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We calculated the cross sections for vibrational predissociation of methane-Ar induced by
excitation of the methane v; mode with the aid of an ab initio CH,—Ar potential
depending explicitly on the v; and v, normal coordinates of the CH, monomer. We found
that dissociation into CH,, fragments excited in the v, mode, a V — V' process with very
low kinetic energy release, strongly dominates over direct dissociation into Ar and ground
state CH,, and is responsible for the line broadening observed experimentally. The
(observed and calculated) strong variation of the line widths for the Van der Waals levels
excited in combination with the v; mode (giving states of A, F and E symmetry) is related
to the opening up of appropriate v, dissociation channels and the occurrence of rotational
resonances in the v, continuum in the energy range of the quasi-bound v, levels.

1 Introduction

Important dynamical phenomena that occur during molecular collisions in gases or liquids, such
as vibrational and rotational energy transfer and relaxation, can be investigated in great detail by
studying the photodissociation of a Van der Waals complex. This ‘half-collision’ is initiated by
photo-excitation of one of the constituent molecules in the complex to a well-defined vibrational
state, possibly in combination with the excitation of specific intermolecular (librational or
translational) modes of the complex. Then the redistribution of the excitation energy over the
intra- and intermolecular degrees of freedom can be monitored. The various possible decay pro-
cesses can be followed either by time-resolved spectroscopic studies, or by determination of life-
times from the line widths in the excitation spectrum. The recoil angles, velocities, and state
distributions of the fragments can be obtained by further spectroscopic probing. This type of study
is especially interesting for complexes containing polyatomic molecules. The vibrational predisso-
ciation of such a complex can occur not only by a simple V— R, T (vibration to rotation and
translation) transfer but also by partial transfer of the initial vibrational energy to other vibra-
tional modes of the polyatomic (V — V’, R, T transfer).
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An essential element of theoretical studies aimed at understanding the observed phenomena is
an intermolecular potential surface with an explicitly given dependence on the intramolecular
(vibrational) coordinates of the constituents. Mostly,' such a surface is modeled by using a
simple atom—atom potential. Apart from the question of its (in)accuracy, in general, it is important
in this context that the assumption that the atom—atom model more or less correctly describes the
intramolecular coordinate dependence of an intermolecular potential has never been suitably
tested. Bissonnette and Clary* avoid this assumption in their theoretical study of H,O-Ar which
accompanies the experimental work of Nesbitt and Lascola.’*® They modeled the dependence of
the H,O-Ar potential on the internal coordinates of H,O by considering only the dipole and
quadrupole induction terms. Since it is possible nowadays to obtain quite accurate intermolecular
potentials from ab initio electronic structure computations,’ it is worthwhile to verify whether
such calculations can also yield accurate results for the coupling in the potential between the inter-
and intramolecular degrees of freedom.

Both of the above problems, regarding the predissociation dynamics and the dependence of the
intermolecular potential on the molecular vibration coordinates, are addressed in this paper. The
prototype system that we have chosen to investigate is CH,~Ar. The measured infrared spectrum
of methane—Ar was first presented and discussed at the previous Faraday Discussion on Van der
Waals molecules, without an assignment or interpretation, however.’'°® Later it was
demonstrated!!:!? that this spectrum can be understood and assigned by means of ab initio calcu-
lations. The calculation of the spectrum was based on a potential obtained from ab initio
symmetry-adapted perturbation theory (SAPT).!® The same potential produced accurate elastic
(total differential) and rotationally inelastic (state-to-state integral) cross sections for methane—Ar
scattering.!3:1# The different bands observed in the infrared spectrum correspond to excitation of
the v; mode of methane, in combination with several intermolecular vibrations. The spectrum is
quite complex since the occurrence of different nuclear spin species, A, F and E, causes several
initial states to be populated even at the low temperature (& 1 K) of the experiment. The degree of
hindrance of the CH, rotations in the complex varies considerably: nearly free internal rotor
states occur for the A and F species, whereas relatively large splittings of the free rotor levels are
found for the E species with nonzero values of the rotational quantum number K. The CH,—Ar
complex is a very interesting system with regard to the problems mentioned in the first paragraph.
It was observed in the IR spectrum reported by Miller et al.'**'? that the bands which correspond
to the excitation of different nuclear spin species and different intermolecular levels, although
different in energy by only a few cm ™, show vibrational predissociation line widths that vary by
an order of magnitude.

The present paper describes a theoretical study of the photodissociation of methane-Ar, with
the aim of understanding the large variation of the observed lifetimes and predicting the corre-
sponding fragment state distributions (yet to be measured). We consider the fragmentation of the
complex into two different channels, after excitation of the methane v; mode. The first channel
leads directly to Ar and ground state CH,. In the second channel the CH, fragment remains
excited in the v, mode. Since the v, vibration is only 103 cm ™! higher in energy than the v, mode
and the dissociation energy D, of the complex!! is about 90 cm~! this channel is barely open.
Therefore, the complex can dissociate into this channel with very small kinetic energy release
which, according to the energy gap law,'>'1° is likely to be a fast process. In Section 2 we present
the results of ab initio SAPT calculations of a CH,—Ar potential with explicit dependence on the
v; (asymmetric C-H stretch) and v, (symmetric C-H stretch) normal coordinates of CH,. The
dependence of the intermolecular potential on both these normal modes was fit to an analytic
expression. For the threefold degenerate v; mode we did not need to compute all the components,
but we used the transformation properties of the permutation-inversion symmetry group PI(T}) of
the complex to obtain the complete v, coupling term in the potential. In Section 3 it is outlined
how we determined resonances in the energy-dependent cross section for vibrational predissocia-
tion into both channels. Complications, again, are the threefold degeneracy of the v; mode and
the first order Coriolis coupling of the vibrational angular momentum generated by this mode
with the (hindered) internal rotation of CH, in the complex. Inclusion of this rather small coup-
ling term is necessary to obtain the correct symmetry selection rules for the transitions. The direct
calculation of the spectral line widths by a Fermi golden rule formula is also described in Section
3. In Section 4 we discuss the results.
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2 Potential energy surface

We computed the potential as a function of the argon spherical polar coordinates R, ©, @ and the
CH, vibrational stretching modes by the same SAPT (symmetry adapted perturbation theory)
method as in previous work.'® The same atomic orbital basis set was also used. In ref. 13 methane
was considered in its vibrational ground state only, whereas in this work we will present the
dependence of the argon-methane potential on the CH, stretch coordinates as well. The vibra-
tional symmetry coordinates are linear combinations of the stretches!”

or, = aj/a -+ (d; — d), 1

where d; and d are displacement coordinates of hydrogen i and the carbon atom, respectively.
The vector a; is along the equilibrium C-H bond and its length a is the equilibrium bond length.
The point group of methane is T; which has irreps (irreducible representations): A; ,, E and
F, ,. The PI group PI(T}) of CH, and CH,~Ar, which consists of permutation-inversions (PIs), is
isomorphic to this point group. The symmetric (A,) v, stretch coordinate is designated by g, and
the coordinates of the three-fold degenerate v; mode spanning the irrep F, are g5, g3, 45,- The
symmetry adapted linear combinations are:

q, = (Ory + or, + or; + 6r,)/2, 2
and
qsx = (—0ry + Or, + Or; — 6r,)/2,
q3, = (—0ry + Ory — dr3 + d1,)/2,
qs, = (Or; + Or, — dr; — dr,)/2. 3)

These modes correspond to methane in a cube with proton 1 on the (—1, —1, 1) corner, proton 2
on the (1, 1, 1) corner, proton 3 on the (1, —1, —1) corner, and proton 4 on the (—1, 1, —1)
corner. The three bending v, coordinates of methane span the same T, irrep F, as the v, stretch
coordinates and the two sets of coordinates mix in Wilson’s harmonic GF method.!® However, in
this work we make the simplifying assumption that the v; coordinates are pure stretch modes and
that both v, and v, are harmonic.

The displacement vector associated with the translational Eckart conditions has symmetry
F,,'° which implies that we must not only change the C-H bond lengths in the v, deformation, as
we do in the v; deformation, but we must also move the carbon position. Since the vector associ-
ated with the rotational Eckart conditions has symmetry F,, both the v, and v; deformations
automatically satisfy these conditions.

The action of PIs on the symmetry coordinates is simply

P(qu’ q3ya q3z) = (q3x> q3ya qSZ)'%(P)’ Pe PI(T;i)a (4)

where %(P) is a matrix in the orthogonal irrep F, .
To consider the action of the PIs on the Euler angles we define a body-fixed frame for the
equilibrium methane, which is the equivalent of eqn. (3),

g, =(—OH, + OH, + OH, — OH,)/2
g, =(—OH, + OH, — OH, + OH,)/2
g, = (OH, + OH, — OH; — OH,)/2 )

This frame is in terms of vectors pointing from the center of mass O of methane to hydrogen
atoms H;. The Euler angles o of methane are defined by

(gx’ gya gz) = (fx’ f;n fz)'@(w) = (.f;ca f;z’ fz)‘%z(wl)%y(wZ)‘%z(w3) (6)
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where (f, f,, f.) is a two-angle embedded frame obtained by rotating an arbitrary space-fixed
frame so that f, lies along R, the vector pointing from the center of mass of CH, to Ar. The Euler
rotation matrices are in the active convention, see, e.g. ref. 20. It is not difficult to show that the
Eckart frame (according to the definition of ref. 20) of methane deformed along g5, is the same as
the frame in eqn. (5). So we can use this frame to study the effect of the PIs on the Euler angles.
The PIs act on these angles according to

P(gy, 9y5 9 = 9x> 9ys 9T (P) = (fo [y LIRS (P) = (£, £, LIR(). ™

The permutations act on the hydrogen labels and E* inverts the direction of the g, so that the
computation of the matrices &(P) is straightforward. In fact they form the F, irrep, which consists
of proper (unit determinant) rotation matrices only and accordingly w’ is well-defined. Note that
E* is equivalent'! to a rotation of the two-angle embedded frame by 2,(m)2 ().

In order to obtain the dependence of the potential on the four C—H stretch coordinates it is
sufficient to consider deformations of methane along q; and g5, only. The dependence on the
other two coordinates can be obtained by appropriate permutation of the hydrogen atoms. Since
the g5, deformation lowers the point group symmetry of CH, to C,,, six times more points on the
potential energy surface (PES) must be computed than in the case of undeformed methane. At the
same time we must describe the PES in functions containing A; symmetry of C,,—and not A; of
T;, as in earlier work.?!-** We fitted the ab initio SAPT points in a somewhat different manner
than before. All short range terms, including penetration induction, are taken together and the
sum is written as

Imax="7

3 Imax=7
I/short(Rs @a ¢> qla qS) = [ z Z,OAi,h)?,nnT(yl)(@> ¢)Rn:|CXp|:— Z (xih?"T(yl)(@’ ¢)R:|’ (8)

1y Ly

where ¢3 = (s, 43, q3,)- The functions T{(®, P) are tetrahedral harmonics belonging to irreps
of T;. The index y is compound, it labels the T irrep, the partner in this irrep and the multiplicity.
The T{(©, ®) are linear combinations of spherical harmonics of certain /

(O, 9) =} Z}'Y,(6, D), ©

m

where the algebraic coefficients Z!™ may be found in ref. 21. Only the irreps A,, E and F, of T,
appear here, since only those irreps contain A; of C,,. The exponential parameters ai“;“ were
obtained from a fit of the CH,—Ar potential with methane in its vibrational ground state and were
kept fixed. That is, the tetrahedral harmonics appearing in the exponent are A; under T;. The
coefficients A;"", are obtained from least squares fits with methane deformed along g5, and g;.
The long range interaction only consists of dispersion (the long range induction being negligibly

small), which we represent by the analytic form

Imax=7 3
Vaiso(R, @, @, g5, 43) = [ Y X ARNTY, <15,)R"]6Xp[ —a%*PR]
Ly n=0
Imax=7 10 . .
— z z JiR; ad‘SP)Cﬂ‘;f’nT(y’)(@, d)R™" (10
L,y n=6

The Van der Waals coefficients C?fﬁ,{’n were computed separately for deformed methane by the
program POLCOR,2?? at the same correlation level as the SAPT dispersion. The exponential fit
parameter o is determined for the undeformed methane and kept constant. It appears also in

damp functions that have the Tang-Toennies form,??

n (bR)k
~ k!

JuR; b) =1 — exp(—bR) (11)

The parameters AfP, are obtained by a fit of the SAPT dispersion energy computed for nine

deformations of methane, in the same way as the A;*S", are obtained from a fit of the short range
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energies. The linear parameters A", 4%P and C%? in the fits were taken to be functions of the
normal coordinates. Writing generically A for these linear parameters, we make a Taylor expan-
sion around equilibrium and include only the coupling terms which we will need later, namely

04 04 024
A(q;, 43) = A(0) + (—) q + ) <—> Q3+ ) ( ) 93441- (12
0 0 a 0

0q, = \0q3, 093,09,

The derivatives in this expansion are parameters obtained from the potential on the following grid
of deformations: (Aq,, Agqs,) = (0, 0), (1, —1), (1, 0), (1, 1), (0, 1), (—1, 1), (—1, 0), (—1, —1) and (0,
—1), where Ag, has the unit of length 0.199 a,; for Aq,, this length is 0.205 a,. These lengths are
obtained from the classical turning points in the force field of ref. 24. We experimented with
different lengths of the Taylor expansion, but variation in the expansion lengths hardly affected
the numerical values of the coupling terms of interest.

Note incidentally that a number of ab initio SAPT calculations can be skipped because of the
relation obtained by the application of (1324)*:

E***Y(Ags,, R, @, §) = E**"(~Aqs,, R, m — @, /2 + D).

The effect of the deformations Aq;, and Aqs, + Agq, on the potential is illustrated in Fig. 1 and 2.
The fit of ESAPT values calculated for methane deformed along q,, and g, fixes the three param-
eters: (04/0q,)o, (04/0q5,), and (024/0q5,9q,), - In order to show how to obtain the correspond-
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Fig. 1 Effect of v; mode deformation on the CH,~Ar potential (in cm™1): ESAPT(Aq, ) — ESAPT(0) with
Ag;, = 0.205 a,. The azimuthal angle @ = 45°. Note that @ = 54.74° corresponds to a vertex position of
argon (a linear C-H---Ar configuration), ® = 125.26° to a facial position (between three C-H bonds), and
® = 0° and 180° to edge positions (Ar, C and two H atoms in one plane).
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Fig. 2 Effect of simultaneous v, and v, mode deformation on the CH,~Ar potential (in cm™!): ESAPT(Aq,,,
Aq,) — ES**T(Aq,,) — ES*PT(Aq,) + ES**"(0) with Agq,, = 0.205 a, and Aq, = 0.199 a,,. See the caption of Fig. 1
for explanations.

N

ing derivatives in the other directions, we reintroduce the labels / and y on the A’s and define the
function

Bin(qh qS) = Z Al, y(q17 q3)Z§)ms (13)
v

where A4, , is any of the three linear parameters under discussion and where we suppressed the
label n and the type designation (‘short’ etc.). In the potential expansion we now meet the func-
tions

Vl(qb q3 > @> é) = Z B:n(qla q3)Y£n(@> ¢) (14)
which are invariant under PI(T}), provided we act simultaneously on q,, q5, ® and ®.

Let us first consider the normal modes and substitute into eqn. (4) P = (134). Upon noticing
that Pq, = q, and Pq; = (43, q3., 43,) We find

- , 3B 3B ) OB
PBm(qD %) = Bm(o) +\ = ql + |\ q3y = q3z +\x q3x
0q, /o 03,/ 0 a‘hy 0 043,/ 0

< ZBl > 2Bl ZBI
)4 q+<—"‘>qzq +<—"’>qxq~ (15)
043,04,/ i a‘hya% 0 = 043,904,/ A

We now look at the action of P = (134) on the Euler angles. Since this is an unstarred operation it
acts in exactly the same way on the body-fixed axes g, as on the g5,. Implicitly we already used
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the left-hand side of the following equation and the right-hand side follows by inspection:

00 1
s34 =1 0 0]=2,m22%,r/2)
010

From eqn. (7) we find the relation between o' and w. Earlier!! it was shown that, instead of
rotating CH, inside the complex, we may rotate the position vector of the argon atom, while
keeping the orientation of methane fixed. The rotation angles w of the monomer are simply
related to the angles ® and @ by w, = @ and w, = 1 — &. It is now easy to find the effect of P on
the spherical polar angles of R, and for the functions we get the transformation:

(16)

YL (6, &) Z YL(©, B)DY, (&(134)) Z YL(©, $)DD, (0, 1/2, 1/2). 17)

Substitution of this expression and eqn. (15) into V*, use of PV! = V', and equating of terms in g5,
and Y' (O, ®) gives the expressions

1 1
(2%) -y (25 ) DO0, 712, 72),
3x/0 m’ 3z/0

(%) =y (aBl ) DY (0, /2, m/2), (18)
0 m 0

aq3y aqu
Knowing (0B, /0q5,), from the fits, these expressions are easily solved sequentially. Likewise
0*B! > < 0%B., )
- = — Dirll)m’(o, TE/Z, TE/2), (19)
(6413x 041/ Z 093.041 /0

and two other expressions with x, y, z permuted cyclically.

3 Photodissociation formalism

The cross section for excitation of a system from an initial bound state |'¥;> with discrete energy
E; to the continuum state | ¥ (E)) is given by

o AE) oc |[KPAE) p-e| P (20)

Here e is the polarization vector of the incoming photon and g is the dipole moment surface. With
the photon having energy hw, energy conservation gives E = E; + hw. In the present work we
generalize the atom-diatom formalism of Roncero et al.?® to atom—polyatom systems with differ-
ent monomer modes, part of which are degenerate. The bound state | ;> is one of the Van der
Waals states of the dimer in its vibrational ground state. Because of nuclear spin there are three
types of intermolecular vibrational ground states: A, E and F. All three are occupied in supersonic
molecular beams. Since these beams are cold (about 1 K), hardly any excited Van der Waals states
are occupied. The final state is a v; state which is coupled with the continuum states of the ground
state potential as well as of the v, potential. In the present work we assume that the v; and v,
potentials are the same as the ground state potential, but shifted upward by 3019.494 and
2916.480 cm ~ !, respectively, which are the band origins of the v, and v, levels in free CH, .2°
The nuclear Hamiltonian in the dimer embedded frame is

0

1 0 ) .
H=H,(qy,q5) + Ty + o [—h R R> — T Y +j> =2 J] + V(R, ,, 03, 45, q5),

(21)

where T, is the kinetic energy of CH,, (J')? is the total angular momentum of the complex,
J = Ao, )T J*, and j is the (space-fixed) angular momentum operator of methane. The operator
j? is this operator squared. The angles « and f are the usual spherical polar angles of R with
respect to an arbitrary space-fixed frame. The term H,(q;, ¢3), the harmonic oscillator Hamilto-
nian of methane, is taken into account effectively by the shifts of the potentials of the v; and v,

excited states. Finally p is the reduced mass of the dimer. Note that (J*")? and its projection J, on
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the space-fixed z-axis are constants of the motion with conserved quantum numbers J and M,
respectively. The only terms that break K, which is the projection of J and j on R, are the cross
terms in j+J. For low J this part of the Coriolis interaction is very small and we omit it from our
calculations. Hence we take K to be conserved. (Note that the K quantum number is often desig-
nated by Q in scattering papers).

In the ground and v, vibrational states of CH, we simply have the spherical top Hamiltonian
for the free methane, namely T, = B, j2 In the vibrationally excited v, mode there is first-order
Coriolis coupling between the vibrational angular momentum /*®® and the body-fixed angular
momentum j®F of methane.!® That is, when the molecule is in the v; mode, the kinetic energy T,
takes the form

T, = By j* — 203 B3 I'™ - j° . (22)
The v, functions, |v;, m;», are eigenfunctions of the operator (I*'®)?> with eigenvalue /(I + 1) with
I =1 and of I''* with eigenvalues m; = —1, 0 and 1, respectively. These eigenfunctions behave in

the usual manner under the step-up and step-down operators [°. Although the Coriolis param-
eter, {5, can be obtained from a normal mode analysis, in this work we used an experimental
value, as is also the case for the monomer rotational constants B,. The rotational constants of the
monomer were B, = 52410356 cm ™! for the ground state,?” B, =5.19716 cm~! for the v,
state,?® and B; = 5.19970 cm ™! for the v, state.?* The Coriolis parameter?>* {, was fixed at
0.055 33 and the following masses2® were used, *°Ar: 39.9627 u, 'H: 1.007 825 u and *2C: 12 u.

In our scattering and bound state calculations we used the following angular and vibrational

body-fixed basis:
2+ 1)2J+1) .
0.k K> = JEEIEED pgapniyie, g, 010, @

where we suppress J and M in the short-hand notation on the left-hand side, since these quantum
numbers are constant throughout the calculations. For the v; mode the size of the basis is three
times larger than for the other two vibrations because of the presence of the functions |v) = |v;,
m;y withm; = —1,0 and 1.

We have also computed line widths 2I" directly by the golden rule formula, eqn. (22) in ref. 25,

FVG:,{w,K =T Zk | <¢v3, w,K| VV\@, v | djv,j, k, K(E)> |2' (24)
v, Js

The quasi-bound state |®,, ,, k> is the specific Van der Waals state w of the v, state that is
excited by the photon. This state is here calculated as a bound eigenstate of the Hamiltonian in
eqn. (21) with the monomer kinetic energy operator of eqn. (22). The function |®, ; , (E)) is a
scattering state of energy E, the energy of the |® . , k) state, that asymptotically correlates with
the channel |v, j, k, K). The quantum number v indicates the ground and v, states. The scattering
states are obtained by coupled channel calculations with photodissociation boundary conditions
in the ground and v, state potentials. The operator W, , coupling the scattering states v and the
v, states is that part of the intermolecular potential that is linear in g5, for v = 0 and bilinear in
q3.4, for v = v, cf. eqn. (8) to (12).

In eqn. (8) to (19) for the coupling terms in the potential we used the three Cartesian com-
ponents of the normal coordinate g5. In the channel basis of eqn. (23) we introduced a spherical
basis | v;, m;» for the v; mode, which is more convenient for use with the operator 2I*®-j5F =
21yibBF 4 [vib BF 4 ]vibiBF in eqn. (22). This spherical basis corresponds to the coordinates

-11/2 0 142
(@3, 1 43,05 G5, - 1) = (@sx, day, 4| —i/1/2 O —i//2 |. (25)
0 1 0

From the chain rule we find for the derivatives
-1/2 0 14/2

0 0 0 ) < 0 0 0 )
> > =\ x s a i/\/2 0 i/./2
<6q3, 1 a‘13, 0 ac13, -1 0q3, a%y 0q3, +1/B/_ 1 +1/B/_ . (26)
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It is easily verified [cf. eqn. (12)] that

)Y (a—A>0q3m =X (a—A>0q3w 27)

m aqu a aq?uz

where the spherical components of g5 are indicated by m and the Cartesian by o. Equivalent
relations exist between (024/0q5,0q,), and (024/0qs,,0q,),. The terms in q,, appearing in the
potential couple the ground vibrational state with the v, excited state. Similarly, the terms in g,
couple the ground state with the v, vibrational states, while the excited v; and v, states are mixed
by the bilinear terms in g5,,g;-

With regard to the dipole moment surface appearing in the cross section we point out that all
intermolecular effects are neglected, so that the surface factorizes into a vibrational part and a part
depending on the intermolecular coordinates:

o = 2. Mn(@3)Dl(@)*Dii(e, B, 0)F. (28)
The vibrational part u,(q5) appears in a matrix element coupling the v = 0 state with the v, state.
We simply take the intramolecular v = 0 — v, transition moment of CH, as the unit of dipole
moment, as was done earlier.!* This is possible because we are only interested in relative line
strengths. The vibrational part of the dipole is obviously of F, symmetry, otherwise the transition
moment would be zero. The total dipole surface is of A, symmetry under PI(T;) because it is
invariant under permutations of identical nuclei and changes sign under space inversion E*. Since
F, is the only irrep giving A, when multiplied with F,, the intermolecular part must be of F,
symmetry. For the states of the dimer we have a similar symmetry rule. Since the ground vibra-
tional state, as well as the v, state, are of A, symmetry, the corresponding symmetry of the total
dimer state is simply the symmetry TV of its intermolecular part. However, for the v, state we
must consider the reduction F, ® I'"* to find the symmetry of the total state. For example, for
" =F,weobtainF,@F,=A, ®E®F, ®F,.

In the scattering calculations we compute matrix elements of the intermolecular potential
between the channel functions of eqn. (23). The angular dependence of the potential is given in
eqn. (8) to (10) by the expansion of both the linear and the exponential parameters in terms of
tetrahedral harmonics T"(©, @), which are linear combinations of spherical harmonics Y.(0, ®).
Matrix elements of spherical harmonics are easily computed by application of the Wigner—Eckart
theorem, but not if they appear in the exponent. To tackle this problem we expanded the total
intermolecular potential, including its exponential parts, in spherical harmonics Yﬁ(@, ®). Obvi-
ously A, = 12 is larger than [ ,, = 7. We must then compute the following angular matrix ele-
ments:

max

J K, KIYL) k KD, (29)

which are proportional to products of two three-j symbols. The dependence of the intermolecular
potential on the symmetrized C—H stretch coordinates g5 and ¢, is described by the Taylor expan-
sion in eqn. (12). The matrix elements in these coordinates are simply

<V3 s My | 93m | v= 0> = 5m1, mh(lv,a())
vilgilv=0)= h(lv,lg)
Ve M| Qamqa | Vi) = 5m1,mh(1v,3()) h(lv,% (30)

The matrix elements h{”, appearing here are the usual harmonic oscillator expressions.>°

To end this section we mention some computational details. The maximum value of j in the
angular channel basis was 9 in most cases. A substantially larger value of j,, was taken in the
calculations referring to the direct dissociation of the v, excited levels to ground state CH, and
Ar, because of the large energy gap of 3019.5 cm ™! involved in this process which leaves ground
state rotational channels open up to j = 23 inclusive. We then used j,,,, = 26 for ground state
CH, . Bound states were calculated with the same Morse oscillator radial basis (0 < n < 10) and
the same parameters as in ref. 11, with a 20-point Gauss-Laguerre quadrature for the radial
integrals. Note that the energies of the present (quasi-)bound levels differ slightly from those in
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ref. 11, because the fit of the SAPT potential surface described in Section 2 is more accurate than
the fit of ref. 11. Dissociating states were propagated with the De Vogelaere algorithm3!:32 from
R =45 to 30 a, with step size 0.008 a,. The bound wavefunctions involved in the photo-
dissociation and the coupling terms in the potential were first computed with intervals varying
from 0.05 a, for 4.5 < R/a, < 10, to 0.5 a, for R < 15 a,, to 1.0 a, for larger R, and then inter-
polated during the propagation. Resonances in the photodissociation cross sections were traced
by performing coupled channel calculations for a range of energies with steps of 0.01 cm™!
and then characterized by zooming in on them, to a degree that depends on the width of the
resonance.

4 Results

Before presenting the calculated results, let us briefly summarize the experimental findings. The
high-resolution infrared spectrum of CH,—Ar in the region of the v; mode, measured by Miller
and first presented at the 1994 Faraday Discussion on Van der Waals molecules,’ is shown in Fig.
3. In ref. 11 it was found by means of an ab initio calculation of this spectrum that the seven bands
(I to VII) in the experimental spectrum correspond to the transitions illustrated in Fig. 4. In Table
1 of ref. 12 it is shown that the widths of the lines in the different bands vary over an order of
magnitude, despite the fact that the energies (=3020 cm ™ !) of the transitions that correspond to
these bands only vary over about 40 cm 1.

From golden rule calculations for direct dissociation of the v, excited complex into ground state
CH, and Ar we found line widths 2I"® that range from about 10”7 to 10~° cm ™!, much smaller
than the observed values. Hence, we must conclude that, because of the large energy gap involved
in this process, the ground state channel effectively does not contribute to the v; vibrational
predissociation of the CH,—Ar complex. We therefore omitted this channel altogether, and con-
sidered only decay into the channel in which the CH, fragment remains excited in the v, mode.
The second order terms in the potential that couple the v; and v, excited states are smaller by an
order of magnitude than the direct (first order) coupling of v; with the ground state, ¢f. Fig. 2 with
Fig. 1, but the small kinetic energy release makes the v, channel very effective in vibrational
predissociation. This is clearly demonstrated by the results in Table 1, which contains the widths
of the resonances in the photodissociation cross section corresponding to excitation of different v,
levels. These resonances, some of which are shown in Fig. 5, were found in calculations of the

Table 1 Transitions, see Fig. 4, corresponding to lines in the lowest three bands in the
spectrum of Fig. 3. Energies of the ground state and v, excited levels (in cm ™ ?) are relative
to Ar and CH,, ground state or v; excited. In parentheses with the excited level is the
symmetry of the Van der Waals state. The line widths 2I" are obtained from fits of o, (E)
to a Lorentzian line shape function. The two values in parentheses result from calcu-
lations in which the intermolecular potential, including the coupling terms, is scaled by a
factor of 0.95 and 1.05, respectively. The latter value is missing from the first row because
the scaling by 1.05 closes the corresponding channel for dissociation

Ground v excited Transition reson. width, exper. line
Band  state level  level freq./cm 1 2I/cm ™1 width/cm ~!

J,K=1,0-0,0

Ia F, F,(A,) 3010.17 0.004 0.04?
—82.99 —9231 (0.006, —)

I F, F,(F,) 3019.61 0.004 0.001 to 0.006
—82.99 —82.88 (0.011, 0.006)

IMla A, A,(F,) 3027.36 0.014 >0.01
—92.10 —8423 (0.080, 0.004)
J,K=00-1,1

11 F, F,(F,) 3019.72 0.0005 0.001 to 0.006
—83.18 —8295

11 F, F,(F,) 3020.77 0.003 0.001 to 0.006
—83.18 —81.89
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Fig. 3 (a) Broad scan of experimental infrared spectrum of CH,—Ar. (b) Ab initio calculated spectrum at
T =1 K from ref. 11. The symmetry species is indicated; initial and final states are of the same symmetry.
Between parentheses is the symmetry of the Van der Waals component of the final state. The symbols p(j), q(}j)

and r(j) refer to transitions from an initial state of certain j, the angular momentum of the methane monomer.
The labeling I to VII of the bands corresponds to the transitions indicated in Fig. 4.

cross sections for the excitation of different v, levels from various ground state Van der Waals
levels, followed by decay into the rotational levels of v, excited CH, fragments that are energeti-
cally accessible. Since these line widths range from about 0.001 to more than 0.01 cm ™!, in good
agreement with the observed values, we conclude that the fragmentation into Ar and v, excited
CH, is indeed the dominant dissociation channel.

Other possible channels involving intermediate states with CH, excited into the lower lying v,
and v, bending modes, overtones, or combinations, were not explicitly considered in this work.
Due to the relatively large energy releases and the even more indirect couplings required for
dissociation through ‘doorways’ involving these modes, we believe that they are much less effec-
tive than the v, mode. An experimental result that supports this conclusion is that the lines in the
v, excitation spectrum of the CH,~Ar complex®? do not show any life time broadening. The v,
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Fig. 4 Transitions between ground and excited state levels of CH,—Ar, leading to the bands I to VII shown
in Fig. 3. For clarity we depicted only the ground state levels with J = 1 and the excited state levels with
J = 2. On the scale of the excited state energies we marked the thresholds for photodissociation of the A, F
and E species into argon and v, excited methane.

vibration at 1310.76 cm ™! is the lowest frequency mode of CH, and there are no levels available
that would allow the complex to dissociate with such a small kinetic energy release as the v,
‘doorway’ does for the v; excitations.

Our calculations of the photodissociation cross section o, (E) are presently limited to the v,
excited levels below 2940 cm ™! relative to Ar and ground state CH,, i.e., to the bands I, II and
IIIa below 3030 cm™! in the spectrum of Fig. 3. Interesting resonances occur already in this
region, in particular those illustrated in Fig. 5, which we will now discuss in more detail. The
energy dependence of all of the resonant cross sections could be precisely fit by a Lorentzian line
shape function, which allowed us to extract accurate line widths (excited state life times). All of the
excited levels in the resonant transitions shown in Fig. 5 originate from a specific Van der Waals
level of the complex with F, symmetry for J = 0 (F, for K = 0 and odd J, and both F, and F, for
| K| > 0). In combination with the threefold degenerate v; mode of F, symmetry this Van der
Waals level gives rise to four levels: one of A, one of F,, one of F,, and one of E symmetry (for
J = 0). The splitting between these levels is caused by the intermolecular potential and by the
first-order Coriolis coupling between the vibrational angular momentum [ of the v; mode and the
hindered rotation j of the CH, monomer in the complex, see eqn. (22). The typical splitting pattern
of these levels, indicated by the dashed bars in Fig. 5, was already observed and explained in
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Fig. 5 Resonances in the cross sections (in atomic units) for excitation to different quasi-bound levels in the
v, excited state of CH,—Ar. The dashed bars indicate the corresponding quasi-bound levels calculated by
omission of the open v, channels. (a) J,K = 1,0 — 0,0 transitions to quasi-bound levels of A; and F, symmetry.
(b) J,K = 0,0 — 1,1 transitions to quasi-bound levels of F; and F, symmetry.

ref. 11. It is based on the fact that for the A and F species the internal rotation is only slightly
hindered so that j is still a nearly good quantum number. The F, Van der Waals level relevant
here belongs to j ~ 1 and, in combination with [ = 1, this gives rise to the approximate quantum
number r belonging to the angular momentum operator r = jBF — [I'®® The A, level corresponds
to r ~ 0, the F, level to r ~ 1 and the F, and E levels to r ~ 2. The r = 1-0 splitting is 2{;B; ~
0.5 cm ™! and the r = 2-1 splitting is 4{;B; ~ 1.0 cm~!. This splitting pattern was clearly recog-
nized in the quasi-bound levels computed in ref. 11, where it was further observed that the split-
ting between the F, and E levels caused by the anisotropy of the intermolecular potential is much
smaller.

The same splitting pattern can be recognized for the resonances displayed in Fig. 5, but not all
symmetry components appear. As mentioned above, we considered the v, excited levels below
2940 cm . Only v, excited channels with j = 0 and j = 1 are open at this energy, cf. Fig. 4; they
correspond to symmetries A; and F,, respectively (for J = 0). Hence, for J = K = 0 the v, excited
levels of F; and E symmetry cannot couple to the v, continuum and do not yield resonances in
our calculations. Further restrictions are due to the selection rules: A; <> A,, F; - F,, E&E,
dictated by the A, symmetry of the transition dipole operator, and the symmetry of the ground
state levels from which the transitions originate. The two resonances in the J, K = 1,0 — 0, O tran-
sitions in Fig. 5(a) correspond to the quasi-bound levels of A; and F, symmetry, separated by
about 1.5 cm~!. The A, resonance is accessed from a J = 1 ground level of A, symmetry, while
the F, resonance is excited from a J = 1 ground state level of F; symmetry. The first transition
corresponds to a line in band IIla of the spectrum, the second to a line in band II. In the J,
K =0,0-1, 1 transitions in Fig. 5(b) one observes also the (J = 0) resonance of F, symmetry,
which is excited together with the F, resonance. The two peaks are indeed separated by about 1.0
cm~ !, For |K| =1 both these resonances have obtained F, and F, components; the F, com-
ponents are those that are actually excited from a ground state (J = K = 0) level of F, symmetry.
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Both transitions correspond to lines in band II of the spectrum. The A; resonance is absent from
the calculated spectrum in Fig. 5(b) because there are no continuum states of A symmetry in the
v, excited channel that can couple with the v; level of A; symmetry to broaden this level into a
resonance. The v; channel of A; symmetry with j = 0 that was open for K = 0 does not occur for
K =1 because of the conditionj > | K|.

The variation in their widths, see Table 1, is what makes these resonances so interesting. The
lines in band IIIa of the experimental spectrum are very broad (>0.01 cm 1), so that the individ-
ual lines overlap and can no longer be identified. The lines in band II are much narrower. A more
detailed analysis®** of the various lines in this band revealed that their widths vary between 0.001
and 0.006 cm~!. This substantial difference in line width is remarkable since the v, levels excited
in bands II and IIla correspond to the same (j &~ 1) Van der Waals level of F symmetry, cf. Fig. 4.
The resonances in our calculated photodissociation cross sections nicely reflect the measured
variations: the band IIla transition to a resonance of A symmetry is indeed broader than 0.01
cm ™!, while the transitions to resonances of F symmetry (band II) have widths between 0.0005
and 0.004 cm ™.

From the results in Table 1 it seems that the widths of the lines in band I agree less well with
experiment, but it should be noted that this band consists of two subbands, one with very narrow
lines and one with broad lines, and that the measured lines in this band could not be individually
assigned yet.

An interesting observation is that the resonance widths are extremely sensitive to the potential
surface. This was investigated by a global scaling of the potential by factors of 0.95 and 1.05 which
gave markedly different resonance widths, see Table 1. Not shown in the table is that, of course,
the positions of the resonances shift as well. One of the origins of the width changes is the change
in the coupling matrix elements between the v; channels and the open v, channels that is a
consequence of scaling the potential, but we found an even more important reason for the sensi-
tivity of the resonance widths. The small kinetic energy release associated with dissociation into
the v, channel implies that the quasi-bound v; levels couple with the low lying part of the v,
continuum, up to about 60 cm~!. Upon investigation of this continuum we found that for such
low energies there is a marked resonance structure, probably due to rotational predissociation.
The amount of broadening of a quasi-bound v; level depends strongly on how close it is to such
resonances in the v, continuum. The same effect was found3® in the vibrational predissociation of
the triatomic Ne-Br, Van der Waals complex, when the Av = —1 channel was open with little
available energy. We confirmed this conclusion by scaling the potential of the v; state only, while
leaving the potential of the v, state and the coupling terms unaffected.

Also the result that the resonance widths of v; states of different A, F and E symmetry are so
different is related to the fact that the resonance structure in the v; continuum depends strongly
on the symmetry. The v, channels of different symmetries open up at different thresholds; we saw
this already for the j = 0 and j = 1 channels which correspond to symmetries A; and F,, respec-
tively (for J = 0). A further investigation into the relation between the resonances in the v, contin-
uum and the widths of the v; excited levels is in progress. Also the extension of our calculations to
higher v, levels (bands IV to VII in the spectrum) will be performed shortly. This extension will
also involve the levels of E symmetry; we expect that it will provide further interesting material.

Our photodissociation calculations also provide the distribution of the v, excited CH, fragment
over rotational states. For the lower v; excited levels that we calculated up to now this distribu-
tion is very simple. The only v, channels open are j = 0 and j = 1. Excitation to a K = 0 level of
A, or A, symmetry, for even and odd J, respectively, yields the pure j = 0 product. Excitation to a
level of F, or F; symmetry, for even and odd J, yields pure j = 1. For | K| = 1 the v, channel with
j =0 is absent and the j = 1 channel has both F, and F; components. For |K| > 1 no disso-
ciation occurs upon excitation of these lower v; excited levels. The inclusion of Coriolis coupling
which mixes the states with different K will make these rules somewhat less strict.

5 Conclusion

This paper describes a calculation, completely ab initio, of the energy dependent cross section for
vibrational predissociation of CH,—Ar through excitation of the v, asymmetric stretch mode of
CH,. It is based on an intermolecular potential surface that depends explicitly on the v; and v,
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normal coordinates of the CH, monomer, obtained from electronic structure calculations by
SAPT. Particular attention is given to the widths of the resonances in this cross section which
correspond to various quasi-bound Van der Waals levels excited in combination with the v,
mode. It is found that dissociation into CH, fragments excited in the v, symmetric stretch mode
strongly dominates over direct dissociation into ground state CH,, and is responsible for the
strong line broadening observed experimentally. The efficiency of this V — V' process is caused by
a very low kinetic energy release. Good agreement with the measured high-resolution spectrum is
obtained, both for the magnitude of the line widths and for their variation over different quasi-
bound levels.

Furthermore, it is found that the widths of the resonances in the photodissociation cross section
depend extremely sensitively on the potential surface. This strong dependence is related to the
occurrence of rotational predissociation resonances in the low-lying continuum of the v, state in
the same energy range as the quasi-bound v, levels. Also the large differences in the resonance
widths for v; levels of A, F and E symmetry are related to the opening up of v, dissociation
channels of different symmetry and the resonance structure in the lower range of the v; contin-
uum.
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