A straightforward synthesis of both enantiomers of α-vinylalanine and α-ethynylalanine

Alberto Avenoza, ${ }^{\text {a,* }}$ Carlos Cativiela, ${ }^{\text {b,* }}$ Jesús M. Peregrina, ${ }^{\text {a }}$ David Sucunza ${ }^{\text {a }}$ and María M. Zurbano ${ }^{\text {a }}$
${ }^{\text {a }}$ Departamento de Química, Universidad de La Rioja, Grupo de Síntesis Química de la Rioja, U.A.-C.S.I.C., 26001 Logroño, Spain
${ }^{\mathrm{b}}$ Departmento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain

Received 19 November 1999; accepted 23 November 1999

Abstract

This report describes the synthesis of enantiomerically pure (S) - and $(R)-\alpha$-vinylalanines and (S) - and (R) - α ethynylalanines, four quaternary α-amino acids, using a straightforward synthetic route and starting from (S) - and (R)- N -Boc- N, O-isopropylidene- α-methylserinals. © 1999 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

The α-alkyl α-amino acids are an important class of non-proteinogenic amino acids used to increase conformational restrictions in peptides and thereby change their biological activity and stability. ${ }^{1}$ They have attracted a great deal of research interest and a number of interesting approaches have been developed. ${ }^{2}$ In this context, one of us recently published a review that covers the literature related to the synthesis of α-substituted quaternary α-amino acids with an acyclic backbone. ${ }^{3}$
β, γ-Unsaturated amino acid derivatives have received special attention since they are important enzyme inhibitors, ${ }^{4}$ for example, α-vinyl amino acids are known to inhibit pyridoxal phosphate-dependent enzymes, and in particular, amino acid decarboxylases. ${ }^{5}$ They are also potential precursors to new α branched α-amino acids as building blocks for de novo peptide design. ${ }^{6}$ Moreover, α-ethynyl amino acids are of interest as potential suicide inhibitors of glutamic acid decarboxylase; in particular, ethynylglycine (FR-900130) is a well-known natural antibiotic, and is a suicide substrate for alanine racemase. ${ }^{7}$

Given this background, we have focused our attention on the synthesis of β, γ-unsaturated α-methyl α-amino acids, particularly α-vinylalanine and α-ethynylalanine. To the best of our knowledge, there

[^0]are three methods in the literature for the synthesis of racemic α-vinylalanine ${ }^{8}$ and four strategies for the preparation of its enantiomerically pure forms, ${ }^{9}$ while the asymmetric synthesis of (S)-ethynylalanine was only reported by Hegedus. ${ }^{9 \mathrm{c}}$ The asymmetric synthesis of (R)-vinylalanine and (R)-ethynylalanine methyl esters was described by Schöllkopf using the well-known bis-lactim ether method. ${ }^{10}$

In this context and as a part of our research program on the synthesis of new conformationally constrained α-amino acids, ${ }^{11}$ we have recently reported the synthesis of (S) - and (R)-2-amino-2methylbutanoic acids starting from both enantiomers of N-Boc- N, O-isopropylidene- α-methylserinal ($\mathbf{1}$ and 2) (Fig. 1). ${ }^{12}$

1

2

Fig. 1. (S)- and (R)-N-Boc- N, O-isopropylidene- α-methylserinals 1 and 2
In this paper, in order to demonstrate the synthetic utility of both compounds $\mathbf{1}$ and $\mathbf{2}$ as chiral building blocks in the synthesis of enantiomerically pure α-substituted alanines, we now describe a more convenient synthesis of (R) - and (S) - α-vinylalanines 5 and $\mathbf{8}$ and (R) - and (S) - α-ethynylalanines 11 and 14.

2. Results and discussion

Starting from (S)- and (R)-N-Boc- α-methylserinal acetonides $\mathbf{1}$ and $\mathbf{2}$, and using six steps, we obtained both enantiomers of α-vinylalanine with an excellent overall yield (49\%) (Scheme 1).

Scheme 1. Synthesis of both enantiomers of α-vinylalanine ($\mathbf{5}$ and $\mathbf{8}$)
The initial step involved Wittig methylenation of (S) - α-methylserinal 1 and was carried out under salt-free Wittig conditions ${ }^{13}$ using methyltriphenylphosphonium bromide and potassium bis(trimethylsilyl)amide (KHMDS) as the base, obtaining olefin $\mathbf{3}$ in 93% yield. Starting from this compound, several attempts to carry out the selective deprotection of the acetonide moiety of $\mathbf{3}$ failed $\left(p-\mathrm{TsOH}, \mathrm{BF}_{3} \cdot \mathrm{AcOH}^{14}\right)$. However, using $\mathrm{Sc}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$ as a Lewis acid catalyst ${ }^{15}$ we obtained compound $\mathbf{4}$ in a 25% yield. All attempts to improve the yield by increasing the temperature were unsuccessful, since at $40^{\circ} \mathrm{C}$ we observed partial deprotection of the N-Boc group.

Since we could not obtain an acceptable yield via the selective cleavage of the acetonide moiety of 3, we decided to try acid hydrolysis using hydrochloride acid. After 2 h at $25^{\circ} \mathrm{C}$, the cleavage of the acetonide moiety and the hydrolysis of the N-Boc group took place in almost quantitative yield. The corresponding aminoalcohol hydrochloride was then protected with $\mathrm{Boc}_{2} \mathrm{O}$ in the presence of sodium carbonate to give $\mathbf{4}(88 \%$ from 3).

In order to transform this compound into the required quaternary amino acid $\mathbf{5}$, it was oxidized with Jones' reagent, ${ }^{16}$ hydrolyzed using a mixture of concentrated HCl and THF at room temperature and finally treated with propylene oxide in ethanol at reflux to give (R) - α-vinylalanine 5 in a 60% yield. The spectral data and optical activity of this compound proved to be identical to those previously reported ${ }^{9 \mathrm{c}}$ (Scheme 1).
The enantiomer (S) - α-vinylalanine $\mathbf{8}$ was obtained using the same strategy but starting from (R) - α methylserinal 2. The spectral data of compound $\mathbf{8}$ were identical to those previously obtained for amino acid 5, but with an optical rotation of opposite sign (Scheme 1).

The syntheses of (R) - and (S) - α-ethynylalanines 11 and $\mathbf{1 4}$ also start from (S) - and (R)-methylserinals $\mathbf{1}$ and $\mathbf{2}$, respectively, and involve seven steps with an overall yield of 32% (Scheme 2).

Scheme 2. Synthesis of both enantiomers of α-ethynylalanine $\mathbf{1 1}$ and $\mathbf{1 4}$
The aldehyde-to-acetylene conversion protocol can be undertaken using either of two strategies: in one step by ethynylation of the aldehyde with dimethyl-1-diazo-2-oxopropyl phosphonate ${ }^{17}$ or in two steps using a dibromovinyl intermediate (the Corey-Fuchs strategy). ${ }^{18}$ The literature reports that when this transformation was carried out on N-protected serinal acetonides, the second method gave better results. ${ }^{19} \mathrm{We}$, therefore, decided to obtain the α-alkynyl- α-methylamino acids $\mathbf{1 1}$ and $\mathbf{1 4}$ by using the Corey-Fuchs transformation. In this way, (R) - and (S)-methylserinals $\mathbf{1}$ and $\mathbf{2}$ were converted into the corresponding alkynes $\mathbf{1 0}$ and 13, using the vinyl intermediates 9 and $\mathbf{1 2}$ (Scheme 2).

Initially, we attempted the olefination of aldehyde 1 using a recently reported modification of the Corey-Fuchs method, involving the presence of $\mathrm{Et}_{3} \mathrm{~N}$ at low temperature $\left(\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{Et}_{3} \mathrm{~N}, 14 \mathrm{~h}\right.$, $10^{\circ} \mathrm{C}$). ${ }^{20}$ Unfortunately, this method provided dibromoolefin 9 only in a 49% yield. We attempted the olefination using the original Corey-Fuchs conditions $\left(\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{Zn}, 14 \mathrm{~h}\right.$, rt$)$, obtaining dibromoolefin 9 in a 57% yield. However, the best result was obtained by preparation of the dibromomethyl phosphorane using bromoform with ${ }^{t} \mathrm{BuOK}$ in the presence of $\mathrm{PPh}_{3},{ }^{21}$ followed by addition of aldehyde $\mathbf{1}$ at rt in toluene, giving a 79% yield of $\mathbf{9}$ and recovering a 15% yield of $\mathbf{1}$ (Scheme 2).

Treatment of dibromoolefin 9 with two equivalents of n - BuLi at $-78^{\circ} \mathrm{C}$ gave the corresponding acetylene derivative, which was hydrolyzed, without purification, by the action of concentrated HCl , obtaining the 1,2 -aminoalcohol hydrochloride. Protection of this compound with $\mathrm{Boc}_{2} \mathrm{O}$ in the presence of sodium carbonate gave $\mathbf{1 0}$ (54% from 9). The conversion of compound $\mathbf{1 0}$ into the desired $(R)-$ ethynylalanine $\mathbf{1 1}$ was achieved in the same way as described above for the preparation of amino acid $\mathbf{5}$ from alcohol 4 (Scheme 2).

The synthesis of (S)-ethynylalanine $\mathbf{1 4}$ was performed using the same strategy described for its enantiomer 11, but starting from aldehyde $\mathbf{2}$ (Scheme 2).

The enantiomeric purity of the intermediates in the synthesis of the four quaternary amino acids was examined by preparation of the Mosher esters of alcohols $\mathbf{4}$ and $\mathbf{1 0}$ (Scheme 3).

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$

18: $R=-C \equiv C H$

Scheme 3. Determination of enantiomeric purity of $\mathbf{4}$ and $\mathbf{1 0}$
In accordance with the protocol described in the literature, ${ }^{22}$ alcohol 4 was coupled with $(R)-(+)$ - and $(S)-(-)$-methoxytrifluorophenylacetic acid $[(R)-(+)-$ and $(S)-(-)-\mathrm{MTPA}]$ in the presence of DCC and DMAP to give Mosher esters $\mathbf{1 5}$ and 16, respectively. Analysis of the NMR spectra of esters $\mathbf{1 5}$ and $\mathbf{1 6}$ showed that the enantiomeric purity of compound 4 was at least 96% (only one isomer was observed in the ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra). Similarly, the synthesis of Mosher esters $\mathbf{1 7}$ and $\mathbf{1 8}$ was carried out using the same methodology, but now starting from alcohol 10 (Scheme 3).

In conclusion, we have developed a methodology that offers a straightforward route to the synthesis of β, γ-unsaturated α-methyl α-amino acids. In this way, we have achieved the synthesis of four interesting quaternary α-amino acids in enantiomerically pure form: (R) - and (S)-vinylalanines 5 and $\mathbf{8}$ and (R) - and (S)-ethynylalanines 11 and 14, thus demonstrating that (S) - and $(R)-N$-Boc- α-methylserinal acetonides 1 and $\mathbf{2}$ are valuable chiral building blocks in the enantioselective synthesis of α-methyl α-amino acids.

3. Experimental

Solvents were purified according to standard procedures. Analytical TLC was performed using Polychrom SI F_{254} plates. Column chromatography was performed using silica gel 60 ($230-400$ mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ARX-300 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} with TMS as the internal standard and in $\mathrm{CD}_{3} \mathrm{OD}$ with TMS as the external standard using a coaxial microtube (chemical shifts are reported in ppm on the δ scale, coupling constants in Hz). The assignment of all separate signals in the ${ }^{1} \mathrm{H}$ NMR spectra was made on the basis of coupling constants, selective proton-proton homonuclear decoupling experiments, proton-proton COSY experiments and proton-carbon HETCOR experiments. Melting points were determined on a Büchi SMP-20 melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 341 polarimeter in 1 and 0.5 dm cells of 1 and 3.4 mL capacity, respectively. Microanalyses were carried out on a CE Instruments EA-1110 analyser and are in good agreement with the calculated values. IR spectra were recorded on a Perkin-Elmer FT-IR Spectrum 1000 spectrometer.

3.1. (R)-2-((tert-Butoxycarbonyl)amino)-2-methyl-3-buten-1-ol 4

Concentrated $\mathrm{HCl}(10 \mathrm{~mL})$ was added to $(R)-N$-(tert-butoxycarbonyl)-4-vinyl-2,2,4-trimethyl-3oxazolidine 3 ($274 \mathrm{mg}, 1.13 \mathrm{mmol}$), which was previously obtained according to the procedure described by us in the literature, ${ }^{12}$ and the solution was stirred, at rt , for 2 h . The HCl was then removed to give the corresponding 1,2 -aminoalcohol as an orange oil. This compound was dissolved in (1:5) $\mathrm{H}_{2} \mathrm{O}$:THF $(6 \mathrm{~mL})$ and then $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}(812 \mathrm{mg}, 2.83 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(306 \mathrm{mg}, 1.36 \mathrm{mmol})$ were added.

The mixture was stirred at rt for 14 h and the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated. The residue was purified by flash silica gel chromatography (hexane:ethyl acetate, $8: 2$) to give compound $4(200 \mathrm{mg}, 88 \%)$ as a white solid. $\mathrm{Mp}: 41-43^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=+10.9(c 1.13$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right){ }_{3} \mathrm{C}\right), 3.52\left(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, $3.59\left(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.97$ (br s, $1 \mathrm{H}, \mathrm{NHCO}$), 5.12 (d, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}$), 5.17 (s, $\left.1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.85\left(\mathrm{dd}, 1 \mathrm{H}, J=17.1 \mathrm{~Hz}, J=11.1 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 22.8\left(\mathrm{CH}_{3}\right)$, $28.2\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 58.3\left(C\left(\mathrm{CH}_{3}\right) \mathrm{NH}\right), 69.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.8\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 113.9\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 140.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 155.9 (OCON); ESI ${ }^{+}(m / z)=202.3$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3}$: C, 59.68; H, 9.52; N, 6.96. Found: C, 58.91; H, 10.01; N, 6.92.

3.2. (R)-2-Amino-2-methyl-3-butenoic acid 5

To a solution of compound $4(165 \mathrm{mg}, 0.82 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a 1.5 -fold excess of Jones' reagent, drop by drop over 5 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then at rt for a further 3 h . The excess of Jones' reagent was destroyed with 2-propanol. The mixture was then diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$. The combined organic extracts were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual yellow oil (150 mg) was dissolved in THF (15 mL) and was treated with concentrated $\mathrm{HCl}(2 \mathrm{~mL})$. The mixture was stirred at rt for 6 h . The solvent was removed and the residual oil partitioned between water (10 mL) and ethyl acetate $(10 \mathrm{~mL})$. The aqueous phase was concentrated in vacuo to give (R) - α-vinylalanine hydrochloride as a white solid ($103 \mathrm{mg}, 83 \%$). This compound was dissolved in ($3: 1$) EtOH:propylene oxide (4 mL) and the mixture heated under reflux for 2 h , after which time the amino acid partially precipitated as a white solid (35 mg). The filtrate was concentrated and the residue dissolved in distilled water and eluted through a C_{18} reverse-phase Sep-Pak cartridge to give, after removal of the water, 21 mg of (R) - α-vinylalanine 5 as a white solid. Total amount: $56 \mathrm{mg}\left(72 \%, 60 \%\right.$ from 4). $[\alpha]_{\mathrm{D}}{ }^{25}=-27.4\left(c 0.62, \mathrm{H}_{2} \mathrm{O}\right)$; $\mathrm{ESI}^{-}(m / z)=116.2$. Anal. calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$: C, 52.16; H, 7.88; N, 12.17. Found: C, $52.21 ; \mathrm{H}, 7.33 ; \mathrm{N}, 12.20$. Spectral data were identical to those reported in the literature (Ref. 9c).

3.3. (S)-2-((tert-Butoxycarbonyl)amino)-2-methyl-3-buten-1-ol 7

In a similar way to that described for its enantiomer 4, compound $7(202 \mathrm{mg}, 88 \%)$ was obtained from oxazolidine $6(272 \mathrm{mg}, 1.13 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=-10.5(c 1.08, \mathrm{MeOH})$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3}$: C , 59.68; H, 9.52; N, 6.96. Found: C, 59.00; H, 9.97; N, 7.01.

3.4. (S)-2-Amino-2-methyl-3-butenoic acid 8

In a similar way to that described for its enantiomer $5,(S)$ - α-vinylalanine $\mathbf{8}(54 \mathrm{mg}, 58 \%)$ was obtained from alcohol $7(160 \mathrm{mg}, 0.82 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+27.3\left(c 0.63, \mathrm{H}_{2} \mathrm{O}\right)$. Anal. calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$: C, 52.16; H, 7.88; N, 12.17. Found: C, 52.33; H, 7.21; N, 12.17.

3.5. (R)-N-(tert-Butoxycarbonyl)-4-($2^{\prime}, 2^{\prime}$-dibromoethenyl)-2,2,4-trimethyl-3-oxazolidine 9

$\mathrm{CHBr}_{3}(2.57 \mathrm{~g}, 9.88 \mathrm{mmol})$ was rapidly added dropwise to a 1 M solution of ${ }^{t} \mathrm{BuOK}$ in THF $(10 \mathrm{~mL}$, $10.00 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(2.62 \mathrm{~g}, 9.88 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$, followed after 15 min by aldehyde (S)- N -(tert-butoxycarbonyl)-4-formyl-2,2,4-trimethyl-3-oxazolidine $1(600 \mathrm{mg}, 2.47 \mathrm{mmol}$) in
toluene (15 mL). After 15 min , the cooling bath was removed and the reaction mixture was allowed to warm to rt. After 17 h , the reaction mixture was diluted with ethyl ether $(50 \mathrm{~mL})$, filtered and concentrated in vacuo. The crude product was purified by silica gel chromatography (hexane:ethyl acetate, 19:1) to give the required compound $9(780 \mathrm{mg}, 79 \%)$ as a colourless oil. $[\alpha]_{\mathrm{D}}{ }^{25}=-95.1\left(c 1.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.48-1.69\left(\mathrm{~m}, 18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}, \mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 3.92,4.03(2 \mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, J=8.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.15,4.16\left(2 \mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.83,7.11\left(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CBr}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.0,23.8,24.8,25.6,26.2,27.3\left(\mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 28.4\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 64.2,65.1\left(C\left(\mathrm{CH}_{3}\right) \mathrm{N}\right)$, 72.6, $72.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 80.3,80.5\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 86.7,86.8\left(\mathrm{CH}=\mathrm{CBr}_{2}\right), 94.4$, $95.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 142.1,142.3$ $\left(C H=\mathrm{CBr}_{2}\right), 151.0,151.3(\mathrm{OCON}) ; \mathrm{ESI}^{+}(\mathrm{m} / \mathrm{z})=400.1$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NO}_{3}: \mathrm{C}, 39.12 ; \mathrm{H}$, 5.30; N, 3.51. Found: C, 39.22; H, 5.28; N, 3.48.

3.6. (R)-2-((tert-Butoxycarbonyl)amino)-2-methyl-3-butyn-1-ol 10

A solution of oxazolidine $9(304 \mathrm{mg}, 0.76 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was cooled at $-78^{\circ} \mathrm{C}$ and a 2 M solution of $n-\mathrm{BuLi}$ in hexane $(0.8 \mathrm{~mL}, 1.60 \mathrm{mmol})$ was added dropwise. After 3.5 h , the cooling bath was removed, the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. Concentrated $\mathrm{HCl}(10 \mathrm{~mL})$ was added to this mixture and the solution was stirred, at rt, for 2 h. The HCl was then removed to give the corresponding aminoalcohol (orange oil). This compound was dissolved in (1:5) $\mathrm{H}_{2} \mathrm{O}:$ THF $(6 \mathrm{~mL})$ and then $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}(545 \mathrm{mg}, 1.90 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(206$ $\mathrm{mg}, 0.91 \mathrm{mmol}$) were added to the solution. The mixture was stirred at rt for 14 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated. The residue was purified by flash silica gel chromatography (hexane:ethyl acetate, $7: 3$) to give compound $\mathbf{1 0}(82 \mathrm{mg}, 54 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{25}=-9.4(c 1.05, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.42\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.51(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 3.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.63\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3.74(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.2\left(\mathrm{CH}_{3}\right), 28.3\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 52.2\left(C\left(\mathrm{CH}_{3}\right) \mathrm{NH}\right)$, $69.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 71.3(\mathrm{C} \equiv \mathrm{CH}), 80.4\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 84.4(\mathrm{C} \equiv \mathrm{CH}), 155.2(\mathrm{OCON}) ; \mathrm{ESI}^{+}(\mathrm{m} / \mathrm{z})=200.2$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 60.28 ; \mathrm{H}, 8.60 ; \mathrm{N}, 7.03$. Found: C, $60.39 ; \mathrm{H}, 8.88 ; \mathrm{N}, 7.13$.

3.7. (R)-2-Amino-2-methyl-3-butynoic acid 11

To a solution of alcohol $10(95 \mathrm{mg}, 0.48 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ a 1.5 -fold excess of Jones' reagent was added, drop by drop, over 5 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then at rt for a further 3 h . The excess of Jones' reagent was destroyed with 2-propanol. The mixture was then diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$. The combined organic extracts were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual yellow oil (82 mg) was dissolved in THF (15 mL) and was treated with concentrated $\mathrm{HCl}(2 \mathrm{~mL})$. The mixture was stirred at rt for 6 h. The solvent was removed and the residual oil partitioned between water (10 mL) and ethyl acetate $(10 \mathrm{~mL})$. The aqueous phase was concentrated in vacuo to give (R) - α-ethynylalanine hydrochloride as a white solid (57 mg). This compound was dissolved in ($3: 1$) EtOH :propylene oxide (4 mL) and the mixture heated under reflux for 2 h after which time the amino acid partially precipitated as a white solid $(15 \mathrm{mg})$. The filtrate was concentrated, the residue dissolved in distilled water and eluted through a C_{18} reverse-phase Sep-Pak cartridge to give, after removal of the water, 26 mg of (R) - α-ethynylalanine $\mathbf{1 1}$ as a white solid. Total amount: $41 \mathrm{mg}(76 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=-43.1\left(c 0.74, \mathrm{H}_{2} \mathrm{O}\right) ; \mathrm{ESI}^{-}(\mathrm{m} / z)=114.2$. Anal.
calcd for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}$: C, 53.09; H, 6.24; N, 12.38. Found: C, $52.44 ; \mathrm{H}, 7.05 ; \mathrm{N}, 13.09$. Spectral data were identical to those reported in the literature (Ref. 9c).

3.8. (S)-N-(tert-Butoxycarbonyl)-4-(2', 2^{\prime}-dibromoethenyl)-2,2,4-trimethyl-3-oxazolidine 12

In a similar way to that described for its enantiomer 9, compound $\mathbf{1 2}(783 \mathrm{mg}, 79 \%)$ was obtained from aldehyde $2(602 \mathrm{mg}, 2.47 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+96.0\left(c 1.06, \mathrm{CHCl}_{3}\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NO}_{3}$: C, 39.12; H, 5.30; N, 3.51. Found: C, 39.25; H, 5.39; N, 3.55.

3.9. (S)-2-((tert-Butoxycarbonyl)amino)-2-methyl-3-butyn-1-ol 13

In a similar way to that described for its enantiomer 10, compound $\mathbf{1 3}(80 \mathrm{mg}, 54 \%)$ was obtained from oxazolidine $12(303 \mathrm{mg}, 0.76 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+10.0(c 1.05, \mathrm{MeOH})$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, 60.28; H, 8.60; N, 7.03. Found: C, 60.36; H, 8.90; N, 7.10.

3.10. (S)-2-Amino-2-methyl-3-butynoic acid 14

In a similar way to that described for its enantiomer 11, (S)- α-ethynylalanine 14 (39 mg, 73\%) was obtained from alcohol $13(94 \mathrm{mg}, 0.48 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+43.4\left(c 0.78, \mathrm{H}_{2} \mathrm{O}\right)$. Anal. calcd for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}$: C, 53.09; H, 6.24; N, 12.38. Found: C, 52.53; H, 6.96; N, 12.98.

3.11. (2R, $\left.2^{\prime} \mathrm{R}\right)-2^{\prime}$-((tert-Butoxycarbonyl)amino)- 2^{\prime}-methyl-3'-butenyl 2-methoxy-2-(trifluoromethyl)-2phenylacetate 15

To a solution of alcohol $4(20 \mathrm{mg}, 0.20 \mathrm{mmol})$, DCC $(41 \mathrm{mg}, 0.20 \mathrm{mmol})$ and DMAP $(2.5 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added a solution of $(R)-(+)-\mathrm{MTPA}(52 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \mathrm{~mL})$. After stirring the mixture at rt for 6 h , the resulting white suspension was filtered to remove the N, N^{\prime}-dicyclohexylurea. The filtrate was concentrated in vacuo to give a white slurry, to which $\mathrm{Et}_{2} \mathrm{O}$ was added. The resulting suspension was filtered to remove the acylurea and the solvent was evaporated. The residue was purified by column chromatography (hexane:ethyl acetate, $7: 3$) to give $15(51 \mathrm{mg}, 65 \%)$ as an oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+31.0\left(c 1.43, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, $3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.44\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.59\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NHCO), $5.14\left(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.18\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.90(\mathrm{dd}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}, J=10.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.8\left(\mathrm{CH}_{3}\right), 28.3\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, $55.4\left(C\left(\mathrm{CH}_{3}\right) \mathrm{NH}\right), 55.5\left(\mathrm{OCH}_{3}\right), 68.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.7\left(\left(\mathrm{CH}_{3}\right)_{3} C\right), 114.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 121.3\left(C\left(\mathrm{CF}_{3}\right)\right), 125.2$ $\left(\mathrm{CF}_{3}\right), 127.4,128.4,129.6,132.0(\mathrm{Ph}), 139.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 154.2(\mathrm{OCON}), 166.1\left(\mathrm{CCO}_{2} \mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-71.8 ; \mathrm{ESI}^{+}(\mathrm{m} / z)=418.3$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{5}: \mathrm{C}, 57.55 ; \mathrm{H}, 6.28 ; \mathrm{N}, 3.36$. Found: C, 56.92; H, 6.62; N, 3.43.

3.12. (2S, $\left.2^{\prime} \mathrm{R}\right)-2^{\prime}-(($ tert-Butoxycarbonyl)amino)-2'-methyl-3'-butenyl 2-methoxy-2-(trifluoromethyl)-2phenylacetate 16

In a similar way to that described for compound 15, Mosher ester 16 ($54 \mathrm{mg}, 69 \%$) was obtained from alcohol $4(22 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $(S)-(-)$-MTPA ($52 \mathrm{mg}, 0.22 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=-22.2(c 0.82$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.39(\mathrm{~d}$, $1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 4.58 (br s, $1 \mathrm{H}, \mathrm{NHCO}$), $4.63\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}$,
$\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 5.18\left(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.91\left(\mathrm{dd}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.40(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ph}), 7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.7\left(\mathrm{CH}_{3}\right), 28.3\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 55.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right) \mathrm{NH}\right), 55.5}\right.$ $\left(\mathrm{OCH}_{3}\right), 69.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.7\left(\left(\mathrm{CH}_{3}\right)_{3} C\right), 114.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 121.3\left(C\left(\mathrm{CF}_{3}\right)\right), 125.2\left(\mathrm{CF}_{3}\right), 127.4,128.4$, 129.6, $132.0(\mathrm{Ph}), 139.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 154.2(\mathrm{OCON}), 166.1\left(\mathrm{CCO}_{2} \mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-71.8$; $\operatorname{ESI}^{+}(\mathrm{m} / z)=418.3$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{5}$: C, 57.55 ; H, 6.28; N, 3.36. Found: C, 56.90; H, 6.57; N, 3.49.
3.13. (2R, $\left.2^{\prime} \mathrm{R}\right)-2^{\prime}$-((tert-Butoxycarbonyl)amino)- 2^{\prime}-methyl-3'-butynyl 2-methoxy-2-(trifluoromethyl)-2phenylacetate 17

In a similar way to that described for compound $\mathbf{1 5}$, Mosher ester $17(51 \mathrm{mg}, 61 \%)$ was obtained from alcohol $10(19 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $(R)-(+)-\mathrm{MTPA}(51 \mathrm{mg}, 0.22 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+32.2\left(c 0.95, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.42\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}), 7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, $7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.6\left(\mathrm{CH}_{3}\right), 28.2\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 49.7\left(C\left(\mathrm{CH}_{3}\right) \mathrm{NH}\right), 55.4\left(\mathrm{OCH}_{3}\right)$, $68.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 71.8(\mathrm{C} \equiv \mathrm{CH}), 80.4\left(\left(\mathrm{CH}_{3}\right)_{3} C\right), 82.9(\mathrm{C} \equiv \mathrm{CH}), 121.3\left(C\left(\mathrm{CF}_{3}\right)\right), 125.1\left(\mathrm{CF}_{3}\right), 127.4,128.4$, 129.7, $132.0(\mathrm{Ph}), 153.7(\mathrm{OCON}), 165.9\left(\mathrm{CCO}_{2} \mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-71.9 ; \mathrm{ESI}^{+}(\mathrm{m} / \mathrm{z})=416.2$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{5}$: C, 57.83; H, 5.82; N, 3.37. Found: C, $57.02 ; \mathrm{H}, 6.10 ; \mathrm{N}, 3.48$.
3.14. (2S, $\left.2^{\prime} \mathrm{R}\right)-2^{\prime}$-((tert-Butoxycarbonyl)amino)-2'-methyl-3'-butynyl 2-methoxy-2-(trifluoromethyl)-2phenylacetate 18

In a similar way to that described for compound 16, Mosher ester $18(46 \mathrm{mg}, 55 \%)$ was obtained from alcohol $10(20 \mathrm{mg}, 0.20 \mathrm{mmol})$ and (S)-MTPA ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$). $[\alpha]_{\mathrm{D}}{ }^{25}=-28.0\left(c 1.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.43\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}), 4.71\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, $7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.6\left(\mathrm{CH}_{3}\right), 28.2\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 49.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NH}\right), 55.5\left(\mathrm{OCH}_{3}\right)$, $68.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 71.8(\mathrm{C} \equiv \mathrm{CH}), 80.4\left(\left(\mathrm{CH}_{3}\right)_{3} C\right), 82.9(\mathrm{C} \equiv \mathrm{CH}), 121.3\left(C\left(\mathrm{CF}_{3}\right)\right), 125.1\left(\mathrm{CF}_{3}\right), 127.4,128.4$, 129.7, $132.0(\mathrm{Ph}), 153.7(\mathrm{OCON}), 165.8\left(\mathrm{CCO}_{2} \mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-71.9 ; \mathrm{ESI}^{+}(\mathrm{m} / \mathrm{z})=416.2$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{5}$: C, $57.83 ; \mathrm{H}, 5.82 ; \mathrm{N}, 3.37$. Found: C, $57.21 ; \mathrm{H}, 6.06 ; \mathrm{N}, 3.50$.

Acknowledgements

This work was supported by the Dirección General de Enseñanza Superior (project PB97-0998-C0202) and the Universidad de La Rioja (project API-99/B02).

References

1. (a) Mossel, E.; Formaggio, F.; Toniolo, C.; Crisma, M.; Boesten, W. H. J.; Broxterman, Q. B.; Kamphuis, J.; Quaedflieg, P. J.; Temussi, P. Tetrahedron: Asymmetry 1997, 8, 1305, and references cited therein. (b) Bellier, B.; McCort-Tranchenpain, I.; Ducos, B.; Danascimento, S.; Meudal, H.; Noble, F.; Garbay, C.; Roques, B. P. J. Med. Chem. 1997, 40, 3947.
2. (a) Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2708. (b) Wirth, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 225.
3. Cativiela, C.; Díaz-de-Villegas, M. D. Tetrahedron: Asymmetry 1998, 9, 3517.
4. (a) Rando, R. R. Biochemistry 1974, 13, 3859. (b) Metcalf, B. W.; Jund, K. Tetrahedron Lett. 1977, 41, 3689.
5. (a) Maycock, A. L.; Aster, S. D.; Patchett, A. A. Developments in Biochemistry 1979, 6, 115. (b) Danzin, C.; Casara, P.; Claverie, N.; Metcalf, B. W. J. Med. Chem. 1981, 24, 16. (c) Tendler, S. J. B.; Threadgill, M. D.; Tisdale, M. J. J. Chem. Soc., Perkin Trans. 1 1987, 2617.
6. Altmann, E.; Nebel, K.; Mutter, M. Helv. Chim. Acta 1991, 74, 800, and references cited therein.
7. (a) Walsh, C. Enzymatic Reaction Mechanisms; W. H. Freeman: San Francisco, 1979. (b) Kuroda, Y.; Okuhara, M.; Goto, T.; Iguchi, E.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1980, 125. (c) Kuroda, Y.; Okuhara, M.; Goto, T.; Iguchi, E.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1980, 132.
8. (a) Steglich, W.; Wegmann, H. Synthesis 1980, 481. (b) Pedersen, M. L.; Berkowitz, D. B. J. Org. Chem. 1993, 58, 6966. (c) Aurell, M. J.; Gil, S.; Martínez, P. V.; Parra, M.; Tortajada, A.; Mestres, R. Synth. Commun. 1991, 21, 1833.
9. (a) Resolution of (\pm)-5-methyl-5-vinylhydantoin: Takamura, N.; Terashima, S.; Achiwa, K.; Yamada, S. Chem. Pharm. Bull. 1967, 15, 1776. (b) Asymmetric α-methylation of vinyl substituted imidazolidinone: Weber, T.; Aeschimann, R.; Maetzke, T.; Seebach, D. Helv. Chim. Acta 1986, 69, 1365. (c) Combination of β-lactam synthesis by photolysis of oxazolidine carbene complex with Ojima's α-alkylation chemistry: Hegedus, L. S.; Colson, P. J. J. Org. Chem. 1993, 58, 5981. (d) Synthesis of α-vinylalanine via lipase-mediated 'reverse transesterification'; Berkowitz, D. B.; Pumphrey, J. A.; Shen, Q. Tetrahedron Lett. 1994, 35, 8743.
10. (a) Groth, U.; Schöllkopf, U.; Chiang, Y.-C. Synthesis 1982, 864. (b) Schöllkopf, U.; Westphalen, K.-O.; Schröder, J.; Horn, K. Liebigs Ann. Chem. 1988, 781.
11. (a) Avenoza, A.; Cativiela, C.; Díaz-de-Villegas, M. D.; Mayoral, J. A.; Peregrina, J. M. Tetrahedron 1993, $49,677$.
(b) Avenoza, A.; Cativiela, C.; Díaz-de-Villegas, M. D.; Peregrina, J. M. Tetrahedron 1993, 49, 10987. (c) Avenoza, A.; Cativiela, C.; París, M.; Peregrina, J. M. J. Org. Chem. 1994, 59, 7774. (d) Avenoza, A.; Busto, J. H.; Cativiela, C.; Peregrina, J. M. Tetrahedron Lett. 1995, 36, 7123. (e) Aubry, A.; Avenoza, A.; Cativiela, C.; Jiménez, A. I.; Marraud, M.; París, M.; Peregrina, J. M. Tetrahedron Lett. 1998, 39, 7841. (f) Avenoza, A.; Busto, J. H.; Cativiela, C.; Peregrina, J. M.; Rodríguez, F. Tetrahedron 1998, 54, 11659.
12. Avenoza, A.; Cativiela, C.; Corzana, F.; Peregrina, J. M.; Zurbano, M. M. J. Org. Chem. 1999, 64, 8220.
13. (a) Moriwake, T.; Hamano, S. I.; Saito, S.; Torii, S. Chem. Lett. 1987, 2085. (b) McKillop, A.; Taylor, R. J. K.; Watson, R. J.; Lewis, N. Synthesis 1994, 31.
14. (a) Williams, L.; Zhang, Z.; Shao, F.; Carroll, P. J.; Joullié, M. M. Tetrahedron 1996, 52, 11673. (b) Williams, L.; East, S. P.; Shao, F.; Joullié, M. M. Tetrahedron 1998, 54, 13371.
15. (a) Kobayashi, S.; Hachiya, I.; Araki, M.; Ishitani, H. Tetrahedron Lett. 1993, 34, 3755. (b) Kobayashi, S.; Oriyama, T.; Noda, K. Synlett. 1998, 1047.
16. Beaulieu, P. L.; Duceppe, J.-S.; Johnson, C. J. Org. Chem. 1991, 56, 4196.
17. (a) Meffre, P.; Gauzy, L.; Perdigues, C.; Desanges-Levecque, F.; Branquet, E.; Durand, P.; Le Goffic, F. Tetrahedron Lett. 1995, 36, 877. (b) Meffre, P.; Gauzy, L.; Branquet, E.; Durand, P.; Le Goffic, F. Tetrahedron 1996, 52, 11215.
18. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769.
19. Meffre, P.; Branquet, E.; Durand, P.; Le Goffic, F. Synth. Commun. 1998, 28, 613.
20. (a) Reginato, G.; Mordini, A.; Caracciolo, M. J. Org. Chem. 1997, 62, 6187. (b) Grandjean, D.; Pale, P.; Chuche, J. Tetrahedron Lett. 1994, 35, 3529.
21. McIntosh, M. C.; Weinreb, S. M. J. Org. Chem. 1993, 58, 4823.
22. (a) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543. (b) Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361.

[^0]: * Corresponding authors. E-mail: alberto.avenoza@dq.unirioja.es

 0957-4166/99/\$ - see front matter © 1999 Published by Elsevier Science Ltd. All rights reserved.
 PII: S0957-4166(99)00533-9

