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We calculated the cross sections for vibrational predissociation of methaneÈAr induced by
excitation of the methane mode with the aid of an ab initio potentialm3 CH4ÈAr
depending explicitly on the and normal coordinates of the monomer. We foundm3 m1 CH4
that dissociation into fragments excited in the mode, a V] V@ process with veryCH4 m1
low kinetic energy release, strongly dominates over direct dissociation into Ar and ground
state and is responsible for the line broadening observed experimentally. TheCH4 ,
(observed and calculated) strong variation of the line widths for the Van der Waals levels
excited in combination with the mode (giving states of A, F and E symmetry) is relatedm3
to the opening up of appropriate dissociation channels and the occurrence of rotationalm1
resonances in the continuum in the energy range of the quasi-bound levels.m1 m3

1 Introduction
Important dynamical phenomena that occur during molecular collisions in gases or liquids, such
as vibrational and rotational energy transfer and relaxation, can be investigated in great detail by
studying the photodissociation of a Van der Waals complex. This “half-collisionÏ is initiated by
photo-excitation of one of the constituent molecules in the complex to a well-deÐned vibrational
state, possibly in combination with the excitation of speciÐc intermolecular (librational or
translational) modes of the complex. Then the redistribution of the excitation energy over the
intra- and intermolecular degrees of freedom can be monitored. The various possible decay pro-
cesses can be followed either by time-resolved spectroscopic studies, or by determination of life-
times from the line widths in the excitation spectrum. The recoil angles, velocities, and state
distributions of the fragments can be obtained by further spectroscopic probing. This type of study
is especially interesting for complexes containing polyatomic molecules. The vibrational predisso-
ciation of such a complex can occur not only by a simple V] R, T (vibration to rotation and
translation) transfer but also by partial transfer of the initial vibrational energy to other vibra-
tional modes of the polyatomic (V ] V@, R, T transfer).
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An essential element of theoretical studies aimed at understanding the observed phenomena is
an intermolecular potential surface with an explicitly given dependence on the intramolecular
(vibrational) coordinates of the constituents. Mostly,1h3 such a surface is modeled by using a
simple atomÈatom potential. Apart from the question of its (in)accuracy, in general, it is important
in this context that the assumption that the atomÈatom model more or less correctly describes the
intramolecular coordinate dependence of an intermolecular potential has never been suitably
tested. Bissonnette and Clary4 avoid this assumption in their theoretical study of whichH2OÈAr
accompanies the experimental work of Nesbitt and Lascola.5,6 They modeled the dependence of
the potential on the internal coordinates of by considering only the dipole andH2OÈAr H2Oquadrupole induction terms. Since it is possible nowadays to obtain quite accurate intermolecular
potentials from ab initio electronic structure computations,7 it is worthwhile to verify whether
such calculations can also yield accurate results for the coupling in the potential between the inter-
and intramolecular degrees of freedom.

Both of the above problems, regarding the predissociation dynamics and the dependence of the
intermolecular potential on the molecular vibration coordinates, are addressed in this paper. The
prototype system that we have chosen to investigate is The measured infrared spectrumCH4ÈAr.
of methaneÈAr was Ðrst presented and discussed at the previous Faraday Discussion on Van der
Waals molecules, without an assignment or interpretation, however.8h10 Later it was
demonstrated11,12 that this spectrum can be understood and assigned by means of ab initio calcu-
lations. The calculation of the spectrum was based on a potential obtained from ab initio
symmetry-adapted perturbation theory (SAPT).13 The same potential produced accurate elastic
(total di†erential) and rotationally inelastic (state-to-state integral) cross sections for methaneÈAr
scattering.13,14 The di†erent bands observed in the infrared spectrum correspond to excitation of
the mode of methane, in combination with several intermolecular vibrations. The spectrum ism3quite complex since the occurrence of di†erent nuclear spin species, A, F and E, causes several
initial states to be populated even at the low temperature (B1 K) of the experiment. The degree of
hindrance of the rotations in the complex varies considerably : nearly free internal rotorCH4states occur for the A and F species, whereas relatively large splittings of the free rotor levels are
found for the E species with nonzero values of the rotational quantum number K. The CH4ÈAr
complex is a very interesting system with regard to the problems mentioned in the Ðrst paragraph.
It was observed in the IR spectrum reported by Miller et al.11,12 that the bands which correspond
to the excitation of di†erent nuclear spin species and di†erent intermolecular levels, although
di†erent in energy by only a few cm~1, show vibrational predissociation line widths that vary by
an order of magnitude.

The present paper describes a theoretical study of the photodissociation of methaneÈAr, with
the aim of understanding the large variation of the observed lifetimes and predicting the corre-
sponding fragment state distributions (yet to be measured). We consider the fragmentation of the
complex into two di†erent channels, after excitation of the methane mode. The Ðrst channelm3leads directly to Ar and ground state In the second channel the fragment remainsCH4 . CH4excited in the mode. Since the vibration is only 103 cm~1 higher in energy than the modem1 m3 m1and the dissociation energy of the complex11 is about 90 cm~1 this channel is barely open.D0Therefore, the complex can dissociate into this channel with very small kinetic energy release
which, according to the energy gap law,15,16 is likely to be a fast process. In Section 2 we present
the results of ab initio SAPT calculations of a potential with explicit dependence on theCH4ÈAr

(asymmetric CÈH stretch) and (symmetric CÈH stretch) normal coordinates of Them3 m1 CH4 .
dependence of the intermolecular potential on both these normal modes was Ðt to an analytic
expression. For the threefold degenerate mode we did not need to compute all the components,m3but we used the transformation properties of the permutation-inversion symmetry group ofPI(Td)the complex to obtain the complete coupling term in the potential. In Section 3 it is outlinedm3how we determined resonances in the energy-dependent cross section for vibrational predissocia-
tion into both channels. Complications, again, are the threefold degeneracy of the mode andm3the Ðrst order Coriolis coupling of the vibrational angular momentum generated by this mode
with the (hindered) internal rotation of in the complex. Inclusion of this rather small coup-CH4ling term is necessary to obtain the correct symmetry selection rules for the transitions. The direct
calculation of the spectral line widths by a Fermi golden rule formula is also described in Section
3. In Section 4 we discuss the results.
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2 Potential energy surface

We computed the potential as a function of the argon spherical polar coordinates R, H, U and the
vibrational stretching modes by the same SAPT (symmetry adapted perturbation theory)CH4method as in previous work.13 The same atomic orbital basis set was also used. In ref. 13 methane

was considered in its vibrational ground state only, whereas in this work we will present the
dependence of the argonÈmethane potential on the stretch coordinates as well. The vibra-CH4tional symmetry coordinates are linear combinations of the stretches17

dr
i
4 a

i
/a Æ (d

i
[ dC), (1)

where and are displacement coordinates of hydrogen i and the carbon atom, respectively.d
i

dCThe vector is along the equilibrium CÈH bond and its length a is the equilibrium bond length.a
iThe point group of methane is which has irreps (irreducible representations) : E andTd A1, 2 ,

The PI group of and which consists of permutation-inversions (PIs), isF1, 2 . PI(Td) CH4 CH4ÈAr,
isomorphic to this point group. The symmetric stretch coordinate is designated by and(A1) m1 q1the coordinates of the three-fold degenerate mode spanning the irrep are Them3 F2 q3x , q3y , q3z .symmetry adapted linear combinations are :

q1 \ (dr1] dr2 ] dr3 ] dr4)/2, (2)

and

q3x \ ([dr1] dr2] dr3[ dr4)/2,

q3y \ ([dr1] dr2 [ dr3 ] dr4)/2,

q3z \ (dr1] dr2 [ dr3 [ dr4)/2. (3)

These modes correspond to methane in a cube with proton 1 on the ([1, [1, 1) corner, proton 2
on the (1, 1, 1) corner, proton 3 on the (1, [1, [1) corner, and proton 4 on the ([1, 1, [1)
corner. The three bending coordinates of methane span the same irrep as the stretchm4 Td F2 m3coordinates and the two sets of coordinates mix in WilsonÏs harmonic GF method.18 However, in
this work we make the simplifying assumption that the coordinates are pure stretch modes andm3that both and are harmonic.m1 m3The displacement vector associated with the translational Eckart conditions has symmetry

which implies that we must not only change the CÈH bond lengths in the deformation, asF2 ,19 m3we do in the deformation, but we must also move the carbon position. Since the vector associ-m1ated with the rotational Eckart conditions has symmetry both the and deformationsF1, m1 m3automatically satisfy these conditions.
The action of PIs on the symmetry coordinates is simply

PŒ (q3x , q3y , q3z)\ (q3x , q3y , q3z)R(P), P ½ PI(Td), (4)

where R(P) is a matrix in the orthogonal irrep F2 .
To consider the action of the PIs on the Euler angles we deÐne a body-Ðxed frame for the

equilibrium methane, which is the equivalent of eqn. (3),

g
x
\ ([OHm 1] OHm 2] OHm 3 [ OHm 4)/2

g
y
\ ([OHm 1] OHm 2 [ OHm 3 ] OHm 4)/2

g
z
\ (OHm 1] OHm 2 [ OHm 3 [ OHm 4)/2 (5)

This frame is in terms of vectors pointing from the center of mass O of methane to hydrogen
atoms The Euler angles u of methane are deÐned byH

i
.

(g
x
, g

y
, g

z
)\ ( f

x
, f

y
, f

z
)R(u)\ ( f

x
, f

y
, f

z
)R

z
(u1)Ry

(u2)Rz
(u3) (6)
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where is a two-angle embedded frame obtained by rotating an arbitrary space-Ðxed( f
x
, f

y
, f

z
)

frame so that lies along R, the vector pointing from the center of mass of to Ar. The Eulerf
z

CH4rotation matrices are in the active convention, see, e.g. ref. 20. It is not difficult to show that the
Eckart frame (according to the deÐnition of ref. 20) of methane deformed along is the same asq3zthe frame in eqn. (5). So we can use this frame to study the e†ect of the PIs on the Euler angles.
The PIs act on these angles according to

PŒ (g
x
, g

y
, g

z
)\ (g

x
, g

y
, g

z
)S(P)\ ( f

x
, f

y
, f

z
)R(u)S(P) \ ( f

x
, f

y
, f

z
)R(u@). (7)

The permutations act on the hydrogen labels and E* inverts the direction of the so that thegacomputation of the matrices S(P) is straightforward. In fact they form the irrep, which consistsF1of proper (unit determinant) rotation matrices only and accordingly u@ is well-deÐned. Note that
E* is equivalent11 to a rotation of the two-angle embedded frame by R

z
(p)R

y
(p).

In order to obtain the dependence of the potential on the four CÈH stretch coordinates it is
sufficient to consider deformations of methane along and only. The dependence on theq1 q3zother two coordinates can be obtained by appropriate permutation of the hydrogen atoms. Since
the deformation lowers the point group symmetry of to six times more points on theq3z CH4 C2v ,potential energy surface (PES) must be computed than in the case of undeformed methane. At the
same time we must describe the PES in functions containing symmetry of not ofA1 C2vÈand A1as in earlier work.11,13 We Ðtted the ab initio SAPT points in a somewhat di†erent mannerTd ,
than before. All short range terms, including penetration induction, are taken together and the
sum is written as

Vshort(R, H, U, q1, q3)\
C

;
l, c

lmax/7 ;
n/0

3
A

l, c, nshort T c(l)(H, U)Rn
D
exp
C
[ ;

l, c

lmax/7a
l, cshortT c(l)(H, U)R

D
, (8)

where The functions U) are tetrahedral harmonics belonging to irrepsq3 4 (q3x , q3y , q3z). T c(l)(H,
of The index c is compound, it labels the irrep, the partner in this irrep and the multiplicity.Td . TdThe U) are linear combinations of spherical harmonics of certain lT c(l)(H,

T c(l)(H, U)\;
m

ZclmY m
l (H, U), (9)

where the algebraic coefficients may be found in ref. 21. Only the irreps E and ofZclm A1, F2 Tdappear here, since only those irreps contain of The exponential parameters wereA1 C2v . a
l, cshort

obtained from a Ðt of the potential with methane in its vibrational ground state and wereCH4ÈAr
kept Ðxed. That is, the tetrahedral harmonics appearing in the exponent are under TheA1 Td .
coefficients are obtained from least squares Ðts with methane deformed along andA

l, c, nshort q3z q1.The long range interaction only consists of dispersion (the long range induction being negligibly
small), which we represent by the analytic form

Vdisp(R, H, U, q1, q3)\
C

;
l, c

lmax/7 ;
n/0

3
A

l, c, ndisp T c(l)(H, U,)Rn
D
exp[[adispR]

[ ;
l, c

lmax/7 ;
n/6

10
f
n
(R ; adisp)C

l, y, ndisp T c(l)(H, U)R~n (10)

The Van der Waals coefficients were computed separately for deformed methane by theC
l, c, ndisp

program POLCOR,22 at the same correlation level as the SAPT dispersion. The exponential Ðt
parameter adisp is determined for the undeformed methane and kept constant. It appears also in
damp functions that have the TangÈToennies form,23

f
n
(R ; b)\ 1 [ exp([bR) ;

k/0

n (bR)k

k !
(11)

The parameters are obtained by a Ðt of the SAPT dispersion energy computed for nineA
l, c, ndisp

deformations of methane, in the same way as the are obtained from a Ðt of the short rangeA
l, c, nshort
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energies. The linear parameters Ashort, Adisp and Cdisp in the Ðts were taken to be functions of the
normal coordinates. Writing generically A for these linear parameters, we make a Taylor expan-
sion around equilibrium and include only the coupling terms which we will need later, namely

A(q1, q3)\ A(0)]
AdA

dq1

B
0
q1 ] ;

a

A dA
dq3a

B
0
q3a ] ;

a

A d2A
dq3a dq1

B
0
q3a q1. (12)

The derivatives in this expansion are parameters obtained from the potential on the following grid
of deformations : 0), (1, [1), (1, 0), (1, 1), (0, 1), ([1, 1), ([1, 0), ([1, [1) and (0,(*q1, *q3z)\ (0,
[1), where has the unit of length 0.199 for this length is 0.205 These lengths are*q1 a0 ; *q3z a0 .
obtained from the classical turning points in the force Ðeld of ref. 24. We experimented with
di†erent lengths of the Taylor expansion, but variation in the expansion lengths hardly a†ected
the numerical values of the coupling terms of interest.

Note incidentally that a number of ab initio SAPT calculations can be skipped because of the
relation obtained by the application of (1324)* :

ESAPT(*q3z , R, H, U)\ ESAPT([*q3z , R, p [ H, p/2 ] U).

The e†ect of the deformations and on the potential is illustrated in Fig. 1 and 2.*q3z *q3z] *q1The Ðt of ESAPT values calculated for methane deformed along and Ðxes the three param-q3z q1eters : and In order to show how to obtain the correspond-(dA/dq1)0 , (dA/dq3z)0 (d2A/dq3z dq1)0 .

Fig. 1 E†ect of mode deformation on the potential (in cm~1) : withm3 CH4ÈAr ESAPT(*q3z)[ ESAPT(0)
The azimuthal angle U\ 45¡. Note that H \ 54.74¡ corresponds to a vertex position of*q3z \ 0.205 a0 .

argon (a linear CÈHÉ É ÉAr conÐguration), H \ 125.26¡ to a facial position (between three CÈH bonds), and
H \ 0¡ and 180¡ to edge positions (Ar, C and two H atoms in one plane).

Faraday Discuss., 2001, 118, 143È158 147
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Fig. 2 E†ect of simultaneous and mode deformation on the potential (in cm~1) :m3 m1 CH4ÈAr ESAPT(*q3z ,
with and See the caption of Fig. 1*q1) [ ESAPT(*q3z)[ ESAPT(*q1)] ESAPT(0) *q3z\ 0.205 a0 *q1\ 0.199 a0 .

for explanations.

ing derivatives in the other directions, we reintroduce the labels l and c on the AÏs and deÐne the
function

B
m
l (q1, q3)\;

c
A

l, c(q1, q3)Zclm, (13)

where is any of the three linear parameters under discussion and where we suppressed theA
l, clabel n and the type designation (“ short Ï etc.). In the potential expansion we now meet the func-

tions

V l(q1, q3 , H, U)4;
m

B
m
l (q1, q3)Y m

l (H, U) (14)

which are invariant under provided we act simultaneously on H and U.PI(Td), q1, q3 ,
Let us Ðrst consider the normal modes and substitute into eqn. (4) Upon noticingPŒ \ (134).

that and we ÐndPŒ q1 \ q1 PŒ q3 \ (q3y , q3z , q3x)

PŒ B
m
l (q1, q3)\ B

m
l (0)]

AdB
m
l

dq1

B
0
q1 ]

AdB
m
l

dq3x

B
0
q3y]

AdB
m
l

dq3y

B
0
q3z ]

AdB
m
l

dq3z

B
0
q3x

]
A d2B

m
l

dq3x dq1

B
0
q3y q1 ]

A d2B
m
l

dq3y dq1

B
0
q3z q1]

A d2B
m
l

dq3z dq1

B
0
q3x q1. (15)

We now look at the action of on the Euler angles. Since this is an unstarred operation itPŒ \ (134)
acts in exactly the same way on the body-Ðxed axes as on the Implicitly we already usedga q3a .
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the left-hand side of the following equation and the right-hand side follows by inspection :

S(134)\
10
1

0

0

0

1

1

0

0

2
\R

y
(p/2)R

z
(p/2).

(16)

From eqn. (7) we Ðnd the relation between u@ and u. Earlier11 it was shown that, instead of
rotating inside the complex, we may rotate the position vector of the argon atom, whileCH4keeping the orientation of methane Ðxed. The rotation angles u of the monomer are simply
related to the angles H and U by and It is now easy to Ðnd the e†ect of onu2 4 H u34 p [ U. PŒ
the spherical polar angles of R, and for the functions we get the transformation :

Y
m{l (H@, U@)\;

m
Y

m
l (H, U)D

mm{(l) (S(134))\ ;
m

Y
m
l (H, U)D

mm{(l) (0, p/2, p/2). (17)

Substitution of this expression and eqn. (15) into V l, use of and equating of terms inPŒ V l \ V l, q3aand U) gives the expressionsY
m
l (H,

AdB
m
l

dq3x

B
0
\ ;

m{

AdB
m{l

dq3z

B
0
D

mm{(l) (0, p/2, p/2),

AdB
m
l

dq3y

B
0
\ ;

m{

AdB
m{l

dq3x

B
0
D

mm{(l) (0, p/2, p/2), (18)

Knowing from the Ðts, these expressions are easily solved sequentially. Likewise(dB
m
l /dq3z)0

A d2B
m
l

dq3x dq1

B
0
\ ;

m{

A d2B
m{l

dq3z dq1

B
0
D

mm{(l) (0, p/2, p/2), (19)

and two other expressions with x, y, z permuted cyclically.

3 Photodissociation formalism
The cross section for excitation of a system from an initial bound state with discrete energyo(

i
T

to the continuum state is given byE
i

oW
f
(E)T

p
fHi

(E)P o SW
f
(E) o l Æ e oW

i
T o2. (20)

Here e is the polarization vector of the incoming photon and l is the dipole moment surface. With
the photon having energy +u, energy conservation gives In the present work weE\ E

i
] +u.

generalize the atomÈdiatom formalism of Roncero et al.25 to atomÈpolyatom systems with di†er-
ent monomer modes, part of which are degenerate. The bound state is one of the Van deroW

i
T

Waals states of the dimer in its vibrational ground state. Because of nuclear spin there are three
types of intermolecular vibrational ground states : A, E and F. All three are occupied in supersonic
molecular beams. Since these beams are cold (about 1 K), hardly any excited Van der Waals states
are occupied. The Ðnal state is a state which is coupled with the continuum states of the groundm3state potential as well as of the potential. In the present work we assume that the andm1 m3 m1potentials are the same as the ground state potential, but shifted upward by 3019.494 and
2916.480 cm~1, respectively, which are the band origins of the and levels in freem3 m1 CH4 .26

The nuclear Hamiltonian in the dimer embedded frame is

H \ HA(q1, q3)] TA ]
1

2kR2
C
[+2

d

dR
R2

d

dR
] (Jtot)2] j2[ 2j Æ J

D
] V (R, u2 , u3 , q1, q3),

(21)

where is the kinetic energy of (Jtot)2 is the total angular momentum of the complex,TA CH4 ,
J \R(a, b)T J tot, and j is the (space-Ðxed) angular momentum operator of methane. The operator
j2 is this operator squared. The angles a and b are the usual spherical polar angles of R with
respect to an arbitrary space-Ðxed frame. The term the harmonic oscillator Hamilto-HA(q1, q3),nian of methane, is taken into account e†ectively by the shifts of the potentials of the andm3 m1excited states. Finally k is the reduced mass of the dimer. Note that (Jtot)2 and its projection onJ

z
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the space-Ðxed z-axis are constants of the motion with conserved quantum numbers J and M,
respectively. The only terms that break K, which is the projection of J and j on R, are the cross
terms in j Æ J. For low J this part of the Coriolis interaction is very small and we omit it from our
calculations. Hence we take K to be conserved. (Note that the K quantum number is often desig-
nated by X in scattering papers).

In the ground and vibrational states of we simply have the spherical top Hamiltonianm1 CH4for the free methane, namely In the vibrationally excited mode there is Ðrst-orderTA \ B
v

j2. m3Coriolis coupling between the vibrational angular momentum l vib and the body-Ðxed angular
momentum jBF of methane.19 That is, when the molecule is in the mode, the kinetic energym3 TAtakes the form

TA \ B3 j2 [ 2f3 B3 l vib Æ jBF. (22)

The functions, are eigenfunctions of the operator (lvib)2 with eigenvalue l(l ] 1) withm3 o m3 , m
l
T,

l\ 1 and of with eigenvalues 0 and 1, respectively. These eigenfunctions behave inl
z
vib m

l
\ [1,

the usual manner under the step-up and step-down operators Although the Coriolis param-l
B
vib.

eter, can be obtained from a normal mode analysis, in this work we used an experimentalf3 ,
value, as is also the case for the monomer rotational constants The rotational constants of theB

v
.

monomer were cm~1 for the ground state,27 cm~1 for theB0 \ 5.241 035 6 B1 \ 5.197 16 m1state,28 and cm~1 for the state.24 The Coriolis parameter24 was Ðxed atB3 \ 5.199 70 m3 f30.055 33 and the following masses29 were used, 40Ar: 39.9627 u, 1H: 1.007 825 u and 12C: 12 u.
In our scattering and bound state calculations we used the following angular and vibrational

body-Ðxed basis :

o v, j, k, KT \
S(2j] 1)(2J ] 1)

32p3
D

Kk
(j) (u)*D

MK
(J) (a, b, 0)* o vT, (23)

where we suppress J and M in the short-hand notation on the left-hand side, since these quantum
numbers are constant throughout the calculations. For the mode the size of the basis is threem3times larger than for the other two vibrations because of the presence of the functions o vT \ o m3 ,

with 0 and 1.m
l
T m

l
\ [1,

We have also computed line widths 2C directly by the golden rule formula, eqn. (22) in ref. 25,

C
m3, w, KGR \ p ;

v, j, k
o SU

m3, w, K oW
m3, v oU

v, j, k, K(E)T o2. (24)

The quasi-bound state is the speciÐc Van der Waals state w of the state that isoU
m3, w, KT m3excited by the photon. This state is here calculated as a bound eigenstate of the Hamiltonian in

eqn. (21) with the monomer kinetic energy operator of eqn. (22). The function is aoU
v, j, k, K(E)T

scattering state of energy E, the energy of the state, that asymptotically correlates withoU
m3, w, KTthe channel o v, j, k, KT. The quantum number v indicates the ground and states. The scatteringm1states are obtained by coupled channel calculations with photodissociation boundary conditions

in the ground and state potentials. The operator coupling the scattering states v and them1 W
m3, vstates is that part of the intermolecular potential that is linear in for v\ 0 and bilinear inm3 q3afor cf. eqn. (8) to (12).q3a q1 v\ m1,In eqn. (8) to (19) for the coupling terms in the potential we used the three Cartesian com-

ponents of the normal coordinate In the channel basis of eqn. (23) we introduced a sphericalq3 .
basis for the mode, which is more convenient for use with the operatoro m3 , m

l
T m3 2l vib Æ jBF \

in eqn. (22). This spherical basis corresponds to the coordinates2l
z
vib j

z
BF] lv̀ib jB̀F] l~vib j~BF

(q3, 1, q3, 0 , q3,~1)\ (q3x, q3y, q3z)
1[1/J2

[i/J2

0

0

0

1

1/J2

[i/J2

0

2
. (25)

From the chain rule we Ðnd for the derivatives

1[1/J2

]i/J2

0

0

0

1

1/J2

]i/J2

0

2
. (26)

A d

dq3, 1
,

d

dq3, 0
,

d

dq3,~1

B
\
A d

dq3x
,

d

dq3y
,

d

dq3z

B
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It is easily veriÐed [cf. eqn. (12)] that

;
m

A dA
dq3m

B
0
q3m \ ;

a

A dA
dq3a

B
0
q3a , (27)

where the spherical components of are indicated by m and the Cartesian by a. Equivalentq3relations exist between and The terms in appearing in the(d2A/dq3a dq1)0 (d2A/dq3m dq1)0 . q3mpotential couple the ground vibrational state with the excited state. Similarly, the terms inm3 q1couple the ground state with the vibrational states, while the excited and states are mixedm1 m1 m3by the bilinear terms in q3mq1.With regard to the dipole moment surface appearing in the cross section we point out that all
intermolecular e†ects are neglected, so that the surface factorizes into a vibrational part and a part
depending on the intermolecular coordinates :

k
m_SF \ ;

m, m{
k
m
(q3)Dm{m(1) (u)*D

m_m{(1) (a, b, 0)*. (28)

The vibrational part appears in a matrix element coupling the v\ 0 state with the state.k
m
(q3) m3We simply take the intramolecular transition moment of as the unit of dipolev\ 0 ] m3 CH4moment, as was done earlier.11 This is possible because we are only interested in relative line

strengths. The vibrational part of the dipole is obviously of symmetry, otherwise the transitionF2moment would be zero. The total dipole surface is of symmetry under because it isA2 PI(Td)invariant under permutations of identical nuclei and changes sign under space inversion E*. Since
is the only irrep giving when multiplied with the intermolecular part must be ofF1 A2 F2 , F1symmetry. For the states of the dimer we have a similar symmetry rule. Since the ground vibra-

tional state, as well as the state, are of symmetry, the corresponding symmetry of the totalm1 A1dimer state is simply the symmetry !vdw of its intermolecular part. However, for the state wem3must consider the reduction to Ðnd the symmetry of the total state. For example, forF2 ? !vdw
we obtain!vdw\ F2 F2 ? F2\ A1= E= F1 = F2 .

In the scattering calculations we compute matrix elements of the intermolecular potential
between the channel functions of eqn. (23). The angular dependence of the potential is given in
eqn. (8) to (10) by the expansion of both the linear and the exponential parameters in terms of
tetrahedral harmonics U), which are linear combinations of spherical harmonics U).T c(l)(H, Y

m
l (H,

Matrix elements of spherical harmonics are easily computed by application of the WignerÈEckart
theorem, but not if they appear in the exponent. To tackle this problem we expanded the total
intermolecular potential, including its exponential parts, in spherical harmonics U). Obvi-Y kj(H,
ously is larger than We must then compute the following angular matrix ele-jmax\ 12 lmax\ 7.
ments :

S j@, k@, K o Y kj o j, k, KT, (29)

which are proportional to products of two three-j symbols. The dependence of the intermolecular
potential on the symmetrized CÈH stretch coordinates and is described by the Taylor expan-q3 q1sion in eqn. (12). The matrix elements in these coordinates are simply

Sm3 , m
l
o q3m o v\ 0T \ d

ml , m h1, 0(m3)

Sm1 o q1 o v\ 0T \ h1, 0(m1)

Sm3 , m
l
o q3m q1 o m1T \ d

ml , m h1, 0(m3) h1, 0(m1) (30)

The matrix elements appearing here are the usual harmonic oscillator expressions.30h1, 0(v)
To end this section we mention some computational details. The maximum value of j in the

angular channel basis was 9 in most cases. A substantially larger value of was taken in thejmaxcalculations referring to the direct dissociation of the excited levels to ground state andm3 CH4Ar, because of the large energy gap of 3019.5 cm~1 involved in this process which leaves ground
state rotational channels open up to j\ 23 inclusive. We then used for ground statejmax \ 26

Bound states were calculated with the same Morse oscillator radial basis (0 O n O 10) andCH4 .
the same parameters as in ref. 11, with a 20-point GaussÈLaguerre quadrature for the radial
integrals. Note that the energies of the present (quasi-)bound levels di†er slightly from those in
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ref. 11, because the Ðt of the SAPT potential surface described in Section 2 is more accurate than
the Ðt of ref. 11. Dissociating states were propagated with the De Vogelaere algorithm31,32 from
R\ 4.5 to 30 with step size 0.008 The bound wavefunctions involved in the photo-a0 a0 .
dissociation and the coupling terms in the potential were Ðrst computed with intervals varying
from 0.05 for to 0.5 for RO 15 to 1.0 for larger R, and then inter-a0 4.5OR/a0 O 10, a0 a0 , a0polated during the propagation. Resonances in the photodissociation cross sections were traced
by performing coupled channel calculations for a range of energies with steps of 0.01 cm~1
and then characterized by zooming in on them, to a degree that depends on the width of the
resonance.

4 Results
Before presenting the calculated results, let us brieÑy summarize the experimental Ðndings. The
high-resolution infrared spectrum of in the region of the mode, measured by MillerCH4ÈAr m3and Ðrst presented at the 1994 Faraday Discussion on Van der Waals molecules,9 is shown in Fig.
3. In ref. 11 it was found by means of an ab initio calculation of this spectrum that the seven bands
(I to VII) in the experimental spectrum correspond to the transitions illustrated in Fig. 4. In Table
1 of ref. 12 it is shown that the widths of the lines in the di†erent bands vary over an order of
magnitude, despite the fact that the energies (B3020 cm~1) of the transitions that correspond to
these bands only vary over about 40 cm~1.

From golden rule calculations for direct dissociation of the excited complex into ground statem3and Ar we found line widths 2CGR that range from about 10~7 to 10~9 cm~1, much smallerCH4than the observed values. Hence, we must conclude that, because of the large energy gap involved
in this process, the ground state channel e†ectively does not contribute to the vibrationalm3predissociation of the complex. We therefore omitted this channel altogether, and con-CH4ÈAr
sidered only decay into the channel in which the fragment remains excited in the mode.CH4 m1The second order terms in the potential that couple the and excited states are smaller by anm3 m1order of magnitude than the direct (Ðrst order) coupling of with the ground state, cf. Fig. 2 withm3Fig. 1, but the small kinetic energy release makes the channel very e†ective in vibrationalm1predissociation. This is clearly demonstrated by the results in Table 1, which contains the widths
of the resonances in the photodissociation cross section corresponding to excitation of di†erent m3levels. These resonances, some of which are shown in Fig. 5, were found in calculations of the

Table 1 Transitions, see Fig. 4, corresponding to lines in the lowest three bands in the
spectrum of Fig. 3. Energies of the ground state and excited levels (in cm~1) are relativem3to Ar and ground state or excited. In parentheses with the excited level is theCH4 , m3symmetry of the Van der Waals state. The line widths 2C are obtained from Ðts of p

fHi
(E)

to a Lorentzian line shape function. The two values in parentheses result from calcu-
lations in which the intermolecular potential, including the coupling terms, is scaled by a
factor of 0.95 and 1.05, respectively. The latter value is missing from the Ðrst row because
the scaling by 1.05 closes the corresponding channel for dissociation

Ground m3 excited Transition reson. width, exper. line
Band state level level freq./cm~1 2C/cm~1 width/cm~1

J, K \ 1, 0 ] 0, 0
Ia F1 F2(A1) 3010.17 0.004 0.04?

[82.99 [92.31 (0.006, È)
II F1 F2(F2) 3019.61 0.004 0.001 to 0.006

[82.99 [82.88 (0.011, 0.006)
IIIa A2 A1(F2) 3027.36 0.014 [0.01

[92.10 [84.23 (0.080, 0.004)

J, K \ 0, 0 ] 1, 1
II F2 F1(F2) 3019.72 0.0005 0.001 to 0.006

[83.18 [82.95
II F2 F1(F2) 3020.77 0.003 0.001 to 0.006

[83.18 [81.89
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Fig. 3 (a) Broad scan of experimental infrared spectrum of (b) Ab initio calculated spectrum atCH4ÈAr.
T \ 1 K from ref. 11. The symmetry species is indicated ; initial and Ðnal states are of the same symmetry.
Between parentheses is the symmetry of the Van der Waals component of the Ðnal state. The symbols p( j), q( j)
and r( j) refer to transitions from an initial state of certain j, the angular momentum of the methane monomer.
The labeling I to VII of the bands corresponds to the transitions indicated in Fig. 4.

cross sections for the excitation of di†erent levels from various ground state Van der Waalsm3levels, followed by decay into the rotational levels of excited fragments that are energeti-m1 CH4cally accessible. Since these line widths range from about 0.001 to more than 0.01 cm~1, in good
agreement with the observed values, we conclude that the fragmentation into Ar and excitedm1is indeed the dominant dissociation channel.CH4Other possible channels involving intermediate states with excited into the lower lyingCH4 m2and bending modes, overtones, or combinations, were not explicitly considered in this work.m4Due to the relatively large energy releases and the even more indirect couplings required for
dissociation through “doorways Ï involving these modes, we believe that they are much less e†ec-
tive than the mode. An experimental result that supports this conclusion is that the lines in them1excitation spectrum of the complex33 do not show any life time broadening. Them4 CH4ÈAr m4
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Fig. 4 Transitions between ground and excited state levels of leading to the bands I to VII shownCH4ÈAr,
in Fig. 3. For clarity we depicted only the ground state levels with J \ 1 and the excited state levels with
J \ 2. On the scale of the excited state energies we marked the thresholds for photodissociation of the A, F
and E species into argon and excited methane.m1

vibration at 1310.76 cm~1 is the lowest frequency mode of and there are no levels availableCH4that would allow the complex to dissociate with such a small kinetic energy release as the m1“doorwayÏ does for the excitations.m3Our calculations of the photodissociation cross section are presently limited to thep
fHi

(E) m3excited levels below 2940 cm~1 relative to Ar and ground state i.e., to the bands I, II andCH4 ,
IIIa below 3030 cm~1 in the spectrum of Fig. 3. Interesting resonances occur already in this
region, in particular those illustrated in Fig. 5, which we will now discuss in more detail. The
energy dependence of all of the resonant cross sections could be precisely Ðt by a Lorentzian line
shape function, which allowed us to extract accurate line widths (excited state life times). All of the
excited levels in the resonant transitions shown in Fig. 5 originate from a speciÐc Van der Waals
level of the complex with symmetry for J \ 0 for K \ 0 and odd J, and both and forF2 (F1 F1 F2
oK o[ 0). In combination with the threefold degenerate mode of symmetry this Van derm3 F2Waals level gives rise to four levels : one of one of one of and one of E symmetry (forA1, F1, F2 ,
J \ 0). The splitting between these levels is caused by the intermolecular potential and by the
Ðrst-order Coriolis coupling between the vibrational angular momentum l of the mode and them3hindered rotation j of the monomer in the complex, see eqn. (22). The typical splitting patternCH4of these levels, indicated by the dashed bars in Fig. 5, was already observed and explained in

154 Faraday Discuss., 2001, 118, 143È158
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Fig. 5 Resonances in the cross sections (in atomic units) for excitation to di†erent quasi-bound levels in the
excited state of The dashed bars indicate the corresponding quasi-bound levels calculated bym3 CH4ÈAr.

omission of the open channels. (a) J,K \ 1,0] 0,0 transitions to quasi-bound levels of and symmetry.m1 A1 F2(b) J,K \ 0,0] 1,1 transitions to quasi-bound levels of and symmetry.F1 F2

ref. 11. It is based on the fact that for the A and F species the internal rotation is only slightly
hindered so that j is still a nearly good quantum number. The Van der Waals level relevantF2here belongs to jB 1 and, in combination with l\ 1, this gives rise to the approximate quantum
number r belonging to the angular momentum operator r \ jBF[ l vib. The level correspondsA1to r B 0, the level to r B 1 and the and E levels to r B 2. The r \ 1È0 splitting isF1 F2 2f3B3 B

cm~1 and the r \ 2È1 splitting is cm~1. This splitting pattern was clearly recog-0.5 4f3B3 B 1.0
nized in the quasi-bound levels computed in ref. 11, where it was further observed that the split-
ting between the and E levels caused by the anisotropy of the intermolecular potential is muchF2smaller.

The same splitting pattern can be recognized for the resonances displayed in Fig. 5, but not all
symmetry components appear. As mentioned above, we considered the excited levels belowm32940 cm~1. Only excited channels with j\ 0 and j \ 1 are open at this energy, cf. Fig. 4 ; theym1correspond to symmetries and respectively (for J \ 0). Hence, for J \ K \ 0 the excitedA1 F2 , m3levels of and E symmetry cannot couple to the continuum and do not yield resonances inF1 m1our calculations. Further restrictions are due to the selection rules : E % E,A1 % A2 , F1% F2 ,
dictated by the symmetry of the transition dipole operator, and the symmetry of the groundA2state levels from which the transitions originate. The two resonances in the J, K \ 1, 0] 0, 0 tran-
sitions in Fig. 5(a) correspond to the quasi-bound levels of and symmetry, separated byA1 F2about 1.5 cm~1. The resonance is accessed from a J \ 1 ground level of symmetry, whileA1 A2the resonance is excited from a J \ 1 ground state level of symmetry. The Ðrst transitionF2 F1corresponds to a line in band IIIa of the spectrum, the second to a line in band II. In the J,
K \ 0, 0 ] 1, 1 transitions in Fig. 5(b) one observes also the (J \ 0) resonance of symmetry,F1which is excited together with the resonance. The two peaks are indeed separated by about 1.0F2cm~1. For oK o\ 1 both these resonances have obtained and components ; the com-F1 F2 F1ponents are those that are actually excited from a ground state (J \ K \ 0) level of symmetry.F2
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Both transitions correspond to lines in band II of the spectrum. The resonance is absent fromA1the calculated spectrum in Fig. 5(b) because there are no continuum states of A symmetry in the
excited channel that can couple with the level of symmetry to broaden this level into am1 m3 A1resonance. The channel of symmetry with j\ 0 that was open for K \ 0 does not occur form1 A1K \ 1 because of the condition jP oK o.
The variation in their widths, see Table 1, is what makes these resonances so interesting. The

lines in band IIIa of the experimental spectrum are very broad ([0.01 cm~1), so that the individ-
ual lines overlap and can no longer be identiÐed. The lines in band II are much narrower. A more
detailed analysis34 of the various lines in this band revealed that their widths vary between 0.001
and 0.006 cm~1. This substantial di†erence in line width is remarkable since the levels excitedm3in bands II and IIIa correspond to the same ( jB 1) Van der Waals level of F symmetry, cf. Fig. 4.
The resonances in our calculated photodissociation cross sections nicely reÑect the measured
variations : the band IIIa transition to a resonance of A symmetry is indeed broader than 0.01
cm~1, while the transitions to resonances of F symmetry (band II) have widths between 0.0005
and 0.004 cm~1.

From the results in Table 1 it seems that the widths of the lines in band I agree less well with
experiment, but it should be noted that this band consists of two subbands, one with very narrow
lines and one with broad lines, and that the measured lines in this band could not be individually
assigned yet.

An interesting observation is that the resonance widths are extremely sensitive to the potential
surface. This was investigated by a global scaling of the potential by factors of 0.95 and 1.05 which
gave markedly di†erent resonance widths, see Table 1. Not shown in the table is that, of course,
the positions of the resonances shift as well. One of the origins of the width changes is the change
in the coupling matrix elements between the channels and the open channels that is am3 m1consequence of scaling the potential, but we found an even more important reason for the sensi-
tivity of the resonance widths. The small kinetic energy release associated with dissociation into
the channel implies that the quasi-bound levels couple with the low lying part of them1 m3 m1continuum, up to about 60 cm~1. Upon investigation of this continuum we found that for such
low energies there is a marked resonance structure, probably due to rotational predissociation.
The amount of broadening of a quasi-bound level depends strongly on how close it is to suchm3resonances in the continuum. The same e†ect was found35 in the vibrational predissociation ofm1the triatomic Van der Waals complex, when the *v\ [1 channel was open with littleNeÈBr2available energy. We conÐrmed this conclusion by scaling the potential of the state only, whilem3leaving the potential of the state and the coupling terms una†ected.m1Also the result that the resonance widths of states of di†erent A, F and E symmetry are som3di†erent is related to the fact that the resonance structure in the continuum depends stronglym1on the symmetry. The channels of di†erent symmetries open up at di†erent thresholds ; we sawm1this already for the j\ 0 and j\ 1 channels which correspond to symmetries and respec-A1 F2 ,
tively (for J \ 0). A further investigation into the relation between the resonances in the contin-m1uum and the widths of the excited levels is in progress. Also the extension of our calculations tom3higher levels (bands IV to VII in the spectrum) will be performed shortly. This extension willm3also involve the levels of E symmetry ; we expect that it will provide further interesting material.

Our photodissociation calculations also provide the distribution of the excited fragmentm1 CH4over rotational states. For the lower excited levels that we calculated up to now this distribu-m3tion is very simple. The only channels open are j\ 0 and j \ 1. Excitation to a K \ 0 level ofm1or symmetry, for even and odd J, respectively, yields the pure j \ 0 product. Excitation to aA1 A2level of or symmetry, for even and odd J, yields pure j \ 1. For oK o\ 1 the channel withF2 F1 m1j\ 0 is absent and the j\ 1 channel has both and components. For oK o[ 1 no disso-F2 F1ciation occurs upon excitation of these lower excited levels. The inclusion of Coriolis couplingm3which mixes the states with di†erent K will make these rules somewhat less strict.

5 Conclusion
This paper describes a calculation, completely ab initio, of the energy dependent cross section for
vibrational predissociation of through excitation of the asymmetric stretch mode ofCH4ÈAr m3It is based on an intermolecular potential surface that depends explicitly on the andCH4 . m3 m1
156 Faraday Discuss., 2001, 118, 143È158
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normal coordinates of the monomer, obtained from electronic structure calculations byCH4SAPT. Particular attention is given to the widths of the resonances in this cross section which
correspond to various quasi-bound Van der Waals levels excited in combination with the m3mode. It is found that dissociation into fragments excited in the symmetric stretch modeCH4 m1strongly dominates over direct dissociation into ground state and is responsible for theCH4 ,
strong line broadening observed experimentally. The efficiency of this V] V@ process is caused by
a very low kinetic energy release. Good agreement with the measured high-resolution spectrum is
obtained, both for the magnitude of the line widths and for their variation over di†erent quasi-
bound levels.

Furthermore, it is found that the widths of the resonances in the photodissociation cross section
depend extremely sensitively on the potential surface. This strong dependence is related to the
occurrence of rotational predissociation resonances in the low-lying continuum of the state inm1the same energy range as the quasi-bound levels. Also the large di†erences in the resonancem3widths for levels of A, F and E symmetry are related to the opening up of dissociationm3 m1channels of di†erent symmetry and the resonance structure in the lower range of the contin-m1uum.
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