfO) were used as a Lewis acid, allowing the direct hydroxylation in a syn relationship to the amide group through the oxazoline intermediate 14. All typical attempts to transform the carbonyl group into methylene failed, obtaining the starting material. Because of this, we assayed the reduction of carbonyl group of oxazoline 14 with the aim to carry out a dehydroxylation. Nevertheless, the reduction of the carbonyl group of oxazoline 14 with NaBH_{4} produced a mixture of allylic alcohols $\mathbf{1 5 a} / \mathbf{1 5 b}$ instead of the oxazoline alcohols. Better yield of this mixture of alcohols was obtained by reduction of enone $\mathbf{1 3}$ with NaBH_{4} in the presence of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. Treatment of this mixture of alcohols $\mathbf{1 5 a} / \mathbf{1 5 b}$ with methanesulfonyl chloride (MsCl) in triethylamine (TEA) and further purification by silica gel column chromatography allowed us to obtain the unsaturated oxazoline 16, instead of the corresponding methanesulphonate derivatives. Compound $\mathbf{1 6}$ comes from allylic nucleophilic substitution of benzamide group on the methanesulphonate intermediates formed in situ (Scheme 4).

Oxazoline 16 was used as precursor of $\mathrm{rac}-\mathrm{cis}-\mathrm{c}_{6} \mathrm{Ser}$, so we initially tried its hydrogenation and both with palladium and with platinum we obtained a mixture of products (17 and 18), derived from hydrogenolysis reaction 17 and a further isomerisation 18, instead of hydrogenation products ${ }^{25,26}$ (Scheme 5). Because of this, we carried out first the hydrolysis of oxazoline ring with trifluoroacetic acid (TFA), to obtain compound $\mathbf{1 9}$, which could be acetylated to afford compound 20. The hydrogenation of $\mathbf{2 0}$ in the

Scheme 5. Reagents and conditions: (a) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$ (or $\left.\mathrm{Pt}-\mathrm{C}\right), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}, 4 \mathrm{~h}, 92 \%$; (b) TFA, THF- $\mathrm{H}_{2} \mathrm{O}(4: 1), 50^{\circ} \mathrm{C}, 14 \mathrm{~h}, 95 \%$; (c) $\mathrm{AcCl}, \mathrm{TEA}, \mathrm{CH}_{2} \mathrm{Cl}$, room temperature, $14 \mathrm{~h}, 80 \%$; (d) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 35^{\circ} \mathrm{C}, 14 \mathrm{~h}, 78 \%$; (e) $6 \mathrm{~N} \mathrm{HCl}, 100^{\circ} \mathrm{C}, 24 \mathrm{~h}, 76 \%$.

Scheme 6. Reagents and conditions: (a) (i) $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (3:2), reflux, $7 \mathrm{~h}, 93 \%$; (ii) DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, $3 \mathrm{~h}, 91 \%$; (b) L-phenylalanine cyclohexylamide, NMP, $90^{\circ} \mathrm{C}$, 48 h , column chromatography: 36% of $\mathbf{2 3}, 35 \%$ of $\mathbf{2 4}$; (c) $\mathrm{TfOH}, \mathrm{MeOH}, 80^{\circ} \mathrm{C}, 48 \mathrm{~h}, 91 \%$; (d) (i) 12 N $\mathrm{HCl}, 100^{\circ} \mathrm{C}, 7 \mathrm{~d}, 90 \%$; (ii) propylene oxide, EtOH , reflux, $2 \mathrm{~h}, 83 \%$.
presence of platinum-carbon as a catalyst worked without problems to give compound 21, which is the direct precursor of $\mathrm{rac}-\mathrm{cis}$-c ${ }_{6}$ Ser, so its hydrolysis gave with an excellent yield the required rac-cis-1 as a hydrochloride derivative. In this way, rac-cis-c ${ }_{6} \mathrm{Ser} \cdot \mathrm{HCl}$ was obtained from 5 on a multigram scale with a 16% yield, in seven steps (Scheme 5).

2.3. Synthesis of $(1 S, 2 S)$ - and $(1 R, 2 R)-c_{6} S e r$

The strategy used to resolve the racemic trans- $\mathrm{c}_{6} \operatorname{Ser} 1$ was previously developed and reported by Obrecht to prepare and resolve both cyclic and acyclic N-acylated α, α-disubstituted amino acids. ${ }^{27-29}$ In our case, the synthesis of the two enantiomerically pure amino acids $(1 S, 2 S) \mathbf{- 1}$ and $(1 R, 2 R) \mathbf{- 1}$ started from rac-8 (Scheme 6). The methyl ester group of rac- $\mathbf{8}$ was hydrolysed by the action of LiOH and further treatment of the corresponding carboxylic acid with $\mathrm{N}, \mathrm{N}-$ dicyclohexylcarbodiimide (DCC) in the presence of 4dimethylaminopyridine (DMAP) gave the spirooxazolone
rac-22. This compound was smoothly reacted with L-phenylalanine cyclohexylamide in N-methylpyrrolidin-2-one (NMP) as a solvent, at $90^{\circ} \mathrm{C}$. The corresponding diastereoisomeric peptides $(1 S, 2 S, S)$ - $\mathbf{2 3}$ and $(1 R, 2 R, S)-\mathbf{2 4}$ were obtained in good yields after column chromatography using toluene-ethyl acetate (1:1) as an eluent. Each diastereoisomeric peptide 23 and 24 was separately treated with trifluoromethanesulphonic acid (TfOH) in MeOH at $80^{\circ} \mathrm{C}$ to give the optically pure methyl esters $(1 S, 2 S)-\mathbf{8}$ and $(1 R, 2 R)-\mathbf{8}$. Finally, the concomitant hydrolysis of the benzamide, methyl ester and methyl ether groups, in the same conditions as described above for rac-8, gave the optically pure $(1 S, 2 S)$ - and $(1 R, 2 R)-\mathrm{c}_{6} S e r$ as hydrochloride derivatives. In order to assess the enantiomeric purity and to determine the absolute configuration of each amino acid, each hydrochloride derivative was dissolved in EtOH and propylene oxide was then added. After 2 h at reflux, the free amino acids $(1 S, 2 S)-\mathbf{1}$ and $(1 R, 2 R)-\mathbf{1}$ were obtained and the observed optical rotations were in agreement with those described in the literature ${ }^{11}$ (Scheme 6).

Scheme 7. Reagents and conditions: (a) (S)-2-acetoxypropionyl chloride, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, 2 h , column chromatography: 40% of $\mathbf{2 5}, 50 \%$ of 26; (b) $\mathrm{H}_{2} / \mathrm{Pt}-\mathrm{C}$, ethyl acetate, room temperature, $3 \mathrm{~h}, 99 \%$; (c) (i) $9 \mathrm{~N} \mathrm{HCl}, 85^{\circ} \mathrm{C}, 4 \mathrm{~d}, 93 \%$; (ii) propylene oxide, EtOH, reflux, $2 \mathrm{~h}, 85 \%$.

2.4. Synthesis of $(1 S, 2 R)$ - and $(1 R, 2 S)-\mathrm{c}_{6} S e r$

On the other hand, the strategy used to resolve the racemic cis-c ${ }_{6}$ Ser 1 involves the reaction of rac-19 with (S)-2-acetoxypropanoyl chloride in the presence of TEA to give with 90% yield a diastereomeric mixture of $(1 S, 2 R, S)$ - $\mathbf{2 5}$ and $(1 R, 2 S, S)-26$. These diastereoisomers were separated by column chromatography using ethyl ether-hexane (7:3) as an eluent. Each diastereoisomer 25 and 26 was separately hydrogenated in the presence of platinum-carbon as a catalyst and ethyl acetate as a solvent to give, respectively, the compounds $(1 S, 2 R, S)$-27 and $(1 R, 2 S, S)$-28, which were subjected to hydrolysis using 6 N HCl at reflux to obtain $(1 S, 2 R)$ - and $(1 R, 2 S)-\mathrm{c}_{6} S e r ~ a s ~ h y d r o c h l o r i d e ~ d e r i v a t i v e s . ~$ In the same way described for optically active trans $-\mathrm{c}_{6} \mathrm{Ser}$, we obtained the free amino acids $(1 S, 2 R)-\mathbf{1}$ and $(1 R, 2 S)-\mathbf{1}$ in order to assess their enantiomeric purity and to determine their absolute configuration (Scheme 7).

3. Conclusions

In summary, we have developed a new methodology for the synthesis, on a multigram scale, of two types of racemic constrained serines (trans- and cis-c ${ }_{6}$ Ser) from methyl 2-benzamidoacrylate, using as a key step the Diels-Alder reaction with oxygenated dienes. Moreover, we have prepared, in a good yield, all four enantiomerically pure amino acids $(1 S, 2 S)$-, $(1 R, 2 R)$-, $(1 S, 2 R)$ - and $(1 R, 2 S)$ - $\mathrm{c}_{6} S e r$ by resolution of the corresponding diastereoisomers. In a future work, we will introduce these amino acids in small peptides as restricted serine analogues and we will make several structural studies.

4. Experimental

4.1. General procedure

Solvents were purified according to standard procedures. Analytical TLC was performed using Polychrom SI F ${ }_{254}$ plates. Column chromatography was performed using silica gel 60 (230-400 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ARX-300 spectrometer at 300 MHz $\left({ }^{1} \mathrm{H}\right)$ and at $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ in CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$ with TMS as the internal standard and in $\mathrm{D}_{2} \mathrm{O}$ with TMS as the external standard using a coaxial microtube (chemical shifts are reported in ppm on the δ scale, coupling constants in Hz). Melting points were determined on a Büchi SMP-20 melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 341 polarimeter in a 1 dm cell of 1 mL capacity. Microanalyses were carried out on a CE Instruments EA-1110 analyser and were in good agreement with the calculated values. IR spectra were recorded on a Perkin Elmer FT-IR Spectrum 1000 spectrometer.
4.1.1. Methyl (E)-2-benzamido-3-(\boldsymbol{p}-toluenesulphonyloxy)-2-propenoate (3). p-Toluenesulphonyl chloride (718 mg , 3.7 mmol) was dissolved in a mixture of DMSO-DMF $1: 1(15 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$ and a solution of methyl N -benzoylserinate ($280 \mathrm{mg}, 1.2 \mathrm{mmol}$) in dry DMF $(10 \mathrm{~mL})$ was added dropwise, under an inert atmosphere. After stirring for 5 min at the same temperature, $\mathrm{Et}_{3} \mathrm{~N}(1.26 \mathrm{~g}, 12.5 \mathrm{mmol})$
was added and the mixture was allowed to warm up to $25^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction was quenched by the addition of water $(25 \mathrm{~mL})$. The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was chromatographed on silica gel, eluting with hexane-ethyl acetate (6:4), to yield 263 mg of compound 3 as a white solid (56%). Mp: $129-130^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}$: C, 57.59; H, 4.56; N, 3.73; S, 8.54; found: C, $57.30 ; \mathrm{H}, 4.55$; N, 3.64; S, 8.68; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3418(\mathrm{NH}), 1728$ (COO), $1686(\mathrm{CON})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.44$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ph}$); 3.78 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right) ; 7.36-7.46(\mathrm{~m}, 4 \mathrm{H}$, Arom.) ; 7.47-7.53 (m, 2H, Arom. +NH); $7.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right) ; 7.76-7.81$ (m, 2H, Arom.); 7.85 (d, 2H, J=8.4 Hz, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.7$ $\left(\mathrm{CH}_{3} \mathrm{Ph}\right) ; 52.6\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 116.0\left(\mathrm{C}_{2}\right) ; 127.5,128.2,128.6$, 130.2, 131.8, 132.2, 133.0, 138.4 (Arom.); $146.3\left(\mathrm{C}_{3}\right)$; 163.7, 165.0 (COO, CON).
4.1.2. Methyl (\boldsymbol{E})-2-benzamido-3-hydroxy-2-propenoate (4). A 1 M solution of TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.53 \mathrm{~mL}$, 0.53 mmol) was added to a solution of dienophile 3 $(200 \mathrm{mg}, 0.53 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$, under an inert atmosphere. After stirring at the same temperature for 1 h , a solution of 1,3-butadiene ($286 \mathrm{mg}, 5.3 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and the mixture was allowed to warm up to $25^{\circ} \mathrm{C}$. After stirring for 48 h , the reaction was quenched by the addition of solid $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, filtered and evaporated. The residue was chromatographed on silica gel, eluting with hexane-ethyl acetate (1:1), to yield 75 mg of compound 4 as an oil (62%). Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4}$: C, 59.73 ; H, 5.01 ; N, 6.33; found: C, 60.03 ; H, 5.11 ; N, 6.21 ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3418(\mathrm{NH}+\mathrm{OH}), 1737(\mathrm{COO}), 1686$ (CON); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 7.05(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{3}\right) ; 7.44-7.51(\mathrm{~m}, 3 \mathrm{H}$, Arom. +OH$) ; 7.53-7.62(\mathrm{~m}$, 2 H , Arom. +NH); 7.86-7.91 (m, 2 H , Arom.) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.9\left(\mathrm{CH}_{3}\right) ; 123.2\left(\mathrm{C}_{2}\right) ; 127.6$ (Arom.); 128.8 (Arom. $+\mathrm{C}_{3}$); 132.6 (Arom.); 162.9, 165.1 (COO, CON).
4.1.3. Methyl 1-benzamido-c-2-methoxy-4-oxocyclo-hexane- r-1-carboxylate (6a) and methyl 1-benzamido- t -2-methoxy-4-oxocyclohexane-r-1-carboxylate (6b). Danishefsky's diene ($1 \mathrm{~g}, 6.0 \mathrm{mmol}$) was added to a solution of methyl 2-benzamidoacrylate $5(615 \mathrm{mg}, 3.0 \mathrm{mmol})$ in dry dioxane (25 mL) under an inert atmosphere. After stirring at reflux for 24 h , another 3.0 mmol of 5 were added. The reaction was stirred for another 24 h and then another 6.0 mmol of Danishefsky's diene were added. After stirring at reflux for 6 d overall, the solvent was evaporated to give a residue corresponding to a mixture of silyl enol ethers. This mixture ($2.1 \mathrm{~g}, 5.6 \mathrm{mmol}$) was dissolved in a mixture of THF $-\mathrm{H}_{2} \mathrm{O}(4: 1)(50 \mathrm{~mL})$ and $\mathrm{NaF}(517 \mathrm{mg}, 12 \mathrm{mmol})$ was added. After stirring at $25^{\circ} \mathrm{C}$ for 15 h , the reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with brine $(50 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered and evaporated. The residue was chromatographed on silica gel, eluting with hexane-ethyl acetate (4:6), to yield 875 mg of ketone $\mathbf{6 a}$ (48%) and 73 mg of ketone $\mathbf{6 b}(4 \%)$ as white solids.

6a. Mp: $128-129^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}$: $\mathrm{C}, 62.94 ; \mathrm{H}$, 6.27; N, 4.59; found: C, 63.09 ; $\mathrm{H}, 6.22$; N, 4.53; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\left.\mathrm{cm}^{-1}\right): 3414(\mathrm{NH}), 1720(\mathrm{CO}, \mathrm{COO}), 1673(\mathrm{CON}),{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right): \delta 2.41-2.82\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H}_{3}+2 \mathrm{H}_{5}+2 \mathrm{H}_{6}\right) ; 3.30(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right) ; 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; 3.98\left(\mathrm{t}, 1 \mathrm{H}, J_{2 \mathrm{e}-3 \mathrm{a}}=J_{2 \mathrm{e}-3 \mathrm{e}}=\right.$ $5.2 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{e}}$) ; 7.02 (br s, $1 \mathrm{H}, \mathrm{NH}$); 7.37-7.53 (m, 3 H , Arom.); 7.73-7.81 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 26.3, 36.9, $41.2\left(\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 52.9\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; 57.7\left(\mathrm{CH}_{3} \mathrm{O}\right)$; $62.0\left(\mathrm{C}_{1}\right) ; 80.1\left(\mathrm{C}_{2}\right) ; 127.1,128.6,132.1,133.9$ (Arom.); 167.7, 172.0 (COO, CON); 208.1 (CO).

6b. Mp: 134-136 ${ }^{\circ}$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 62.94; H, 6.27; N, 4.59; found: C, 63.12; H, 6.24; N, 4.64; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3426(\mathrm{NH}), 1744,1720(\mathrm{CO}, \mathrm{COO})$, 1677 (CON); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.35-2.94(\mathrm{~m}, 6 \mathrm{H}$, $2 \mathrm{H}_{3}+2 \mathrm{H}_{5}+2 \mathrm{H}_{6}$); $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.82(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; 4.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{2 \mathrm{a}-3 \mathrm{a}}=7.5 \mathrm{~Hz} ; J_{2 \mathrm{a}-3 \mathrm{e}}=4.2 \mathrm{~Hz}\right.$, $\mathrm{H}_{2 \mathrm{a}}$); 6.80 (br s, $1 \mathrm{H}, \mathrm{NH}$); 7.39-7.59 (m, 3H, Arom.); 7.74-7.84 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 27.5$, 36.6, $41.8\left(\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 53.0\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; 57.3\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 62.1$ $\left(\mathrm{C}_{1}\right) ; 80.8\left(\mathrm{C}_{2}\right) ; 126.9,128.6,131.9,133.9$ (Arom.); 168.0, 171.8 (COO, CON); 206.9 (CO).
4.1.4. Methyl 1-benzamido-c-2-methoxy-4-spiro-[2' $\left(1^{\prime}, 3^{\prime}-\right.$ dithiocyclohexane)]cyclohexane-r-1-carboxylate (7). 1,3Propanedithiol ($89 \mathrm{mg}, 0.82 \mathrm{mmol}$) was added to a solution of ketone $6 \mathbf{a}(200 \mathrm{mg}, 0.65 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$, under an inert atmosphere. After stirring for 30 min , $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(13 \mathrm{mg}, 0.09 \mathrm{mmol})$ was added and the mixture was stirred for another 36 h at the same temperature. The reaction was quenched by the addition of solid $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, filtered and evaporated. The residue was chromatographed on silica gel eluting with hexane-ethyl acetate (1:1), to yield 200 mg of compound 7 as a white solid (77%). Mp: $136-138^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}_{2}$: C, 57.69; H, 6.37; N, 3.54; S, 16.21; found: C, $57.81 ; \mathrm{H}, 6.32 ; \mathrm{N}, 3.62 ; \mathrm{S}, 16.07$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: $3410(\mathrm{NH}), 1731(\mathrm{COO}), 1670(\mathrm{CON}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$:反1.93-2.08 (m, 2H); 2.17-2.39 (m, 3H); 2.40-2.64 (m, 2H); 2.75-3.02 (m, 5H); $3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.82(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right)$; $4.41\left(\mathrm{dd}, 1 \mathrm{H}, J_{2 \mathrm{a}-3 \mathrm{a}}=10.2 \mathrm{~Hz}, J_{2 \mathrm{a}-3 \mathrm{e}}=4.5 \mathrm{~Hz}\right.$, $\mathrm{H}_{2 \mathrm{a}}$) ; 7.20 (br s, 1H, NH); 7.38-7.56 (m, 3H, Arom.); $7.76-7.85$ (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.5$, 26.1, 26.4, 27.1, 33.5, $37.4\left(\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{4^{\prime}}, \mathrm{C}_{5^{\prime}}, \mathrm{C}_{6^{\prime}}\right) ; 48.4$ $\left(\mathrm{C}_{4}\right) ; 52.7\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; 58.0\left(\mathrm{CH}_{3} \mathrm{O}\right)$; $63.9\left(\mathrm{C}_{1}\right) ; 76.9\left(\mathrm{C}_{2}\right)$; 126.8, 128.4, 131.5, 134.5 (Arom.); 166.7, 171.9 (COO, CON).
4.1.5. Methyl 1-benzamido-c-2-methoxy-3-cyclohexene-r-1-carboxylate (9a) and methyl 1-benzamido- c-3-meth-oxy-4-cyclohexene-r-1-carboxylate (9b). 1-Methoxy-1,3butadiene ($4 \mathrm{~g}, 19.52 \mathrm{mmol}$) and hydroquinone $(10 \mathrm{mg})$ were added to a solution of methyl 2-benzamidoacrylate 5 $(4 \mathrm{~g}, 47.62 \mathrm{mmol})$ in toluene $(40 \mathrm{~mL})$ at $85^{\circ} \mathrm{C}$. After stirring for 6 d , the reaction was allowed to cool down to $25^{\circ} \mathrm{C}$. The formed precipitate was filtered and washed with cold diethyl ether $(2 \times 30 \mathrm{~mL})$, to yield 3.22 g of compound 9 a as a white solid (57%). The filtrate was evaporated and the residue was chromatographed on silica gel eluting with hexane-ethyl acetate (6:4), to yield a further 870 mg of compound 9 a (15, 72% overall) and 524 mg of compound $\mathbf{9 b}$ as an oil (9\%).

9a. Mp: $148-150^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$: $\mathrm{C}, 66.42$; H, 6.62; N, 4.84; found: C, 66.65 ; H, 6.68; N, 4.99; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3433(\mathrm{NH}), 1752(\mathrm{COO}), 1670(\mathrm{CON})$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.87-2.21(\mathrm{~m}, 3 \mathrm{H}) ; 2.48-2.57(\mathrm{~m}$, $1 \mathrm{H}) ; 3.32$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.73$ (s, $4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}+\mathrm{H}_{2}$); 5.85-5.93 (m, 1H, H3); 6.02-6.13 (m, 2H, H $\left.{ }_{4}+\mathrm{NH}\right)$; $7.30-7.46$ (m, 3H, Arom.); 7.60-7.67 (m, 2H, Arom.); ${ }^{13} \mathrm{C} \quad$ NMR $\quad\left(\mathrm{CDCl}_{3}\right): \quad \delta \quad 21.5 \quad\left(\mathrm{C}_{6}\right) ; 22.6 \quad\left(\mathrm{C}_{5}\right) ; \quad 52.3$ $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; 57.4\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 60.7\left(\mathrm{C}_{1}\right) ; 76.5\left(\mathrm{C}_{2}\right) ; 121.9\left(\mathrm{C}_{3}\right)$; 126.9, 128.5, 131.8, 133.6 (Arom.); $134.7\left(\mathrm{C}_{4}\right) ; 166.5$ (CON); 172.2 (COO).

9b. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$: $\mathrm{C}, 66.42 ; \mathrm{H}, 6.62 ; \mathrm{N}, 4.84$; found: C, 66.73; H, 6.78; N, 4.99; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3425$ (NH), 1731 (COO), 1669 (CON); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): δ 1.98-2.17 (m, 3H); 2.89-2.97 (m, 1H); $3.39(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right) ; 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; 4.17-4.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right) ;$ $5.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{4-5}=10.2 \mathrm{~Hz}, J_{4-3}=1.5 \mathrm{~Hz}, \mathrm{H}_{4}\right) ; 5.93-5.99$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{5}\right) ; 6.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ; 7.29-7.53(\mathrm{~m}, 3 \mathrm{H}$, Arom.) ; 7.71-7.80 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $22.1\left(\mathrm{C}_{6}\right) ; 26.5\left(\mathrm{C}_{2}\right) ; 52.6\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right)$; $57.7\left(\mathrm{CH}_{3} \mathrm{O}\right)$; $60.9\left(\mathrm{C}_{1}\right) ; 78.8\left(\mathrm{C}_{3}\right) ; 123.5\left(\mathrm{C}_{4}\right) ; 126.9,128.3$ (Arom.); 130.9 (C_{5}); 131.4, 134.4 (Arom.); 167.7 (CON); 173.0 (COO).
4.1.6. Methyl 1-benzamido-c-2-methoxycyclohexane-r-1carboxylate (rac-8). Method A: A suspension of Raney Ni catalyst in water (5 mL) was added to a solution of compound 7 ($220 \mathrm{mg}, 0.56 \mathrm{mmol}$) in EtOH (30 mL). The mixture was hydrogenated at atmospheric pressure, vigorously stirring at $25^{\circ} \mathrm{C}$ for 90 min . The catalyst was filtered off through Celite, washed with $\mathrm{EtOH}(3 \times 10 \mathrm{~mL})$ and the filtrate evaporated. The residue was chromatographed on silica gel eluting with hexane-ethyl acetate (6:4), to yield 101 mg of compound $\mathbf{8}$ as a white solid (62%). Method B: A solution of compound $9 \mathbf{9 a}(1.0 \mathrm{~g}, 3.46 \mathrm{mmol})$ in MeOH (30 mL) was hydrogenated at atmospheric pressure, using palladium-carbon (10%) as a catalyst (100 mg), vigorously stirring at $25^{\circ} \mathrm{C}$ for 6 h . The catalyst was filtered off through Celite and the solvent evaporated to yield 1 g of compound 8 as a white solid (99%). Mp: 132- $133^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 65.96 ; H, 7.27; N, 4.81; found: C, $65.84 ; \mathrm{H}$, $7.32 ; \mathrm{N}, 4.75$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 3411(\mathrm{NH}), 1729(\mathrm{COO})$, $1664(\mathrm{CON}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.38-1.51(\mathrm{~m}, 2 \mathrm{H})$; $1.55-1.78(\mathrm{~m}, 3 \mathrm{H}) ; 1.84-1.99(\mathrm{~m}, 1 \mathrm{H}) ; 2.04-2.18(\mathrm{~m}$, $1 \mathrm{H}) ; 2.39-2.51(\mathrm{~m}, 1 \mathrm{H}) ; 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.78(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$); 3.76-3.91 (m, 1H, H_{2}); 6.68 (br s, $1 \mathrm{H}, \mathrm{NH}$); 7.37-7.56 (m, 3H, Arom.); 7.71-7.82 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.7,21.3,25.3,27.8\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}\right.$, $\left.\mathrm{C}_{6}\right) ; 52.5\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; 57.5\left(\mathrm{CH}_{3} \mathrm{O}\right)$; $62.9\left(\mathrm{C}_{1}\right) ; 79.5\left(\mathrm{C}_{2}\right)$; 126.9, 128.6, 131.6, 134.5 (Arom.); 166.6, 173.1 (COO, CON).
4.1.7. 1-Amino-c-2-hydroxycyclohexane-r-1-carboxylic acid (rac-trans-1). Compound rac-8 ($2 \mathrm{~g}, 6.87 \mathrm{mmol}$) was suspended in a 12 N HCl solution (25 mL). After stirring under reflux for 7 d , the solvent was evaporated, the excess of HCl removed in vacuo and the residue was dissolved in distilled water $(20 \mathrm{~mL})$. The aqueous mixture was washed with diethyl ether $(4 \times 20 \mathrm{~mL})$ and evaporated to yield 1.2 g of rac-trans $\mathbf{- 1} \cdot \mathrm{HCl}$ as a white solid (91%). The hydrochloride was dissolved in ethanol (30 mL) and propylene oxide (10 mL) was added. After stirring under reflux for 2 h , the precipitate was filtered off and washed with cold EtOH to yield 819 mg of rac-trans $\mathbf{- 1}$ as a white solid (75\%). The filtrate was evaporated and the residue was
dissolved in distilled water (5 mL) and eluted through a C_{18} reverse-phase Sep-pak cartridge which, after removal of water, gave another 105 mg ($9 \%, 84 \%$ overall) of the amino acid. rac-trans $\mathbf{1} \cdot \mathrm{HCl}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.41-$ $1.49(\mathrm{~m}, 1 \mathrm{H}) ; 1.58-1.71(\mathrm{~m}, 2 \mathrm{H}) ; 1.75-1.92(\mathrm{~m}, 3 \mathrm{H}) ; 1.99-$ $2.18(\mathrm{~m}, 2 \mathrm{H}) ; 3.72\left(\mathrm{dd}, 1 \mathrm{H}, J_{2 \mathrm{a}-3 \mathrm{a}}=11.1 \mathrm{~Hz}, J_{2 \mathrm{a}-3 \mathrm{e}}=4.8 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{2 \mathrm{a}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 22.1,24.4,31.3,32.9\left(\mathrm{C}_{3}, \mathrm{C}_{4}\right.$, $\left.\mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 65.1\left(\mathrm{C}_{1}\right) ; 73.8\left(\mathrm{C}_{2}\right) ; 171.6(\mathrm{COO})$. rac-trans-1: Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, 52.82; H, 8.23; N, 8.80; found: C, $52.65 ; \mathrm{H}, 8.36 ; \mathrm{N}, 8.67 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta$ $1.22-1.39(\mathrm{~m}, 1 \mathrm{H}) ; 1.42-1.99(\mathrm{~m}, 6 \mathrm{H}) ; 2.04-2.18(\mathrm{~m}$, $1 \mathrm{H}) ; 3.63\left(\mathrm{dd}, 1 \mathrm{H}, J_{2 \mathrm{a}-3 \mathrm{a}}=10.5 \mathrm{~Hz}, J_{2 \mathrm{a}-3 \mathrm{e}}=4.8 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{a}}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 21.0,22.7,29.8,31.5\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}\right)$; $64.1\left(\mathrm{C}_{1}\right) ; 72.5\left(\mathrm{C}_{2}\right) ; 174.0(\mathrm{COO})$.
4.1.8. (cis and trans)-6-Ethyl-3-cyclohexene-1-spiro-\{4'[$\mathbf{2}^{\prime}$-phenyl-5 $\mathbf{5}^{\prime}\left(\mathbf{4}^{\prime} \mathbf{H}\right)$-oxazolone]\} (12). A 1 M solution of AlClEt_{2} in hexane $(4.20 \mathrm{~mL}, 4.20 \mathrm{mmol})$ was added to a solution of oxazolone $\mathbf{1 0}(850 \mathrm{mg}, 4.20 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$, under an inert atmosphere. After stirring for 1 h , a solution of 1,3-butadiene ($2 \mathrm{~g}, 37.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added to the mixture. After stirring for 48 h , another 37.0 mmol of 1,3-butadiene were added. After stirring for another 48 h at the same temperature, the reaction was quenched by the addition of solid $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, filtered and evaporated. The residue was chromatographed on silica gel eluting with hexane-ethyl acetate ($8: 2$), to yield 166 mg of the mixture of oxazolones 12 as a yellow oil (15%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.78-0.93$ (m, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); 0.93-1.10, 1.15-1.34 (m, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); 1.972.29, 2.31-2.50, 2.57-2.78 (m, $\mathrm{H}_{2}, \mathrm{H}_{5}, \mathrm{H}_{6}$) ; 5.61-5.77; 5.85-5.98 (m, $\mathrm{H}_{3}, \mathrm{H}_{4}$); 7.40-7.62 (m, Arom.); 7.95-8.10 (m, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.2,11.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $22.6,23.5,26.4,27.1,33.6,35.3,40.7,40.8\left(\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{6}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 70.2,72.1\left(\mathrm{C}_{1}\right) ; 120.9,121.9,125.8,125.9$, $126.9,127.2,127.9,128.0,128.7,128.8,132.5,132.6\left(\mathrm{C}_{3}\right.$, C_{4}, Arom.); 160.3 (CON); 181.5 (COO).
4.1.9. Methyl 1-benzamido-4-oxo-2-cyclohexene-1carboxylate (13). Method A: Danishefsky's diene ($6.5 \mathrm{~mL}, 33.4 \mathrm{mmol}$) was added to a solution of methyl 2-benzamidoacrylate $5(1.7 \mathrm{~g}, 8.3 \mathrm{mmol})$ in dry toluene $(80 \mathrm{~mL})$ under an inert atmosphere. After stirring at reflux for 24 h , another 8.3 mmol of Danishefsky's diene were added. After stirring for another 2 d at the same temperature, the solvent was evaporated in vacuo and a $0.005 \mathrm{~N} \mathrm{HCl}-$ THF ($1: 4$) solution (40 mL) was added to the residue. The reaction mixture was stirred for 15 h at $20^{\circ} \mathrm{C}$, the solvent was evaporated and the residue was chromatographed on silica gel, eluting with hexane-ethyl acetate (2:8). The mixture of compounds 6a, $\mathbf{6 b}$ and $\mathbf{1 3}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ and DBU ($2.7 \mathrm{~mL}, 18.2 \mathrm{mmol}$) was added. The reaction mixture was stirred for 24 h at $2^{\circ} \mathrm{C}$ and the solution was washed with $0.5 \mathrm{~N} \mathrm{HCl}(60 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 30 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was chromatographed on silica gel eluting with hexane-ethyl acetate ($1: 1$), to yield 2.5 g of enone 13 as a white solid (55%). Method B: A mixture of ketones 6a and 6b in a 90:10 ratio ($500 \mathrm{mg}, 1.63 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ and $\mathrm{DBU}(0.27 \mathrm{~mL}, 1.80 \mathrm{mmol})$ was added. The reaction mixture was stirred for 24 h at $5^{\circ} \mathrm{C}$ and the solution
was washed with a saturated NaHCO_{3} solution $(3 \times 20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was chromatographed on silica gel eluting with hexane-ethyl acetate (1:1), to yield 429 mg of enone $\mathbf{1 3}$ as a white solid (96%). Mp: $126-127^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, $65.92 ; \mathrm{H}$, 5.53; N, 5.13; found: C, 65.84; H, 5.59; N, 5.05; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cm^{-1}): 3433 (NH), 1744 (CO), 1673 (CON); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.50-2.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}_{5}+2 \mathrm{H}_{6}\right) ; 3.82(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}); $6.14\left(\mathrm{~d}, 1 \mathrm{H}, J_{3-2}=10.0 \mathrm{~Hz}, \mathrm{H}_{3}\right) ; 6.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}) ; 7.14\left(\mathrm{~d}, 1 \mathrm{H}, J_{2-3}=10.0 \mathrm{~Hz}, \mathrm{H}_{2}\right) ; 7.41-7.48(\mathrm{~m}, 2 \mathrm{H}$, Arom.); 7.50-7.58 (m, 1H, Arom.); 7.76-7.82 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 31.6,33.7\left(\mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 53.4$ $\left(\mathrm{CH}_{3}\right) ; 58.5\left(\mathrm{C}_{1}\right) ; 127.1,128.6,130.5,132.2\left(\mathrm{C}_{3}\right.$, Arom. $)$; 133.0 (Arom.); $146.9\left(\mathrm{C}_{2}\right) ; 167.0,171.2$ (COO, CON); 197.2 (CO).
4.1.10. Methyl cis-8-oxo-3-phenyl-2-oxa-4-azabicyclo-[4.3.0]non-3-ene-5-carboxylate (14). TMSTfO (732 mg, 3.30 mmol) was added dropwise to a solution of enone $\mathbf{1 3}$ $(300 \mathrm{mg}, 1.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$, under an inert atmosphere. After stirring for 1 h , the reaction was quenched by the addition of solid $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, to yield 300 mg of compound $\mathbf{1 4}$ as an oil (100%). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 65.92; H, 5.53; N, 5.13; found: C, $65.99 ; \mathrm{H}$, 5.42; N, 5.08; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.14-2.51(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{H}_{6}+2 \mathrm{H}_{7}\right) ; 2.79\left(\mathrm{dd}, 1 \mathrm{H}, J_{9 \mathrm{x}-9 \mathrm{n}}=17.4 \mathrm{~Hz}, J_{9 \mathrm{x}-1}=3.6 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{9 \mathrm{x}}\right) ; 3.00\left(\mathrm{dd}, 1 \mathrm{H}, J_{9 \mathrm{n}-9 \mathrm{x}}=17.4 \mathrm{~Hz}, J_{9 \mathrm{n}-1}=3.0 \mathrm{~Hz}, \mathrm{H}_{9 \mathrm{n}}\right.$); $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 5.43\left(\mathrm{t}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}, \mathrm{H}_{1}\right) ; 7.38-7.47$ (m, 2H, Arom.); 7.48-7.56 (m, 1H, Arom.); 7.92-7.98 (m, 2H, Arom.).
4.1.11. Methyl 1-benzamido-t-4-hydroxy-2-cyclohexene-r-1-carboxylate (15a) and methyl 1-benzamido-c-4-hydroxy-2-cyclohexene-r-1-carboxylate (15b). Method A: A 0.4 M solution of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeOH}(2.56 \mathrm{~mL}$, 1.02 mmol) was added to a solution of enone $13(280 \mathrm{mg}$, 1.02 mmol) in $\mathrm{MeOH}(20 \mathrm{~mL})$ at $25^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(38.7 \mathrm{mg}$, 1.02 mmol) was then added to the mixture and after stirring for 10 min at the same temperature, the reaction was quenched by the dropwise addition of a 2 N HCl solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was chromatographed on silica gel, eluting with hexane-ethyl acetate (3:7), to yield 234 mg of the mixture of alcohols $\mathbf{1 5 a} / 15 \mathrm{~b}$ in an approximate ratio of $6: 4$ as a white solid (83%). Method B: $\mathrm{NaBH}_{4}(111 \mathrm{mg}, 2.9 \mathrm{mmol})$ was added to a solution of ketone $14(160 \mathrm{mg}, 0.59 \mathrm{mmol})$ in dry THF $(15 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. After stirring for 30 min at the same temperature, the reaction was quenched by the dropwise addition of water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 15 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was chromatographed on silica gel, eluting with hexane-ethyl acetate (3:7), to yield 101 mg of the mixture of alcohols $\mathbf{1 5 a} / \mathbf{1 5 b}$ in an approximate ratio of $7: 3$, as a white solid (62\%). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, 65.44; $\mathrm{H}, 6.22$; N, 5.09 ; found: $\mathrm{C}, 65.59 ; \mathrm{H}, 6.13 ; \mathrm{N}, 5.08$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.68-2.51(\mathrm{~m}) ; 3.76\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$; $4.16-4.26\left(\mathrm{~m}, \mathrm{H}_{4}+\mathrm{H}_{4}^{\prime}\right) ; 5.79\left(\mathrm{~d}, J_{3-2}=9.9 \mathrm{~Hz}, \mathrm{H}_{3}\right) ; 5.95$
$\left(\mathrm{d}, J_{3^{\prime}-2}=9.9 \mathrm{~Hz}, \mathrm{H}_{3}{ }^{\prime}\right) ; 6.06\left(\mathrm{dd}, J_{2^{\prime}-3^{\prime}}=9.9 \mathrm{~Hz}, J_{2^{\prime}-4^{\prime}}=\right.$ $3.0 \mathrm{~Hz}, \mathrm{H}_{2}^{\prime}$); 6.13 (dd, $J_{2-3}=9.9 \mathrm{~Hz}, J_{2-4}=3.7 \mathrm{~Hz}, \mathrm{H}_{2}$); 6.68 (br s, NH); 7.08 (br s, NH'); 7.34-7.53 (m, Arom.); 7.71-7.81 (m, Arom.).
4.1.12. Methyl cis-3-phenyl-2-oxa-4-azabicyclo[4.3.0]-nona-3,8-diene-5-carboxylate (16). $\mathrm{Et}_{3} \mathrm{~N} \quad(143 \mathrm{mg}$, $2.42 \mathrm{mmol})$ and $\mathrm{MsCl}(162 \mathrm{mg}, 1.42 \mathrm{mmol})$ were added to a solution of the mixture of alcohols $\mathbf{1 5 a} / \mathbf{1 5 b}(300 \mathrm{mg}$, $1.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$, under an inert atmosphere. After stirring for 14 h , the mixture was washed with a saturated NaHCO_{3} solution $(2 \times 20 \mathrm{~mL})$ and the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was chromatographed on silica gel, eluting with hexane-ethyl acetate (1:1), to yield 270 mg of compound 16 as an oil (95%). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$: C, $70.02 ; \mathrm{H}, 5.88$; N, 5.44 ; found: C, $70.14 ; \mathrm{H}, 5.87$; N, 5.35 ; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.93-2.32\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}_{6}+2 \mathrm{H}_{7}\right) ; 3.80(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 5.33\left(\mathrm{~d}, 1 \mathrm{H}, J_{1-9}=3.6 \mathrm{~Hz}, \mathrm{H}_{1}\right) ; 5.94-6.00(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{9}\right) ; 6.12-6.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{8}\right) ; 7.36-7.42$ (m, 2H, Arom.); 7.43-7.51 (m, 1H, Arom.); 7.95-8.01 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.8,29.1\left(\mathrm{C}_{6}, \mathrm{C}_{7}\right) ; 52.5\left(\mathrm{CH}_{3}\right) ; 74.4$ $\left(\mathrm{C}_{5}\right) ; 76.7\left(\mathrm{C}_{1}\right) ; 122.8\left(\mathrm{C}_{9}\right) ; 127.3,128.0,128.2,131.5$ (Arom.); $133.5\left(\mathrm{C}_{8}\right) ; 164.9,173.0\left(\mathrm{COO}, \mathrm{C}_{3}\right)$.
4.1.13. Methyl 1-benzamido-3-cyclohexene-1-carboxylate (17) and methyl 1-benzamido-2-cyclohexene-1carboxylate (18). A solution of compound 16 (150 mg , $0.58 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was hydrogenated at atmospheric pressure, using palladium-carbon (10\%) as a catalyst (30 mg), vigorously stirring at $30^{\circ} \mathrm{C}$ for 4 h . The catalyst was filtered off through Celite and the solvent evaporated to yield 139 mg of the mixture of compounds $\mathbf{1 7 / 1 8}$ in a ratio $4: 6$ as a white solid (92%). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, 69.48 ; H, 6.61; N, 5.40; found: C, $69.55 ; \mathrm{H}$, $6.64 ; \mathrm{N}, 5.34 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.57-2.72\left(\mathrm{~m}, \mathrm{H}_{4}{ }^{\prime}+\right.$ $\left.\mathrm{H}_{5}{ }^{\prime}+\mathrm{H}_{6}{ }^{\prime}+\mathrm{H}_{2}+\mathrm{H}_{5}+\mathrm{H}_{6}\right) ; 3.76\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 5.61-5.69\left(\mathrm{~m}, \mathrm{H}_{4}\right)$; 5.77-5.85 (m, H3 $)$; 5.86-5.93 (m, H2 $\left.{ }^{\prime}\right) ; ~ 6.03-6.12\left(\mathrm{~m}, \mathrm{H}_{3}{ }^{\prime}\right)$; 6.40 (br s, 1H, NH); 6.54 (br s, $1 \mathrm{H}, \mathrm{NH}^{\prime}$); 7.33-7.54 (m, Arom.); 7.67-7.81 (m, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.5$, 21.8, 24.7, 26.7, 30.3, $34.1\left(\mathrm{C}_{4}{ }^{\prime}, \mathrm{C}_{5}{ }^{\prime}, \mathrm{C}_{6}{ }^{\prime}, \mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 52.5$, $52.8\left(\mathrm{CH}_{3}\right)$; 57.1, $58.1\left(\mathrm{C}_{1}+\mathrm{C}_{1}{ }^{\prime}\right) ; 122.3,125.7,126.9,127.0$, 127.5, 128.5, 131.6, $133.5\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{2}{ }^{\prime}, \mathrm{C}_{3}{ }^{\prime}\right.$, Arom.); 166.4, $167.0,173.3,174.0(\mathrm{COO}, \mathrm{CON})$.
4.1.14. Methyl 1-amino-t-2-benzoyloxy-3-cyclohexene-r-1-carboxylate trifluoroacetate (19). Compound 16 (385 $\mathrm{mg}, \quad 1.50 \mathrm{mmol}$) was dissolved in THF- $\mathrm{H}_{2} \mathrm{O}$ (4:1) $(30 \mathrm{~mL})$ and trifluoroacetic acid ($855 \mathrm{mg}, 7.50 \mathrm{mmol}$) was then added. After stirring for 14 h at $50^{\circ} \mathrm{C}$, the water was removed by the addition of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The remaining filtrate was then evaporated without warming. The oily residue was then dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and the solvent and the residual trifluoroacetic acid were distilled off in vacuo. This operation was repeated to ensure the complete removal of the trifluoroacetic acid, to give 550 mg of trifluoroacetate 19 as a white solid (95\%). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{6}$: C, 52.45; H, 4.66; N, 3.60; found: C, 52.33; $\mathrm{H}, 4.58 ; \mathrm{N}, 3.78 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.25-2.50(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{H}_{5}+2 \mathrm{H}_{6}\right) ; 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 5.60-5.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right) ; 5.92-$ $6.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right) ; 6.05\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{2}\right) ; 7.28-7.40(\mathrm{~m}, 2 \mathrm{H}$, Arom.); 7.48-7.58 (m, 1H, Arom.); 8.09-8.18 (m, 2H, Arom.); 8.56 (br s, $3 \mathrm{H}, \mathrm{NH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.3$,
$26.8\left(\mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 53.9\left(\mathrm{CH}_{3}\right) ; 60.3\left(\mathrm{C}_{1}\right) ; 70.0\left(\mathrm{C}_{2}\right) ; 122.7\left(\mathrm{C}_{3}\right)$; 128.3, 128.4, 130.2, 131.1, 133.7 (Arom, C_{4}); 165.3, 169.7 (COO, PhCOO).
4.1.15. Methyl 1-acetamido-t-2-benzoyloxy-3-cyclohex-ene-r-1-carboxylate (20). Trifluoroacetate 19 (550 mg , $1.41 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(186 \mathrm{mg}, 1.84 \mathrm{mmol})$ and acetyl chloride ($144 \mathrm{mg}, 1.84 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$, under an inert atmosphere. After stirring for 14 h , the reaction was washed with a saturated NaHCO_{3} solution ($2 \times 25 \mathrm{~mL}$) and the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was chromatographed on silica gel eluting with hexane-ethyl acetate (8:2), to yield 358 mg of compound 20 as a white solid (80%). Mp: $131-132^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 64.34; H, 6.03; N, 4.41; found: C, 64.02; H, 6.15; N, 4.22; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3441(\mathrm{NH}), 1742,1727(\mathrm{COO}$, PhCOO), $1685(\mathrm{CON}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.03(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right) ; 2.09-2.20(\mathrm{~m}, 3 \mathrm{H}) ; 2.76-2.82(\mathrm{~m}, 1 \mathrm{H}) ; 3.66(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$); 5.59-5.67 (m, 1H, H3); 5.92-5.96 (br s, 1H, H_{2}) ; 5.96-6.04 (m, 1H, H4); 6.06 (br s 1H, NH); 7.44-7.51 (m, 2H, Arom.); 7.57-7.63 (m, 1H, Arom.); 8.00-8.06 (m, 2 H , Arom. $) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.0,23.2,26.2\left(\mathrm{C}_{5}, \mathrm{C}_{6}\right.$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right) ; 52.6\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 60.0\left(\mathrm{C}_{1}\right) ; 70.8\left(\mathrm{C}_{2}\right) ; 123.3\left(\mathrm{C}_{3}\right)$; 128.4, 129.5, 132.2, 133.3 (Arom, C_{4}); 165.2, 170.4, 171.3 (COO, PhCOO, CON).
4.1.16. Methyl 1-acetamido-t-2-benzoyloxycyclohexane-r-1-carboxylate (21). A solution of compound 20 $(350 \mathrm{mg}, 1.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was hydrogenated at atmospheric pressure, using platinum-carbon (10%) as a catalyst (50 mg), vigorously stirring at $35^{\circ} \mathrm{C}$ for 14 h . The catalyst was filtered off through Celite and the solvent was evaporated. The residue was chromatographed on silica gel eluting with hexane-ethyl acetate (4:6), to yield 273 mg of compound 21 as a white solid (78%). Mp: $44-45^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}$: C, 63.94; H, 6.63; N, 4.39; found: C, 63.37; H, 6.49; N, 4.31; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.40-1.62(\mathrm{~m}, 3 \mathrm{H}) ; 1.71-1.85(\mathrm{~m}$, $2 \mathrm{H}) ; 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 1.92-2.13(\mathrm{~m}, 2 \mathrm{H}) ; 2.66-2.77$ $(\mathrm{m}, 1 \mathrm{H}) ; 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 5.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{2 \mathrm{a}-3 \mathrm{a}}=9.6 \mathrm{~Hz}\right.$, $J_{2 \mathrm{a}-3 \mathrm{e}}=4.2 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{a}}$); $5.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ; 7.42-7.49(\mathrm{~m}, 2 \mathrm{H}$, Arom.); 7.55-7.62 (m, 1H, Arom.); 7.92-8.02 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.1,22.3,23.0,27.0,29.7$ $\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 52.2\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 62.0\left(\mathrm{C}_{1}\right) ; 73.2\left(\mathrm{C}_{2}\right)$; 128.2, 129.3, 129.5, 132.9 (Arom.); 164.9, 170.3, 171.5 (COO, PhCOO, CON).
4.1.17. 1-Amino-t-2-hydroxycyclohexane-r-1-carboxylic acid (rac-cis-1). Compound $21(250 \mathrm{mg}, 0.78 \mathrm{mmol})$ was suspended in a 6 N HCl solution (20 mL) and stirred under reflux for 24 h . The solvent was evaporated and the excess of HCl was removed in vacuo. The residue was dissolved in distilled water $(15 \mathrm{~mL})$ and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The aqueous layer was evaporated to yield 125 mg of rac-cis $\mathbf{- 1} \cdot \mathrm{HCl}$ as a white solid (82%), which was dissolved in ethanol $(6 \mathrm{~mL})$ and propylene oxide $(2 \mathrm{~mL})$ was added. After stirring at reflux for 2 h , the amino acid precipitated partially. The solvent was evaporated and the residue was dissolved in distilled water (2 mL) and eluted through a C_{18} reverse-phase Sep-pak cartridge to yield, after removal of water, 95 mg of the amino acid rac-cis- $\mathbf{1}$ as a white solid (76\%). rac-cis- $\mathbf{1} \cdot \mathrm{HCl}:{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta 1.15-1.40(\mathrm{~m}$,
$3 \mathrm{H}) ; 1.50-1.80(\mathrm{~m}, 2 \mathrm{H}) ; 1.81-1.90(\mathrm{~m}, 3 \mathrm{H}) ; 4.13(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{2 \mathrm{a}-3 \mathrm{a}}=10.8 \mathrm{~Hz}, J_{2 \mathrm{a}-3 \mathrm{e}^{\prime}}=5.1 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{a}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta$ 20.9, 24.8, 30.6, $32.8\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 67.0\left(\mathrm{C}_{1}\right) ; 71.8$ $\left(\mathrm{C}_{2}\right) ; 175.8$ (COO). rac-cis-1: Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, $52.82 ; \mathrm{H}, 8.23 ; \mathrm{N}, 8.80$; found: C, $52.72 ; \mathrm{H}, 8.18 ; \mathrm{N}$, 8.92; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 1.10-1.50(\mathrm{~m}, 3 \mathrm{H}) ; 1.55-1.80$ $(\mathrm{m}, 2 \mathrm{H}) ; 1.82-2.00(\mathrm{~m}, 3 \mathrm{H}) ; 4.02-4.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 21.5,25.2,31.1,33.3\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 68.1$ $\left(\mathrm{C}_{1}\right) ; 72.1\left(\mathrm{C}_{2}\right) ; 178.3(\mathrm{COO})$.
4.1.18. trans-2-Methoxycyclohexane-1-spiro-\{ 4^{\prime} [2^{\prime}-phenyl$5^{\prime}\left(\mathbf{4}^{\prime} \mathbf{H}\right)$ oxazolone] ($\mathbf{r a c}-\mathbf{2 2}$). A suspension of compound rac-8 $(500 \mathrm{mg}, \quad 1.72 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(722 \mathrm{mg}$, $17.2 \mathrm{mmol})$ in methanol-water (3:2) (25 mL) was stirred under reflux for 7 h . The solvent was removed, the residue was then dissolved in water and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 20 \mathrm{~mL})$. The aqueous phase was acidified with 2 N HCl and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{~mL})$. The combined last organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, to yield 444 mg of the 1 -benza-mido- c-2-methoxycyclohexane- r-1-carboxylic acid as a white solid (93\%). Mp: 49-51 ${ }^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 64.97; H, 6.91 ; $\mathrm{N}, 5.05$; found: C, 64.91 ; H, 6.93; N, 4.99; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3430(\mathrm{NH}), 3119$ $(\mathrm{COOH}), 1760(\mathrm{COO}), 1672(\mathrm{CON}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 1.42-1.82 (m, 5H); 1.89-2.04 (m, 1H); 2.10-2.24 (m, 2H); $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 4.18-4.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right) ; 6.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH); 7.36-7.55 (m, 3H, Arom.); 7.74-7.85 (m, 2H, Arom.); 10.46 (br s, $1 \mathrm{H}, \mathrm{COOH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 19.9, 20.9, 24.4, $28.6\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 57.1\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 62.5$ $\left(\mathrm{C}_{1}\right) ; 77.7\left(\mathrm{C}_{2}\right) ; 127.1,128.5,131.9,133.8$ (Arom.); 167.9 (CON); $174.9(\mathrm{COOH})$. This carboxylic acid (444 mg , $1.6 \mathrm{mmol})$ and dimethylaminopyridine $(192 \mathrm{mg}, \quad 1.6$ $\mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Dicyclohexylcarbodiimide ($335 \mathrm{mg}, 1.6 \mathrm{mmol}$) was then added and the mixture was allowed to warm up to $25^{\circ} \mathrm{C}$. After stirring for 3 h , the solvent was evaporated and the residue was chromatographed on silica gel eluting with hexane-ethyl acetate ($1: 1$), to yield 337 mg of the oxazolone rac- $\mathbf{2 2}$ as a white solid (91%). Mp: 82-84 ${ }^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, $69.48 ; \mathrm{H}, 6.61$; N, 5.40; found: C, 69.86; $\mathrm{H}, 6.43$; N, 5.62; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: $1805(\mathrm{COO}), 1657$ (CON); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.29-1.45(\mathrm{~m}, 1 \mathrm{H}) ; 1.58-$ $1.72(\mathrm{~m}, 1 \mathrm{H}) ; 1.76-2.02(\mathrm{~m}, 5 \mathrm{H}) ; 2.03-2.14(\mathrm{~m}, 1 \mathrm{H})$; $3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.49\left(\mathrm{dd}, 1 \mathrm{H}, J_{2 \mathrm{a}-3 \mathrm{a}}=11.2 \mathrm{~Hz}, J_{2 \mathrm{a}-3 \mathrm{e}}=\right.$ $4.9 \mathrm{~Hz}, \mathrm{H}_{2}$); 7.41-7.60 (m, 3H, Arom.); 7.95-8.06 (m, 2H, Arom.) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.8\left(\mathrm{C}_{3}\right), 23.6,25.5,33.0$ $\left(\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 58.0\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 73.0\left(\mathrm{C}_{1}\right) ; 82.3\left(\mathrm{C}_{2}\right) ; 126.0$, 127.8, 128.7, 132.5 (Arom.); 160.8 (CON); 177.3 (COO).
4.1.19. (1S,2S)-[1-Benzamido-2-methoxycyclohexane-1-carboxamido]-(S)-phenylalanine cyclohexylamide ($(1 S$, $2 S, S)$-23) and ($1 R, 2 R$)-[1-benzamido-2-methoxycyclo-hexane-1-carboxamido]-(S)-phenylalanine cyclohexylamide $((1 R, 2 R, S)-24)$. A solution of (S)-phenylalanine cyclohexylamide $(1.6 \mathrm{~g}, 6.66 \mathrm{mmol})$ in N-methylpyrro-lidin-2-one (NMP) (3 mL) was added to a solution of compound rac-22 ($750 \mathrm{mg}, 2.9 \mathrm{mmol}$) in NMP (3 mL) under an inert atmosphere. After stirring for 48 h at $90^{\circ} \mathrm{C}$, the reaction mixture was allowed to cool down to room temperature and was then poured onto a mixture of ice $(12 \mathrm{~g}), 1 \mathrm{~N} \mathrm{HCl}(12 \mathrm{~mL})$ and ethyl acetate (15 mL). After stirring for 30 min , the organic phase was washed with
water $(2 \times 15 \mathrm{~mL})$ and the combined aqueous phases were extracted with ethyl acetate $(2 \times 15 \mathrm{~mL})$. The combined organic phases were washed with brine $(2 \times 15 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated. The mixture of diastereoisomeric peptides was chromatographed on silica gel eluting with toluene-ethyl acetate ($1: 1$), to yield 525 mg of the peptide $(1 S, 2 S, S)$ - $\mathbf{2 3}$ as a white solid (36%) and 514 mg of the peptide $(1 R, 2 R, S)$ 24 as a white solid (35\%). $(1 S, 2 S, S)$-23: Mp: $192-194^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 71.26; H, 7.77; N, 8.31; found: $\mathrm{C}, ~ 71.64 ; \mathrm{H}, 7.62 ; \mathrm{N}, ~ 8.23 ;[\alpha]^{25}{ }_{\mathrm{D}}(c$ 2.08, $\left.\mathrm{CHCl}_{3}\right)=-32.1 ;$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3426,3351(\mathrm{NH})$, 1702, $1657(\mathrm{CON}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.02-1.42(\mathrm{~m}$, $5 \mathrm{H}) ; 1.43-1.93(\mathrm{~m}, 12 \mathrm{H}) ; 2.19-2.36(\mathrm{~m}, 1 \mathrm{H}) ; 3.15(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}+\mathrm{H}_{\beta 1}\right) ; 3.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{\beta 2-\beta 1}=14.1 \mathrm{~Hz}, J_{\beta 2-\alpha}=6.9 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{\beta 2}\right) ; 3.64-3.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right) ; 3.89-4.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right) ; 4.66-$ $4.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right) ; 6.51$ (br s, 1H, NHCOPh); 6.90 (d, 1H, $\left.J_{\mathrm{NHCy}-1^{\prime}}=8.7 \mathrm{~Hz}, \mathrm{NHCy}\right) ; 7.10-7.18$ (m, 5H, Arom.); 7.347.55 (m, 4H, Arom. + NHPhe); 7.63-7.72 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.0,21.2,22.9,25.1,25.2,25.6,30.7$, 32.5, $32.8\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{2^{\prime}}, \mathrm{C}_{3^{\prime}}, \mathrm{C}_{4^{\prime}}, \mathrm{C}_{5^{\prime}}, \mathrm{C}_{6^{\prime}}\right) ; 37.0\left(\mathrm{C}_{\beta}\right)$; $48.5\left(\mathrm{C}_{1}\right) ; 53.9\left(\mathrm{C}_{\alpha}\right) ; 55.8\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 61.8\left(\mathrm{C}_{1}\right) ; 78.2\left(\mathrm{C}_{2}\right)$; 126.6, 127.0, 128.4, 128.6, 129.4, 132.0, 133.8, 137.2 (Arom.); 167.4, 169.8, 172.3 (CON). ($1 R, 2 R, S$)-24: Mp: $111-113^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $71.26 ; \mathrm{H}$, 7.77; N, 8.31; found: C, 71.89; H, 7.64; N, 8.42; $[\alpha]^{25}{ }_{\mathrm{D}}(c$ 1.02, $\left.\mathrm{CHCl}_{3}\right)=-57.4$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3427,3348$ (NH), 1805, $1658(\mathrm{CON}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.92-2.02$ $(\mathrm{m}, 17 \mathrm{H}) ; 2.09-2.22(\mathrm{~m}, 1 \mathrm{H}) ; 3.08\left(\mathrm{dd}, 1 \mathrm{H}, J_{\beta 1-\beta 2}=\right.$ $14.1 \mathrm{~Hz} ; J_{\beta 1-\alpha}=6.0 \mathrm{~Hz}, \mathrm{H}_{31}$); 3.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$); 3.26 $\left(\mathrm{dd}, 1 \mathrm{H}, J_{\beta 2-\beta 1}=14.1 \mathrm{~Hz}, J_{\beta 2-\alpha}=6.6 \mathrm{~Hz}, \mathrm{H}_{\beta 2}\right) ; 3.64-3.79$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right) ; 3.87-3.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right) ; 4.64-4.73(\mathrm{~m}, 1 \mathrm{H}$, H_{α}); 6.35 (br s, $\left.1 \mathrm{H}, \mathrm{NHCOPh}\right) ; 6.62\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{NHCy}-1^{\prime}}=\right.$ $7.8 \mathrm{~Hz}, \mathrm{NHCy}) ; 7.00\left(\mathrm{~d}, 1 \mathrm{H}, J_{\text {NHPhe- }}=7.8 \mathrm{~Hz}\right.$, NHPhe); 7.14-7.24 (m, 5H, Arom.); 7.39-7.48 (m, 2H, Arom.); 7.48-7.56 (m, 1H, Arom.); 7.68-7.77 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.9,21.2,24.2,25.0,25.5,28.0$, 32.7, 32.9, $33.9\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{2^{\prime}}, \mathrm{C}_{3^{\prime}}, \mathrm{C}_{4^{\prime}}, \mathrm{C}_{5^{\prime}}, \mathrm{C}_{6^{\prime}}\right)$; $37.3\left(\mathrm{C}_{\beta}\right) ; 48.3\left(\mathrm{C}_{1^{\prime}}\right) ; 54.0\left(\mathrm{C}_{\alpha}\right) ; 58.8\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 62.1\left(\mathrm{C}_{1}\right)$; 78.6 (C_{2}); 126.7, 127.0, 128.4, 128.6, 129.4, 132.0, 133.9, 136.8 (Arom.); 167.2, 169.6, 172.0 (CON).
4.1.20. Methyl (1S,2S)-1-benzamido-2-methoxycyclohex-ane-1-carboxylate $((\mathbf{1 S}, \mathbf{2 S})-8)$. Triflic acid $(0.11 \mathrm{~mL}$, 2.37 mmol) was added to a solution of $(1 S, 2 S, S)-\mathbf{2 3}$ $(400 \mathrm{mg}, 0.79 \mathrm{mmol})$ in dry methanol $(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, under an inert atmosphere. The reaction mixture was warmed up to $80^{\circ} \mathrm{C}$ and after stirring for 48 h , the solvent was evaporated. The residue was chromatographed on silica gel eluting with hexane-ethyl acetate ($1: 1$), to yield 210 mg of the compound $(1 S, 2 S)-8$ as a white solid (91%). Mp : $132-133^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 65.96 ; \mathrm{H}$, 7.27; N, 4.81; found: C, 65.84; H, 7.32; N, 4.75; $[\alpha]^{25}{ }_{\mathrm{D}}(c$ $\left.1.09, \mathrm{CHCl}_{3}\right)=+52.5$. Spectral data for the compound $(1 S, 2 S)-8$ were identical to those described for rac-8.
4.1.21. Methyl ($1 R, 2 R$)-1-benzamido-2-methoxycyclo-hexane-1-carboxylate $((1 R, 2 R)-8)$. As described for $(1 S, 2 S)-\mathbf{8}$, compound $(1 R, 2 R)-\mathbf{8} \quad(196 \mathrm{mg}, 85 \%)$ was obtained starting from $(1 R, 2 R, S)-\mathbf{2 4}(400 \mathrm{mg}, 0.79 \mathrm{mmol})$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 65.96; H, 7.27; N, 4.81; found: $\mathrm{C}, 65.80 ; \mathrm{H}, 7.22 ; \mathrm{N}, 4.79 ;[\alpha]_{\mathrm{D}}^{25}(c 1.00$, $\left.\mathrm{CHCl}_{3}\right)=-54.9$. Analytical and spectral data for the
compound $(1 R, 2 R)-\mathbf{8}$ were identical to those described for its enantiomer $(1 S, 2 S)-\mathbf{8}$.
4.1.22. ($1 S, 2 S$)-1-Amino-2-hydroxycyclohexane-1-carboxylic acid $((\mathbf{1 S}, \mathbf{2 S})-\mathbf{1})$. Compound $(1 S, 2 S)-\mathbf{8}(220 \mathrm{mg}$, 0.76 mmol) was suspended in a 12 N HCl solution (5 mL) and stirred under reflux for 7 d . The solvent was evaporated and the excess of HCl removed in vacuo. The residue was dissolved in distilled water (8 mL) and washed with $\mathrm{Et}_{2} \mathrm{O}$ $(4 \times 10 \mathrm{~mL})$. The aqueous layer was evaporated to yield $133 \mathrm{mg}(90 \%)$ of $(1 S, 2 S) \mathbf{- 1} \cdot \mathrm{HCl}$ as a white solid, which was dissolved in ethanol (3 mL) and propylene oxide $(1 \mathrm{~mL})$ was added. After stirring under reflux for 2 h , the amino acid precipitated partially. The solvent was evaporated and the residue was dissolved in distilled water (2 mL) and eluted through a C_{18} reverse-phase Sep-pak cartridge to yield, after removal of water, 100 mg of the amino acid $(1 S, 2 S)-\mathbf{1}$ as a white solid (83\%). Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, 52.82 ; $\mathrm{H}, 8.23$; N, 8.80 ; found: C, $52.70 ; \mathrm{H}$, $8.20 ; \mathrm{N}, 8.89 ;[\alpha]_{\mathrm{D}}^{25}\left(c 0.62, \mathrm{H}_{2} \mathrm{O}\right)=+4.5$. Analytical and spectral data for the amino acid and its hydrochloride were identical to those described for rac-trans-1.
4.1.23. ($1 R, 2 R$)-1-Amino-2-hydroxycyclohexane-1-carboxylic acid $((\mathbf{1 R}, \mathbf{2 R}) \mathbf{- 1})$. As described for $(1 S, 2 S)-\mathbf{1}$, compound $(1 R, 2 R)-\mathbf{1}(75 \mathrm{mg}, 82 \%)$ was obtained starting from $(1 R, 2 R)-\mathbf{8}(170 \mathrm{mg}, 0.58 \mathrm{mmol})$. Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, 52.82 ; $\mathrm{H}, 8.23$; N, 8.80 ; found: C, 52.76 ; H, $8.21 ; \mathrm{N}, 8.90 ;[\alpha]_{\mathrm{D}}^{25}\left(c 0.62, \mathrm{H}_{2} \mathrm{O}\right)=-4.2$. Analytical and spectral data for the amino acid and its hydrochloride were identical to those described for rac-trans-1.
4.1.24. Methyl ($1 S, 2 R, S$)-1-(2^{\prime}-acetoxypropanoylamido)-2-benzoyloxy-3-cyclohexene-1-carboxylate ($1 S, 2 R, S$)$25)$ and methyl ($1 R, 2 S, S$)-1-(2^{\prime}-acetoxypropanoyl-amido)-2-benzoyloxy-3-cyclohexene-1-carboxylate ($1 R$, $\mathbf{2 S}, \boldsymbol{S})$-26). Compound $19(500 \mathrm{mg}, 1.28 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, at $25^{\circ} \mathrm{C}$ under an inert atmosphere, and then $\mathrm{Et}_{3} \mathrm{~N}(0.36 \mathrm{~mL}, 2.57 \mathrm{mmol})$ and (S) -2-acetoxypropanoyl chloride ($0.32 \mathrm{~mL}, 2.57 \mathrm{mmol}$) were added. After stirring for 2 h at the same temperature, the reaction was washed with a 0.005 N HCl solution $(50 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated. The mixture of diastereoisomers was chromatographed on silica gel eluting with $\mathrm{Et}_{2} \mathrm{O}$-hexane (7:3) to yield 200 mg of the compound ($1 S, 2 R, S$)-25 (40%) and 252 mg of the compound $(1 R, 2 S, S)-26(50 \%)$ as colourless oils. $(1 S, 2 R, S)-25:$ Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{7}: \mathrm{C}, 61.69 ; \mathrm{H}$, 5.95 ; N, 3.60; found: C, 61.53; H, 5.99; N, 3.66; $[\alpha]^{25}{ }_{\mathrm{D}}(c$ $\left.1.02, \mathrm{CH}_{3} \mathrm{OH}\right)=-138.8$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3437(\mathrm{NH})$, 1744, 1738 (COO), $1690(\mathrm{CON}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 1.47 (d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}$); $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$; 2.07-2.27 (m, 3H); 2.83-2.89 (m, 1H); 3.66 (s, 3H, $\mathrm{CH}_{3} \mathrm{O}$); 5.18 (c, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}$); 5.60-5.64 (m, $\left.1 \mathrm{H}, \mathrm{H}_{4}\right) ; 5.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right) ; 6.02-6.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right) ; 6.68$ (br s, 1H, NH); 7.43-7.48 (m, 2H, Arom.); 7.57-7.63 (m, 1 H , Arom.); 7.99-8.02 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 17.8\left(\mathrm{CH}_{3} \mathrm{CH}\right) ; 20.9\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; 22.0,26.3\left(\mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 52.9$ $\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 60.0\left(\mathrm{C}_{1}\right) ; 70.7\left(\mathrm{CH}_{3} \mathrm{CH}\right) ; 71.5\left(\mathrm{C}_{2}\right) ; 123.1\left(\mathrm{C}_{4}\right)$; 128.6, 129.5 (Arom.); 132.7 (C_{3}); 133.6 (Arom.); 165.2, 169.4, 170.8, 171.0 (COO, CON). ($1 R, 2 S, S$)-26: Anal.
calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{7}$: C, 61.69; $\mathrm{H}, 5.95 ; \mathrm{N}, 3.60$; found: C, 61.61; H, 5.92; N, 3.71; $[\alpha]^{25}$ D $\left(c 0.87, \mathrm{CH}_{3} \mathrm{OH}\right)=+125.4$; IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3341(\mathrm{NH}), 1744,1730(\mathrm{COO}), 1692$ (CON); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.45(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.08-2.26(\mathrm{~m}, 3 \mathrm{H}) ; 2.81-$ $2.88(\mathrm{~m}, 1 \mathrm{H}) ; 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 5.21(\mathrm{c}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; 5.56-5.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right) ; 5.95-6.02(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{2}+\mathrm{H}_{3}$); 6.72 (br s, 1H, NH); 7.45-7.50 (m, 2H, Arom.); 7.58-7.63 (m, 1H, Arom.); 8.02-8.05 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 17.3\left(\mathrm{CH}_{3} \mathrm{CH}\right) ; 20.9\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; 22.0,26.3$ $\left(\mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 52.9\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 60.1\left(\mathrm{C}_{1}\right) ; 70.8\left(\mathrm{CH}_{3} \mathrm{CH}\right) ; 71.4\left(\mathrm{C}_{2}\right)$; $122.9\left(\mathrm{C}_{4}\right) ; 128.6,129.6$ (Arom.); $132.7\left(\mathrm{C}_{3}\right) ; 133.5$ (Arom.); 165.1, 169.5, 170.8, 171.0 (COO, CON).

4.1.25. Methyl (1S,2R,S)-1-(2^{\prime}-acetoxypropanoylamido)-

 2-benzoyloxycyclohexane-1-carboxylate ($(1 S, 2 R, S)$-27). A solution of compound $(1 S, 2 R, S)-\mathbf{2 5}(159 \mathrm{mg}, 0.40$ $\mathrm{mmol})$ in deoxygenated ethyl acetate $(15 \mathrm{~mL})$ was hydrogenated at atmospheric pressure, using platinum-carbon (10%) as a catalyst (50 mg), vigorously stirring at $25^{\circ} \mathrm{C}$ for 3 h . The catalyst was filtered off through Celite and the solvent evaporated, to yield 158 mg of compound $(1 S, 2 R, S)$ 27 as a colourless oil (99%). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{7}$: C, 61.37; H, 6.44; N, 3.58; found: C, 61.46; H, 6.38; N, 3.61; $[\alpha]_{\mathrm{D}}^{25}\left(c 1.25, \mathrm{CH}_{3} \mathrm{OH}\right)=-77.3$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3436$ (NH), 1744, 1727, 1694, 1604 (COO, CON); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.37-1.85(\mathrm{~m}, 5 \mathrm{H}) ; 1.49(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; 1.92-2.20(\mathrm{~m}, 2 \mathrm{H}) ; 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.75-$ $2.85(\mathrm{~m}, 1 \mathrm{H}) ; 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 5.21(\mathrm{c}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; 5.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{2-3 \mathrm{a}}=9.9 \mathrm{~Hz}, J_{2-3 \mathrm{e}}=4.5 \mathrm{~Hz}, \mathrm{H}_{2}\right)$; 6.61 (br s, 1H, NH); 7.41-7.47 (m, 2H, Arom.); 7.567.60 (m, 1H, Arom.); 7.95-7.98 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 17.8\left(\mathrm{CH}_{3} \mathrm{CH}\right) ; 20.3,22.9,27.5,29.8$ $\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 20.9\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; 52.8\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 62.7\left(\mathrm{C}_{1}\right)$; $71.0\left(\mathrm{CH}_{3} \mathrm{CH}\right) ; 74.3\left(\mathrm{C}_{2}\right) ; 128.6,129.5,129.6,133.5$ (Arom.); 164.9, 169.3, 170.6, 171.3 (COO, CON).4.1.26. Methyl ($1 R, 2 S, S$)-1-(2^{\prime}-acetoxypropanoylamido)-2-benzoyloxycyclohexane-1-carboxylate ($(1 R, 2 S, S)$-28). As described for $(1 S, 2 R, S)-\mathbf{2 7}$, compound $(1 R, 2 S, S)-\mathbf{2 8}$ ($216 \mathrm{mg}, 99 \%$) was obtained starting from $(1 R, 2 S, S)-\mathbf{2 6}$ ($218 \mathrm{mg}, 0.56 \mathrm{mmol}$). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{7}: \mathrm{C}$, 61.37; H, 6.44; N, 3.58; found: C, 61.42; H, 6.50; N, 3.52; $[\alpha]_{\mathrm{D}}^{25}\left(c 0.94, \mathrm{CH}_{3} \mathrm{OH}\right)=+40.5$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3433$ (NH), 1744, 1730, 1695, 1605 (COO, CON); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.37-1.79(\mathrm{~m}, 5 \mathrm{H}) ; 1.48(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; 1.97-2.17(\mathrm{~m}, 2 \mathrm{H}) ; 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.80-$ $2.85(\mathrm{~m}, 1 \mathrm{H}) ; 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 5.26(\mathrm{c}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; 5.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{2-3 \mathrm{a}}=9.9 \mathrm{~Hz}, J_{2-3 \mathrm{e}}=4.2 \mathrm{~Hz}, \mathrm{H}_{2}\right)$; 6.67 (br s, 1H, NH); 7.43-7.49 (m, 2H, Arom.); 7.577.61 (m, 1H, Arom.); 8.00-8.03 (m, 2H, Arom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 17.2\left(\mathrm{CH}_{3} \mathrm{CH}\right) ; 20.2,22.9,27.5,29.9$ $\left(\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}\right) ; 20.9\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; 52.8\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 62.9\left(\mathrm{C}_{1}\right)$; $70.8\left(\mathrm{CH}_{3} \mathrm{CH}\right) ; 74.2\left(\mathrm{C}_{2}\right) ; 128.6,129.5,129.6,133.4$ (Arom.); 164.9, 169.6, 170.6, 171.3 (COO, CON).
4.1.27. (1S,2R)-1-Amino-2-hydroxycyclohexane-1-carboxylic acid $((\mathbf{1 S}, \mathbf{2 R})-\mathbf{1})$. Compound $(1 S, 2 R, S)-\mathbf{2 7}(108 \mathrm{mg}$, 0.27 mmol) was suspended in a 9 N HCl solution (10 mL). After stirring at $85^{\circ} \mathrm{C}$ for 4 d , the solvent was evaporated and the excess of HCl was removed in vacuo. The residue was washed with a mixture of THF- $\mathrm{Et}_{2} \mathrm{O}(2: 3)(2 \times 5 \mathrm{~mL})$ to obtain another residue, which was dried in vacuo to yield
$49 \mathrm{mg}(93 \%)$ of $(1 S, 2 R) \mathbf{- 1} \cdot \mathrm{HCl}$ as a white solid. This hydrochloride was dissolved in ethanol (2 mL) and propylene oxide (1 mL) was added. After stirring under reflux for 1 h , the amino acid precipitated and, once filtered, it was lyophilised to obtain 33 mg of the amino acid $(1 S, 2 R)-\mathbf{1}$ as a white solid (85%; 77% from ($1 S, 2 R, S$)-27). Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, 52.82 ; H, 8.23; N, 8.80; found: C, 52.81 ; H, $8.20 ; \mathrm{N}, 8.86 ;[\alpha]_{\mathrm{D}}^{25}\left(c 1.17, \mathrm{H}_{2} \mathrm{O}\right)=+5.8$. Analytical and spectral data for the amino acid and its hydrochloride were identical to those described for rac-cis-1.
4.1.28. ($1 R, 2 S$)-1-Amino-2-hydroxycyclohexane-1-carboxylic acid $((\mathbf{1 R}, \mathbf{2 S})-\mathbf{1})$. As described for $(1 S, 2 R)-\mathbf{1}$, compound $(1 R, 2 S)-\mathbf{1}(28 \mathrm{mg}, 75 \%)$ was obtained starting from ($1 R, 2 S, S$)-28 (107 mg, 0.27 mmol$)$. Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, 52.82 ; H, 8.23; N, 8.80; found: C, $52.76 ; \mathrm{H}$, 8.15; N, 8.92; $[\alpha]_{\mathrm{D}}^{25}\left(c 0.84, \mathrm{H}_{2} \mathrm{O}\right)=-5.5$. Analytical and spectral data for the amino acid and its hydrochloride were identical to those described for rac-cis-1.

Acknowledgements

We are indebted to the Dirección General de Investigación Científica y Técnica, project PB97-0998, and to the Universidad de La Rioja, project API-00-B02, for their generous support. J. I. B. thanks the Gobierno de La Rioja for his doctoral grant. M. A. F.-R. and F. R. thank the Ministerio de Educación y Ciencia for their doctoral grants.

References

1. Walsh, C. Enzyme Reaction Mechanisms; Freeman: San Francisco, 1979.
2. Cleland, W. W.; Kreevoy, M. M. Science 1994, 264, 18871890.
3. Tjalsma, H.; Stover, A. G.; Driks, A.; Venema, G.; Bron, S.; Van Dijl, J.-M. J. Biol. Chem. 2000, 275, 25102-25108.
4. Higashimoto, Y.; Saito, S.; Tong, X.; Hong, A.; Sakaguchi, K.; Appella, E.; Anderson, C. W. J. Biol. Chem. 2000, 275, 23199-23203.
5. Sharma, P.; Barchi Jr., J. J.; Huang, X.; Amin, N. D.; Jaffe, H.; Pant, H. C. Biochemistry 1998, 37, 4759-4766.
6. Christensen, H. N.; Handlogten, M. E. Biochim. Biophys. Acta 1977, 469, 216-220.
7. Horikawa, M.; Ohfune, Y. J. Synth. Org. Chem. Jpn 1997, 55, 982-993.
8. Horikawa, M.; Kan, T.; Nakajima, T.; Nanba, K.; Ohfune, Y.; Takada, I. Chirality 1997, 9, 459-462.
9. Horikawa, M.; Nakajima, T.; Ohfune, Y. Synlett 1998, 609610.
10. Horikawa, M.; Nakajima, T.; Ohfune, Y.; Shigeri, Y.; Yoshikawa, S.; Yumoto, S. Bioorg. Med. Chem. Lett. 1998, 8, 2027-2032.
11. Fondekar, K. P.; Volk, F.-J.; Frahm, A. W. Tetrahedron: Asymmetry 1999, 10, 727-735.
12. Avenoza, A.; Cativiela, C.; Díaz-de-Villegas, M. D.; Peregrina, J. M. Tetrahedron 1993, 49, 10987-10996.
13. Avenoza, A.; Cativiela, C.; París, M.; Peregrina, J. M. J. Org. Chem. 1994, 59, 7774-7778.
14. Avenoza, A.; Cativiela, C.; Busto, J. H.; Peregrina, J. M.; Rodríguez, F. Tetrahedron 1998, 54, 11659-11674.
15. Jiménez, A. I.; Cativiela, C.; Avenoza, A.; París, M.; Peregrina, J. M.; Aubry, A.; Marraud, M. Tetrahedron Lett. 1998, 39, 7841-7844.
16. Jiménez, A. I.; Cativiela, C.; Gómez-Catalán, J.; Pérez, J. J.; Aubry, A.; París, M.; Marraud, M. J. Am. Chem. Soc. 2000, 122, 5811-5821.
17. Avenoza, A.; Cativiela, C.; Fernández-Recio, M. A.; Peregrina, J. M. Synlett 1995, 891-892.
18. Avenoza, A.; Cativiela, C.; Fernández-Recio, M. A.; Peregrina, J. M. Tetrahedron: Asymmetry 1996, 7, 721-728.
19. Avenoza, A.; Cativiela, C.; Fernández-Recio, M. A.; Peregrina, J. M. J. Chem. Soc., Perkin Trans. 1 1999, 33753379.
20. Nakazawa, T.; Suzuki, T.; Ishii, M. Tetrahedron Lett. 1997, 38, 8951-8954.
21. Avenoza, A.; Busto, J. H.; Cativiela, C.; Fernández-Recio, M. A.; Peregrina, J. M.; Rodríguez, F. Tetrahedron 2001, 57, 545-548.
22. Avenoza, A.; Busto, J. H.; Cativiela, C.; París, M.; Peregrina, J. M. J. Heterocycl. Chem. 1997, 34, 1099-1110.
23. Avenoza, A.; Busto, J. H.; Cativiela, C.; Peregrina, J. M.; Zurbano, M. M. The use of 4-hetaryliden- and 4-aryliden$5(4 \mathrm{H})$-oxazolones as dienophiles in the Diels-Alder reaction; Attanasi, O. A., Spinelli, D., Eds.; In Targets in Heterocyclic Systems. Chemistry and Properties; Italian Society of Chemistry: Roma, 1999; vol. 3.
24. Avenoza, A.; Busto, J. H.; Cativiela, C.; Peregrina, J. M. Amino Acids 2000, 18, 117-127.
25. Rylander, P. N. In Hydrogenation Methods; Academic: London, 1990; pp 157-183.
26. Ranade, V. S.; Prins, R. Chem. Eur. J. 2000, 6, 313-320.
27. Obrecht, D.; Spiegler, C.; Schönholzer, P.; Müller, K.; Heimgartner, H.; Stierli, F. Helv. Chim. Acta 1992, 75, 1666-1696.
28. Obrecht, D.; Bohdal, U.; Broger, C.; Bur, D.; Lehmann, C.; Ruffieux, R.; Schönholzer, P.; Spiegler, C.; Müller, K. Helv. Chim. Acta 1995, 78, 563-580.
29. Obrecht, D.; Spiegler, C.; Schönholzer, P.; Müller, K.; Lehmann, C.; Ruffieux, R. Helv. Chim. Acta 1995, 78, 1567-1587.

[^0]: Keywords: Diels-Alder reactions; cyclohexanes; amino acids and derivatives; resolution.

 * Corresponding authors. Tel.: +34-941-299655; fax: +941-299621; e-mail: alberto.avenoza@dq.unirioja.es

