Asymmetric Diels-Alder Reactions of Chiral (E)-2-Cyanocinnamates. 2. Synthesis of the Four 1-Amino-2-phenyl-1-cyclohexanecarboxylic Acids in Enantiomerically Pure Form

Carlos Cativiela*
Departamento de Quimica Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, CSIC, 50009, Zaragoza, Spain

Alberto Avenoza, Miguel París, and Jesús M. Peregrina
Departamento de Química (Area: Orgánica); Sección: Ciencias; Universidad de La Rioja, 26001, Logroño, Spain
Received July 18, 1994^{*}

Abstract

High and complementary diastereoselectivities were obtained in the asymmetric Diels-Alder reactions of chiral (E)-2-cyanocinnamates with butadiene when (S)-ethyl lactate and (R)-pantolactone were used as chiral auxiliaries in the presence of TiCl_{4}. The most selective reactions allowed the synthesis of the cycloadducts $\mathbf{2 a}$ and $\mathbf{3 b}$, whose absolute configurations were assigned by an X-ray diffraction study of diastereoisomer $\mathbf{3 b}$. The hydrolysis and subsequent hydrogenation of the stereoisomers gave the corresponding enantiomeric cyanocarboxylic acids. From these products the four 1-amino-2-phenyl-1-cyclohexanecarboxylic acids were synthesized in enantiomerically pure form following a protocol with stereocontrolled and stereodivergent transformations.

Introduction

The interest in synthesizing biologically active products containing quaternary carbon atoms has notably increased over the last decade. ${ }^{1}$ The interesting properties of α-amino acids with conformational rigidity, in particular C_{α} methyl and α, α-disubstituted series, have recently attracted the attention of numerous research groups. ${ }^{2}$ The description of new synthetic procedures and new products is a subject of recent interest, especially when compounds can be isolated in the enantiomerically pure form. In the course of our research on the asymmetric synthesis of new α-amino acids with conformational rigidity we have recently reported that unsaturated $5(4 H)$-oxazolones behave as excellent dienophiles in the synthesis of 2 -substituted-1-aminocyclohexanecarboxylic acids in a racemic form; ${ }^{3}$ although, so far, the use of different chiral catalysts has not allowed the synthesis of each stereoisomer. We have previously reported that chiral (E)-2-cyanocinnamates are excellent dienophiles in asymmetric Diels-Alder reactions, ${ }^{4}$ allowing the

[^0]synthesis of chiral products containing quaternary carbon atoms and also that (S)-ethyl lactate and (R)-pantolactone are excellent and complementary chiral auxiliaries. In this article we describe the use of this methodology to prepare the four stereoisomers of 1-amino-2-phenyl-1cyclohexanecarboxylic acid using the appropriate degradation processes.

Results and Discussion

Chiral dienophiles $\mathbf{1 a}, \mathbf{b}$ were prepared according to the previously reported procedure ${ }^{4}$ and were reacted with $1,3-$ butadiene (Scheme 1), under a variety of conditions. In the absence of a catalyst no reaction occurred and, although several catalysts were tried ($\mathrm{AlMe}_{3}, \mathrm{AlClEt}_{2}$, $\mathrm{AlCl}_{2} \mathrm{Et}, \mathrm{AlCl}_{3}, \mathrm{SnCl}_{4}, \mathrm{MgBr}_{2}, \mathrm{ZnCl}_{2}, \mathrm{BF}_{3} \cdot \mathrm{Et} 2 \mathrm{O}$, and $\mathrm{Eu}-$ $\left.(\mathrm{tfc})_{3}\right)$, reaction was only observed when TiCl_{4} was employed as the catalyst. In order to find suitable conditions for analyzing the results of the Diels-Alder reactions, the major cycloadducts $\mathbf{2 a}, \mathbf{3 b}$ were hydrolyzed with $10 \% \mathrm{KOH}$-ethanol, to give the corresponding enantiomeric carboxylic acids $\mathbf{4 a , b}$. These acids were transformed into the minor cycloadducts $\mathbf{2 b}, \mathbf{3 a}$ by esterification with the chiral alcohols (S)-ethyl lactate and (R)pantolactone in the presence of DCC and DMAP ${ }^{5}$ (Scheme 2). In this way, the results of the Diels-Alder reactions could be analyzed by HPLC ${ }^{6}$ and, in some cases, were

[^1]Scheme 1

$\mathrm{R}^{*} \mathrm{H}$

4a

4b
Table 1. Results Obtained from the Diels-Alder Cycloadditions between Dienophiles 1a,b and 1,3-Butadiene

entry	dienophile $(\mathrm{mmol} / \mathrm{mL})^{a}$	TiCl_{4} (equiv)	$T\left({ }^{\circ} \mathrm{C}\right)$	t (h)	$\underset{(\%)^{b}}{\text { convn }}$	2a/3a ${ }^{\text {c }}$	$\mathbf{2 b / 3 b}{ }^{\text {c }}$
1	1a (0.03)	0.25	0	72	4	84:16	
2	1a (0.03)	0.50	0	72	14	91:9	
3	1a (0.03)	0.75	0	72	61	90:10	
4	1a (0.03)	1.00	0	72	91	90:10 ${ }^{\text {d }}$	
5	1a (0.03)	1.50	0	72	83	86:14 ${ }^{\text {d }}$	
6	$1 \mathrm{a}(0.03)$	1.00	20	72	89	89:11	
7	1a (0.03)	1.00	-25	72	44	93:7	
8	1a (0.06)	1.00	0	72	68	89:11	
9	1a (0.09)	1.00	0	48	96	92:8 ${ }^{\text {d }}$	
10	1a (0.09)	1.00	-25	72	39	94:6	
11	1 b (0.09)	1.00	-25	48	10		3:97 ${ }^{\text {d }}$
12	1b (0.09)	1.00	0	60	95		2:98 ${ }^{\text {d }}$
13	$1 \mathrm{~b}(0.09)$	1.00	20	48	80		12:88 ${ }^{\text {d }}$

${ }^{a}$ All reactions were carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a ratio diene/ dienophile $=10.0 .{ }^{b}$ Determined by HPLC using a Hypersil Silica column ($5 \mu \mathrm{~m}, 4.6 \mathrm{~mm}$ i.d. $\times 200 \mathrm{~mm}$) and monitored, at 200 nm , using a diode array detector. ${ }^{c}$ See ref 4. ${ }^{d}$ Diastereofacial selectivity were confirmed by integration of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals for the methine protons of the esters.
further confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. In order to establish the stereochemistry of one of the diastereoisomers, the product of the most selective cycloaddition between dienophile $\mathbf{1 b}$ and 1,3 -butadiene (entry 12, Table 1) was purified by column chromatography and repeatedly recrystallized until constant optical rotation was obtained to give the pure diastereoisomer $\mathbf{3 b}$, and its absolute configuration was then determined by X-ray analysis. ${ }^{17}$

The results obtained in the Diels-Alder reaction, determined by HPLC, are summarized in Table 1 and show the influence of the reaction conditions on the conversion and diastereoselectivity (2/3). It can be seen in Table 1 that in catalyzed Diels-Alder reactions, using TiCl_{4} as a catalyst, good conversions could be obtained using equimolar quantities of TiCl_{4}. Lesser amounts of catalyst made the reaction too slow to be useful and with higher amounts polymerization of the diene was ob-

Scheme 3

served. In all cases, diastereofacial selectivities were slightly improved working at lower temperatures, but under these conditions the cycloaddition rate is very low. The best results were obtained when the reaction was carried out at $0{ }^{\circ} \mathrm{C}$ with a catalyst ratio $\mathrm{TiCl}_{4} /$ dienophile $=1.00$ and a dienophile concentration of $0.09 \mathrm{mmol} / \mathrm{mL}$ (entries 9 and 12). Under these conditions high conversions and very high diastereofacial selectivities can be obtained. The sense and degree of face selectivity is the same as that previously observed for cyclopentadiene. ${ }^{4}$
These results, and the sense of the asymmetric induction, agree with the model of TiCl_{4}-dienophile chelate complexes, proposed and confirmed by Helmchen ${ }^{7}$ to explain the results obtained in the cycloadditions of acrylates of (S)-ethyl lactate and (R)-pantolactone with 1,3 -butadiene. It is expected that a similar, sevenmembered chelate complex between the dienophile and the catalyst is formed. The absolute configuration of the pure diastereoisomer 3b, determined by X-ray analysis, suggests that either in the s-cis/s-trans conformational equilibrium there is a great preference for the s-cis conformer or that this conformer is more reactive than the s-trans conformer. In this situation, the high diastereoselectivity observed when (R)-pantolactone is used as a chiral auxiliary (entries 11 and 12) can be explained by the preferential approach of the diene to the si face of the enoate moiety (Scheme 3).
From the major cycloadducts $\mathbf{2 a}, \mathbf{3 b}$ (entries 9 and 12) and following a protocol with stereocontrolled transformations, we have synthesized the four 1-amino-2-phenyl-1-cyclohexanecarboxylic acids, analogues of phenylalanine, in enantiomerically pure form. The synthesis of these chiral α-amino acids from cycloadducts $4 \mathrm{a}, \mathrm{b}$ obtained by alkaline hydrolysis of $\mathbf{2 a}$ and $\mathbf{3 b}$, respectively, is outlined in Scheme 4. Unsaturated carboxylic acids 4a,b were hydrogenated over palladium-carbon to give saturated carboxylic acids $\mathbf{5 a}, \mathbf{b}$, which were repeatedly recrystallized until constant optical rotations were obtained. We have tested the enantiomeric purity of these carboxylic acids by means of ${ }^{1} \mathrm{H}-\mathrm{NMR}$, using a europium-

[^2]
Scheme 4

(III) chelate as a chiral shift reagent ${ }^{8}$ and the corresponding methyl esters, which were synthesized from carboxylic acids 5a,b by addition of diazomethane in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature.
Treatment of both enantiomers $\mathbf{5 a}, \mathbf{b}$ with PCl_{5} followed by NaN_{3} gave the corresponding acyl azides, which were converted into carbamates $\mathbf{6 a , b}$ by means of Curtius rearrangement. Further hydrolysis (in 6 N HCl) of the cyano and carbamate groups of compounds $\mathbf{6 a}, \mathbf{b}$ to give carboxyl and amino groups, respectively, was followed by treatment with propylene oxide in ethanol to yield optically active α-amino acids $\mathbf{7 a}, \mathbf{b}$, which had identical optical rotation values, but were opposite in sign.

On the other hand, to synthesize the other α-amino acids, in which the phenyl and the amino groups adopt a cis configuration, we had to transform the cyano groups of compounds 5a,b into amide groups, followed by selective transformation of these amides $\mathbf{8 a}, \mathbf{b}$ into the required amino acids $\mathbf{1 0 a}, \mathbf{b}$.

The partial hydrolysis of nitriles into amides has been widely described in the literature, ${ }^{9}$ but in our case, when we attempted to hydrolyze the cyano group of the carboxylic acids $\mathbf{5 a}, \mathrm{b}$ in alkaline media ${ }^{10}$ under various conditions (NaOH or $\mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}_{2}$ at $60^{\circ} \mathrm{C}, \mathrm{NH} \mathrm{N}_{4} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}_{2}$ at $60^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{O}_{2} / \mathrm{DMSO} /$ nitrobenzene at room temperature, $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$ at $50{ }^{\circ} \mathrm{C}$, and $\mathrm{Na}_{2} \mathrm{CO}_{3} /$ $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature), reaction did not

[^3]occur. Alternative methods investigated in acid media ${ }^{11}$ or using a catalyst ${ }^{12}$ such as $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{MnO}_{2}$, or $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$ gave the same results. Only with PPA^{13} at $110{ }^{\circ} \mathrm{C}$ did we detect the formation of the amide product in very low yield. The main products of this reaction arise from to the intramolecular Friedel-Crafts acylation ${ }^{14}$ on the phenyl substituent attached to C_{2} of the cyclohexane ring. Nevertheless, when we tried the hydrolysis in PPA with methyl carboxylates, quantitatively synthesized from carboxylic acids $5 \mathbf{a}, \mathbf{b}$ using diazomethane, the cyano groups were hydrated, allowing the synthesis of the amides $\mathbf{8 a , b}$ in good yields. ${ }^{15}$

Selective Hofmann rearrangement of the amides 8a,b by treatment with $\mathrm{Hg}(\mathrm{OAc})_{2}$, methanol, and NBS in DMF

[^4]
led to the formation of the isocyanates $\mathbf{9 a}, \mathbf{b}$, instead of the corresponding carbamates. These isocyanates were subsequently converted into the optically active α-amino acids $10 a, b$ according to the hydrolysis procedure previously described for the synthesis of the other α-amino acids 7a,b.
In summary, we have shown that the Diels-Alder reaction between 1,3 -butadiene and (E)-2-cyanocinnamic chiral esters, using (S)-ethyl lactate and (R)-pantolactone as chiral auxiliaries, is the key step to the enantioselective synthesis of the corresponding cycloadducts $\mathbf{5 a , b}$. From these products, following a stereodivergent synthesis, the four conformationally restricted 1-amino-2-phenyl-1-carboxylic acids, analogues of phenylalanine, can be obtained in enantiomerically pure form.

Experimental Section

All manipulations with air-sensitive reagents were carried out under a dry argon atmosphere using standard Schlenk techniques. Solvents were purified according to standard procedures. Lewis acids and other chemical reagents were purchased from the Aldrich Chemical Co. Organic solutions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and, when necessary, were concentrated under reduced pressure using a rotary evaporator. Analytical TLC was performed by using Polychrom SI F ${ }_{254}$ plates. Column chromatography was performed by using Kieselgel 60 ($230-400 \mathrm{mesh}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra ${ }^{16}$ were recorded in CDCl_{3} with TMS as the internal standard and in $\mathrm{D}_{2} \mathrm{O}-\mathrm{TFA}$ with TMS as the external standard using a coaxial microtube (chemical shifts are reported in ppm on the δ scale, coupling constants in hertz). Melting points are uncorrected. Optical rotations were measured in 1 and 0.5 dm cells of 1 and 3.4 mL capacity, respectively. IR spectra were recorded on a Perkin Elmer 883 spectrometer; $v_{\max }\left(\mathrm{cm}^{-1}\right)$ is given for the main absorption bands.
Asymmetric Diels-Alder Cycloadditions. General Procedure. The catalyst was added, under an inert atmosphere, to a solution of chiral dienophile (1.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7 \mathrm{~mL})$. After being stirred for 1 h at room temperature, the solution was cooled to the reaction temperature (Table 1) and a solution of butadiene ($540 \mathrm{mg}, 10.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was added. The reaction was stirred for the time reported in Table 1 and then quenched by the addition of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. The mixture was filtered, and the filtrate analyzed by HPLC or ${ }^{1} \mathrm{H}$-NMR following removal of the solvent.
(1S,6R)-1-Cyano-6-phenyl-3-cyclohexene-1-carboxylate of (S)-Ethyl Lactate. 2a. This compound was obtained from the (E)-2-cyanocinnamate of (S)-ethyl lactate $1 \mathrm{a}(2.73 \mathrm{~g}$, 10.0 mmol) following the general procedure described above for the asymmetric Diels-Alder reaction (1 equiv of $\mathrm{TiCl}_{4}, 0$ ${ }^{\circ} \mathrm{C}, 3$ days). The reaction mixture was treated with $\mathrm{Na}_{2}-$ $\mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and filtered, and the solvent was removed. The major cycloadduct 2a was purified by silica gel column chromatography, eluting with hexane-EtOAc (6:4). Compound 2 a was obtained as a white solid in 92% yield. Mp: $53-5{ }^{\circ} \mathrm{C}$. IR: $2247(\mathrm{CN}) ; 1739(2 \mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ 1.18(t, 3H, $J=7.1$); 1.36(d, $3 \mathrm{H}, J=7.1$); 2.45(brd, $1 \mathrm{H}, J=$ 18.4); 2.63-2.75(m, 2H); 3.01(brd, 1H, $J=17.8$); 3.35(dd, 1 H , $J=11.3, J=5.5) ; 4.02-4.14(\mathrm{~m}, 2 \mathrm{H}) ; 4.89(\mathrm{q}, 1 \mathrm{H}, J=7.1)$; $5.73-5.78(\mathrm{~m}, 1 \mathrm{H}) ; 5.92-5.96(\mathrm{~m}, 1 \mathrm{H}) ; 7.24-7.42(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.0 ; 16.5 ; 30.8 ; 35.4 ; 44.6 ; 49.7 ; 61.5 ; 70.2$; 117.9 ; 121.7; 127.5; 127.9; 128.0; 128.6; 139.2; 167.5; 169.4. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{C}: 69.69, \mathrm{H}: 6.47, \mathrm{~N}: 4.28$. Found C: 69.56, H: 6.36, N: 4.33 .
(1R,6S)-1-Cyano-6-phenyl-3-cyclohexene-1-carboxylate of (\boldsymbol{R})-Pantolactone. 3b. Starting from the (E)-2-

[^5]cyanocinnamate of (R)-pantolactone $1 \mathrm{lb}(2.85 \mathrm{~g}, 10.0 \mathrm{mmol})$ and following the same procedure as described for 2a, the major cycloadduct $3 \mathbf{b}$ was obtained, after purification and recrystallization from cyclohexane- CHCl_{3}, as a white solid in 88% yield. Mp: $116-8{ }^{\circ} \mathrm{C}$. IR: $2247(\mathrm{CN}) ; 1744(\mathrm{CO}) ; 1734(\mathrm{CO})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: \quad 0.90(\mathrm{~s}, 6 \mathrm{H}) ; 2.48$ (brd, $1 \mathrm{H}, J=18.3$); $2.57-$ 2.69 (dddd, $1 \mathrm{H}, J=18.3, J=11.4, J=4.2, J=2.4$); 2.75 (dd, $1 \mathrm{H}, J=17.7, J=5.1$); 3.00 (ddd, $1 \mathrm{H}, J=17.7, J=4.2, J=$ 2.4); $3.34(\mathrm{dd}, 1 \mathrm{H}, J=11.4, J=5.4) ; 3.89(\mathrm{brs}, 2 \mathrm{H}) ; 5.09(\mathrm{~s}, 1 \mathrm{H})$; $5.74-5.79(\mathrm{~m}, 1 \mathrm{H}) ; 5.92-5.96(\mathrm{~m}, 1 \mathrm{H}) ; 7.24-7.43(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (CDCl_{3}) $\delta: 19.4 ; 22.4 ; 31.7 ; 35.7 ; 39.9 ; 44.9 ; 49.2 ; 76.0$; $76.6 ; 117.8 ; 121.6 ; 127.5 ; 127.6 ; 128.0 ; 128.9$; 139.2; 167.6; 170.6. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{C}: 70.77, \mathrm{H}: 6.24, \mathrm{~N}: 4.13$. Found C: 70.62, H: 6.15, N: 4.07.
(1S,6R)-1-Cyano-6-phenyl-3-cyclohexene-1-carboxylic Acid. 4a. Cycloadduct $2 \mathbf{a}(3.00 \mathrm{~g}, 9.2 \mathrm{mmol})$ was refluxed with $10 \% \mathrm{KOH}-\mathrm{EtOH}(110 \mathrm{~mL})$ for 15 h and the solvent was removed. Water (50 mL) was added and the organic material extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The aqueous layer was acidified with 12 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The organic solution was evaporated in vacuo to yield $2.01 \mathrm{~g}(96 \%)$ of carboxylic acid 4 a as a white solid. Mp: 104-6 ${ }^{\circ} \mathrm{C}$. IR: $2242(\mathrm{CN}) ; 1710(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.39(\mathrm{brd}$, $1 \mathrm{H}, J=18.1$); 2.63-2.70(m, 2 H); 2.85(brd, $1 \mathrm{H}, J=15.4$); 3.22(dd, $1 \mathrm{H}, J=11.7, J=5.1$); $5.71-5.76(\mathrm{~m}, 1 \mathrm{H}) ; 5.92-5.97(\mathrm{~m}$, $1 \mathrm{H}) ; 7.24-7.37(\mathrm{~m}, 5 \mathrm{H}) ; 8.65(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: 30.1; 35.1; 45.1; 49.5; 117.6; 121.3; 127.5; 128.0; 128.1; 128.7; 138.6; 173.3. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{C}: 73.98$, H: 5.77, $\mathrm{N}: 6.17$. Found C: $73.87, \mathrm{H}: 5.66, \mathrm{~N}: 6.06$.
(1R,6S)-1-Cyano-6-phenyl-3-cyclohexene-1-carboxylic Acid. 4b. Carboxylic acid 4b was obtained as a white solid in a similar way to that described for $\mathbf{4 a}$, starting from cycloadduct 3 b ($2.98 \mathrm{~g}, 8.8 \mathrm{mmol}$). Isolated yield, $1.91 \mathrm{~g}(95 \%)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{C}: 73.98, \mathrm{H}: 5.77, \mathrm{~N}: 6.17$. Found C: 73.90, H: $5.68, \mathrm{~N}: 6.03$.
(1S,6R)-1-Cyano-6-phenyl-3-cyclohexene-1-carboxylate of (R)-Pantolactone. 2b. (R)-Pantolactone ($65 \mathrm{mg}, 0.5$ mmol) and DMAP ($11 \mathrm{mg}, 0.1 \mathrm{mmol}$) were added to a solution of carboxylic acid $\mathbf{4 a}(113 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. DCC ($113 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and added dropwise to the above solution at $0^{\circ} \mathrm{C}$. After 1 h at 0 ${ }^{\circ} \mathrm{C}$ the mixture was allowed to warm to room temperature and stirred for 20 h . The N, N^{\prime}-dicyclohexylurea was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate and washings were evaporated and the residual oil was purified by silica gel column chromatography using hexane-EtOAc (7:3) as eluent to afford 73 mg ($\mathbf{4 3 \%}$) of compound $\mathbf{2 b}$ as a white solid. Mp : $119-121{ }^{\circ} \mathrm{C}$. IR: $2242(\mathrm{CN})$; 1792(CO); 1757(CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 0.62(\mathrm{~s}, 3 \mathrm{H}) ; 0.80(\mathrm{~s}, 3 \mathrm{H}) ; 2.43(\mathrm{brd}, 1 \mathrm{H}, J=18.3)$; $2.75-2.82(\mathrm{~m}, 2 \mathrm{H}) ; 2.94(\mathrm{brd}, 1 \mathrm{H}, J=17.8) ; 3.30(\mathrm{dd}, 1 \mathrm{H}, J=$ $12.0, J=5.1$); $3.84(\mathrm{~d}, 1 \mathrm{H}, J=3.0) ; 3.84(\mathrm{~d}, 1 \mathrm{H}, J=3.0) ; 4.99-$ $(\mathrm{s}, 1 \mathrm{H}) ; 5.74-5.79(\mathrm{~m}, 1 \mathrm{H}) ; 5.93-5.96(\mathrm{~m}, 1 \mathrm{H}) ; 7.27-7.44(\mathrm{~m}$, $5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 19.2 ; 22.0 ; 31.0 ; 35.0 ; 39.8 ; 45.5$; 49.4; 76.0; 76.6; 117.3; 121.5; 127.3; 128.2; 128.4; 128.7; 138.9; 167.7; 170.8. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{C}: 70.77, \mathrm{H}: 6.24$, $\mathrm{N}: 4.13$. Found C: 70.67, H: 6.13, N: 4.03.
(1R,6S)-1-Cyano-6-phenyl-3-cyclohexene-1-carboxylate of (\boldsymbol{S})-Ethyl Lactate. 3a. In a similar way to that described for 2 b , starting from carboxylic acid $\mathbf{4 b}$ ($200 \mathrm{mg}, 0.9$ mmol) and (S)-ethyl lactate ($104 \mathrm{mg}, 0.9 \mathrm{mmol}$), compound 3a was obtained as an oil in 47% yield. IR: $2245(\mathrm{CN}) ; 1747(2 \mathrm{CO})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.07(\mathrm{~d}, 3 \mathrm{H}, J=7.0) ; 1.22(\mathrm{t}, 3 \mathrm{H}, J=7.1)$; 2.41 (brd, $1 \mathrm{H}, J=18.3$); $2.69-2.83(\mathrm{~m}, 2 \mathrm{H}) ; 2.93$ (brd, $1 \mathrm{H}, J=$ 15.6); 3.23(dd, 1H, $J=11.9, J=5.1) ; 4.09-4.16(\mathrm{~m}, 2 \mathrm{H}) ; 4.67-$ (q, $1 \mathrm{H}, \mathrm{J}=7.0$); $5.74-5.78(\mathrm{~m}, 1 \mathrm{H}) ; 5.91-5.93(\mathrm{~m}, 1 \mathrm{H}) ; 7.23-$ $7.39(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 14.0 ; 16.1 ; 30.0 ; 35.2 ; 45.7$; 48.9; 61.5; 70.1; 117.8; 121.7; 127.2; 128.0; 128.2; 128.6; 139.0; 168.0; 169.4. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{C}: 69.69, \mathrm{H}: 6.47$, $\mathrm{N}: 4.28$. Found C: $69.58, \mathrm{H}: 6.33, \mathrm{~N}: 4.17$.
(1S,2R)-1-Cyano-2-phenyl-1-cyclohexanecarboxylic Acid. 5a. A solution of compound $4 \mathbf{4 a}(2.01 \mathrm{~g}, 8.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was hydrogenated at room temperature for 16 h with 10% palladium-carbon (150 mg) as a catalyst. Removal of the catalyst and the solvent gave quantitatively the required compound 5a as a white solid, which was successively recrystallized until a constant α was recorded. $\mathrm{Mp}: 135-7{ }^{\circ} \mathrm{C}$. IR: $2258(\mathrm{CN}) ; 1748(\mathrm{CO})^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$:
1.50 (' $\mathrm{q}^{\prime \prime} \mathrm{t}^{\prime}, 1 \mathrm{H}, J=12.9, J=3.6$); 1.80 (' $\mathrm{q}^{\prime \prime} \mathrm{t}^{\prime}, 1 \mathrm{H}, J=13.5, J=$ 3.3); 1.85-2.17(m, 5 H); 2.27(brd, $1 \mathrm{H}, J=12.9$); 3.06(dd, 1 H , $J=12.6, J=3.0$); $7.19-7.38(\mathrm{~m}, 5 \mathrm{H}) ; 9.37(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 21.8 ; 25.3 ; 28.8 ; 34.9 ; 48.4 ; 53.4 ; 117.3 ; 128.0 ; 128.6 ;$ 128.7; 139.3; 174.7. $[\alpha]^{25}\left(c=2.3, \mathrm{CHCl}_{3}\right)=-11.1^{\circ}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{C}: 73.33, \mathrm{H}: 6.60, \mathrm{~N}: 6.11$. Found C: 73.45, H: 6.73, N: 6.00.
(1R,2S)-1-Cyano-2-phenyl-1-cyclohexanecarboxylic Acid. 5b. In a similar way to that described for $5 \mathbf{5}$, compound $\mathbf{5 b}$ was quantitatively obtained, starting from carboxylic acid $\mathbf{4 b}(1.91 \mathrm{~g}, 8.4 \mathrm{mmol}) .\left[\alpha{ }^{25} \mathrm{D}\left(c=2.1, \mathrm{CHCl}_{3}\right)=+11.1^{\circ}\right.$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{C}: 73.33, \mathrm{H}: 6.60, \mathrm{~N}: 6.11$. Found C: 73.40, H: 6.71, N: 6.18.
(1S,2R)-1-[(Methoxycarbonyl)amino]-2-phenyl-1-cyclohexanecarbonitrile. 6a. $\mathrm{PCl}_{5}(0.83 \mathrm{~g}, 4.0 \mathrm{mmol})$ was added to a solution of compound $5 \mathbf{a}(0.91 \mathrm{~g}, 4.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40$ mL) and the reaction mixture was stirred at room temperature for 90 min . The solvent and most of the PCl_{5} was removed under reduced pressure. The oily residue was dissolved in toluene (20 mL) and the solvent and the residual PCl_{5} distilled off in vacuo. This operation was repeated to ensure complete removal of the PCl_{5}. The acid chloride was dissolved in acetone $(12 \mathrm{~mL})$ and a solution of $\mathrm{NaN}_{3}(0.46 \mathrm{~g}, 7.0 \mathrm{mmol})$ in water (4 mL) was added. The reaction was stirred for 90 min and evaporation of the solvent gave a white solid which was extracted with toluene. The organic solution was dried and after filtration, $\mathrm{MeOH}(16 \mathrm{~mL}$) was added. The solution was stirred at $80^{\circ} \mathrm{C}$ for 2 h and the solvent was removed under reduced pressure. Purification of the residue by silica gel column chromatography, eluting with hexane-EtOAc (6:4) afforded $0.78 \mathrm{~g}(76 \%)$ of compound 6 a as a white solid. Mp: $146-8{ }^{\circ} \mathrm{C}$. IR: $3389(\mathrm{NH}) ; 2241(\mathrm{CN}) ; 1728(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 1.43$ ('q"'t', $1 \mathrm{H}, J=12.9, J=4.2$); 1.63 ('t'd, $1 \mathrm{H}, J=$ $12.9, J=3.0$); 1.82 (' $\mathrm{q}^{\prime \prime} \mathrm{t}^{\prime}, 1 \mathrm{H}, J=14.4, J=3.3$); $1.84-1.94$ (m, 3 H); 2.16 ('q'd, $1 \mathrm{H}, J=12.9, J=3.0$); 2.73 (dd, $1 \mathrm{H}, J=12.9, J$ $=3.0$); 3.09 (brd, $1 \mathrm{H}, \mathrm{J}=12.9$); 3.60(s, 3 H); 4.87 (brs, 1 H); $7.37-$ $7.42(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 22.6 ; 25.4 ; 30.1 ; 36.7 ; 51.4 ;$ 52.2; 57.0; 118.5; 128.3; 128.4; 129.2; 138.3; 154.7. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{C}: 69.73, \mathrm{H}: 7.03, \mathrm{~N}: 10.85$. Found C: 69.60, H: 6.91, N: 10.76.
($1 R, 2 S$)-1-[(Methoxycarbonyl)amino]-2-phenyl-1-cyclohexanecarbonitrile. 6b. A 1.49 g amount of compound 6 b was obtained in a similar way to that described for 6 a, starting from carboxylic acid $5 \mathbf{b}$ ($1.66 \mathrm{~g}, 8.0 \mathrm{mmol}$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{C}: 69.73, \mathrm{H}: 7.03, \mathrm{~N}: 10.85$. Found C: 69.65, H: 6.93, N: 10.79.
(1S,2R)-1-Amino-2-phenyl-1-cyclohexanecarboxylic Acid. 7a. Carbamate $6 \mathbf{a}(0.78 \mathrm{~g}, 3.0 \mathrm{mmol})$ was hydrolyzed by refluxing for 3 days with 20% aqueous $\mathrm{HCl}(30 \mathrm{~mL})$. After filtration and extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, the aqueous layer was evaporated in vacuo and EtOH (6 mL) and propylene oxide (2 mL) were added. The reaction mixture was refluxed for 1 h and after removal of the EtOH , the white residue was dissolved in distilled water and eluted through a C_{18} reversephase sep-pak cartridge. Removal of the water afforded 0.47 $\mathrm{g}(71 \%)$ of α-amino acid 7a as a white solid. IR: 1717 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}-\mathrm{TFA}\right) \delta: 1.44-1.57(\mathrm{~m}, 1 \mathrm{H}) ; 1.74-2.52(\mathrm{~m}, 7 \mathrm{H})$; 2.96 (brd, $1 \mathrm{H}, J=12.9$); $7.33-7.45(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}-\right.$ TFA) $\delta: 21.2 ; 24.5 ; 28.4 ; 33.6 ; 50.3 ; 63.4 ; 128.4 ; 128.5 ; 129.2$; 138.3; 172.3. $[\alpha]^{25} \mathrm{D}\left(c=2.3,0.1 \mathrm{M} \mathrm{TFA}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)=-31.6^{\circ}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{C}: 71.19, \mathrm{H}: 7.82, \mathrm{~N}: 6.39$. Found C: 71.08, H: 7.89, N: 6.28.
(1R,2S)-1-Amino-2-phenyl-1-cyclohexanecarboxylic Acid. 7b. In a similar way to that described for 7a, starting from carbamate $\mathbf{6 b}$ ($0.91,4.0 \mathrm{mmol}$), α-amino acid $7 \mathbf{b}$ was obtained as a white solid in 73% yield. $[\alpha]{ }^{25}{ }_{\mathrm{D}}(c=2.0,0.1 \mathrm{M}$ TFA in $\left.\mathrm{H}_{2} \mathrm{O}\right)=+32.5^{\circ}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{C}: 71.19$, H: 7.82, N: 6.39. Found C: 71.10, H: 7.84, N: 6.30.

Methyl (1S,2R)-1-(Aminocarbonyl)-2-phenyl-1-cyclohexanecarboxylate. 8a. A slight excess of a solution of diazomethane in $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise, at room temperature, to a solution of carboxylic acid $\mathbf{5 a}(0.91 \mathrm{~g}, 4.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. After a few minutes, evaporation of the solvent quantitatively afforded the methyl ($1 S, 6 R$)-1-cyano-2-phenyl-1-cyclohexanecarboxylate. A mixture of this compound (0.97
$\mathrm{g}, 4.0 \mathrm{mmol}$) and PPA (14 mL) was refluxed for 60 h . The solution was then cooled and poured onto crushed ice, and the corresponding amide was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. After evaporation of the solvent, the residue was chromatographed, eluting with hexane-EtOAc (6:4) to give 0.65 g (62\%) of compound 8a as an oil. IR: $3500,3300\left(\mathrm{NH}_{2}\right) ; 1717(\mathrm{CO})$; $1660(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.39-1.62(\mathrm{~m}, 2 \mathrm{H}) ; 1.70-1.92-$ (m, 3H); 2.09-2.23(m, 2H); 2.32 (ddd, $1 \mathrm{H}, J=13.5, J=6.3, J$ $=4.2$); $3.50(\mathrm{dd}, 1 \mathrm{H}, J=12.9, J=3.0) ; 3.72(\mathrm{~s}, 3 \mathrm{H}) ; 5.50(\mathrm{brs}$, $1 \mathrm{H}) ; 5.94(\mathrm{brs}, 1 \mathrm{H}) ; 7.18-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: 22.3; 24.1; 29.0; 40.9; 47.1; 52.6; 59.3; 126.9; 128.2; 129.0; 142.3; 172.2; 174.2. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{C}: 68.93, \mathrm{H}: 7.33$, $\mathrm{N}: 5.36$. Found C: 68.99, H: 7.45, N: 5.43.
Methyl (1R,2S)-1-(Aminocarbonyl)-2-phenyl-1-cyclohexanecarboxylate. $\mathbf{8 b}$. In a similar way to that described for $\mathbf{8 a}$, starting from carboxylic acid $\mathbf{5 b}(0.91 \mathrm{~g}, 4.0 \mathrm{mmol}$), compound 8 b was obtained as an oil in 59% yield. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{C}: 68.93, \mathrm{H}: 7.33, \mathrm{~N}: 5.36$. Found $\mathrm{C}: 68.02$, H: 7.46, N: 5.41.
Methyl ($1 R, 2 R$)-1-Isocyanato-2-phenyl-1-cyclohexanecarboxylate. 9 a . $\mathrm{MeOH}(2.40 \mathrm{~g}, 75.0 \mathrm{mmol})$ and a solution of NBS ($0.59 \mathrm{~g}, 3.3 \mathrm{mmol}$) in DMF' (4 mL) were added, at room temperature, to a solution of compound $8 \mathrm{aa}(0.65 \mathrm{~g}, 2.5 \mathrm{mmol})$ and $\mathrm{Hg}(\mathrm{OAc})_{2}(0.96 \mathrm{~g}, 3.0 \mathrm{mmol})$ in DMF (12 mL). The reaction was stirred for 12 h at room temperature and the resulting mixture was evaporated in vacuo. The solid residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL}$), the solvent removed, and the residue purified by silica gel column chromatography, eluting with hexane-EtOAc (6:4) to afford $0.61 \mathrm{~g}(95 \%)$ of compound 9 a as a white solid. Mp: $98-100^{\circ} \mathrm{C}$. IR: $2250-$ (NCO); 1717(CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.37-1.53(\mathrm{~m}, 1 \mathrm{H})$; $1.65-2.11(\mathrm{~m}, 7 \mathrm{H}) ; 3.10(\mathrm{dd}, 1 \mathrm{H}, J=12.9, J=3.3) ; 3.66(\mathrm{~s}, 3 \mathrm{H})$; $7.14-7.32(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 21.1 ; 25.7 ; 27.7 ; 36.7$; $49.5 ; 53.0 ; 69.9 ; 125.9 ; 127.5 ; 128.2 ; 128.3 ; 140.3 ; 173.2$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{C}: 69.47, \mathrm{H}: 6.61, \mathrm{~N}: 5.40$. Found C: $69.55, \mathrm{H}: 6.50, \mathrm{~N}: 5.49$.

Methyl (1S,2S)-1-Isocyanato-2-phenyl-1-cyclohexanecarboxylate. 9 b . In a similar way to that described for 9 a , starting from compound $\mathbf{8 b}$ ($0.62 \mathrm{~g}, 2.4 \mathrm{mmol}$), isocyanate $\mathbf{9 b}$ was obtained as a white solid in 94% yield. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{C}: 69.47, \mathrm{H}: 6.61, \mathrm{~N}: 5.40$. Found C: 69.55, H: $6.50, \mathrm{~N}: 5.49$.
(1R,2R)-1-Amino-2-phenyl-1-cyclohexanecarboxylic Acid. 10a. Starting from isocyanate $9 \mathbf{a}(0.61,2.4 \mathrm{mmol})$ and following the hydrolysis procedure described above for compound 7a, α-amino acid 10a was obtained as a white solid in 79% yield. IR: $1698(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}-\mathrm{TFA}\right) \delta: 1.40-1.69-$ (m, 2H); 1.87-2.16(m, 5H); 2.32('t'd, $1 \mathrm{H}, J=14.1, J=4.5$); 3.50 (dd, $1 \mathrm{H}, J=12.9, J=3.6$); 7.25-7.47(m, 5H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\mathrm{D}_{2} \mathrm{O}$-TFA) $\delta: 19.4 ; 24.5 ; 25.3 ; 32.7 ; 45.7 ; 65.0 ; 128.1 ; 128.2$; 129.2; 138.1; 173.2. $[\alpha]^{25} \mathrm{p}\left(c=1.1,0.1 \mathrm{M}\right.$ TFA in $\left.\mathrm{H}_{2} \mathrm{O}\right)=$ -21.6°. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{C}: 71.19, \mathrm{H}: 7.82, \mathrm{~N}$: 6.39. Found C: 71.08, H: 7.77, N: 6.28.
(1S,2S)-1-Amino-2-phenyl-1-cyclohexanecarboxylic Acid. 10b. In a similar way to that described for 10a, starting from isocyanate $9 b(0.58 \mathrm{~g}, 2.2 \mathrm{mmol}), \alpha$-amino acid 10 b was obtained as a white solid in 80% yield. $[\alpha]^{25} \mathrm{D}(c=1.6,0.1 \mathrm{M}$ TFA in $\left.\mathrm{H}_{2} \mathrm{O}\right)=+22.5^{\circ}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{C}: 71.19$, H: 7.82, N: 6.39. Found C: 71.10, H: 7.75, N: 6.30.

Acknowledgment. This research was supported by the Dirección General de Investigación Científica y Técnica (project number PB91-0696). M.P. thanks the Ministerio de Educación y Ciencia for a doctoral fellowship.

Supplementary Material Available: A full listing of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR data, of all new compounds, complete with peak assignments; copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ NMR spectra for oily compounds $\mathbf{3 a}$ and $8 \mathbf{a}$ (9 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: ${ }^{*}$ Abstract published in Advance ACS Abstracts, November 15, 1994.
 (1) Fuji, K. Chem. Rev. 1993, 93, 2037.
 (2) (a) Mendel, D.; Ellman, J.; Ellman, P. G. J. Am. Chem. Soc. 1993, 115, 4359. (b) Gaitanopoulos, D. E.; Nash, J.; Dunn, D. L.; Skinner, C. G. J. Med. Chem. 1976, 19, 342. (c) Christensen, H. N.; Handlogten, M. E. Biochim. Biophys. Acta 1977, 469, 216. (d) Sufrin, J. R.; Dunn, D. A.; Garland, G. R. Mol. Pharmacol. 1979, 15, 661. (e) Sufrin, J. R.; Coulter, A. W.; Talalay, P. Mol. Pharmacol. 1979, 15, 661. (f) Layton, W. J.; Smith, S. L.; Deeks, T.; Waigh, R. D. J. Chem. Soc. Perkin Trans. 1 1984, 1283. (g) Bourne, G. T.; Crich, D.; Davies, J. W.; Horwell, D. C. J. Chem. Soc. Perkin Trans. 1 1991, 1693. (h) Kazmierski, W.; Hruby, V. J. Tetrahedron 1991, 32, 5769, (i) Bruncko, M.; Crich, D. Tetrahedron Lett. 1992, 33, 6251. (j) Chan, C. O.; Crich, D.; Natarajan, S. Tetrahedron Lett. 1992, 33, 3405.
 (3) (a) Avenoza, A.; Cativiela, C.; Díaz-de-Villegas, M. D.; Mayoral, J. A.; Peregrina, J. M. Tetrahedron 1993, 49, 677. (b) Avenoza, A.; Cativiela, C.; Díaz-de-Villegas, M. D.; Peregrina, J. M. Tetrahedron 1993, 49, 10987.
 (4) (a) Avenoza, A.; Cativiela, C.; Mayoral, J. A.; Peregrina, J. M.; Sinou, D. Tetrahedron: Asymmetry 1990, 1, 765. (b) Avenoza, A.; Cativiela, C.; Mayoral, J. A.; Peregrina, J. M. Tetrahedron: Asymmetry 1992, 3, 913. (c) Avenoza, A.; Cativiela, C.; Gimeno, S.; Lahoz, F. J.; Mayoral, J. A.; Peregrina, J. M. J. Org. Chem. 1992, 57, 4664.

[^1]: (5) For examples of DCC/DMAP reactions see: (a) Hassner, A.; Alexanian, V. Tetrahedron Lett. 1978, 4475. (b) Walkup, R. D.; Cunningham, R. T. Tetrahedron Lett. 1987, 28, 4019. (c) Neises, B.; Steglich, W. Angew. Chem. Int. Ed. Engl. 1978, 17, 522. (d) Ziegler, F. E.; Berger, G. D. Synth. Commun. 1979, 9, 539. (e) Neises, B.; Andries, T.; Steglich, W. J. Chem. Soc., Chem. Commun. 1982, 1132.
 (6) Entries 1-10: percentage conversion and diastereofacial selectivity (2a/3a) were determined by HPLC using a 90:10 hexane-tertbutyl methyl ether mixture as the mobile phase. Flow rate: $2.0 \mathrm{~mL} /$ min . Retention times: $\mathbf{3 a}=3.65 \mathrm{~min}, \mathbf{2 a}=4.46 \mathrm{~min}, \mathbf{1 a}=4.99 \mathrm{~min}$. Detection: UV at 200 nm . Entries 11-13: Percentage conversion and diastereofacial selectivity ($\mathbf{2 b} / \mathbf{3 b}$) were determined by HPLC using a 65:35 hexane-tert-butyl methyl ether mixture as the mobile phase. Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$. Retention times: $\mathbf{2 b}=6.08 \mathrm{~min}, \mathbf{3 b}=7.11$ $\min , 1 b=9.15 \mathrm{~min}$. Detection: UV at 200 nm .

[^2]: (7) (a) Poll, T.; Helmchen, G.; Bauer, B. Tetrahedron Lett. 1984, 25, 2191. (b) Poll, T.; Metter, J. O.; Helmchen, G. Angew. Chem. Int. Ed. Engl. 1985, 24, 112. (c) Poll, T.; Sobczack, A.; Hartmann, H.; Helmchen, G. Tetrahedron Lett. 1985, 26, 3095 . (d) Hartmann, H.; Hady, A. F. A.; Sator, K.; Weetman, J.; Helmchen, G. Angew. Chem. Int. Ed. Engl. 1987, 26, 1143.

[^3]: (8) Different shifts for the methoxycarbonyl groups of the methyl ester compounds arising from carboxylic acids 5a,b have been observed when a molar ratio $\mathrm{Eu}(\mathrm{tfc})_{3} /$ substrate $=0.1$ and [substrate] $=0.2 \mathrm{mmol} /$ mL in CDCl_{3} at $20^{\circ} \mathrm{C}$ were used. ($\mathbf{5 a}, \mathbf{b}$: without lanthanide $\delta\left(\mathrm{CO}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right)=3.51 \mathrm{ppm} ; 5 \mathrm{a}:$ with lanthanide $\delta\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=3.88 \mathrm{ppm} ; \mathbf{5 b}$: with lanthanide $\left.\delta\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=3.93 \mathrm{ppm}\right)$.
 (9) Balicki, R.; Kaczmarek, L. Synth. Commun. 1993, 23, 3149 and references therein.
 (10) (a) Buck, J. S.; Ide, W. S. Org. Synth. Coll. 1943, 2, 44. (b) Noller, C. R. Org. Synth. Coll. 1943, 2, 586. (c) Groziak, M. P.; Chern, J. W.; Townsend L. B. J. Org. Chem. 1986, 51, 1005. (d) Kornblum, N.; Singaram, S. J. Org. Chem. 1979, 44, 4727. (e) McIsaac, J. E., Jr.; Ball, R. E.; Behrman, E. J. J. Org. Chem. 1971, 36, 3048. (f) Katritzky, A. R.; Pilarski, B.; Urogdi, L. Synthesis 1989, 949.

[^4]: (11) (a) Wenner, W. Org. Synth. Coll. 1963, 4, 760. (b) Steiger, R. E. Org. Synth. Coll. 1955, 3, 666. (c) Eliel, E. L.; Freeman, J. P. Org. Synth. Coll. 1963, 4, 58 . (d) Jaafar, I.; Francis, G.; Danion-Bougot, R.; Danion, D. Synthesis 1993, 56.
 (12) (a) Plummer, B. F.; Menendez, M.; Songster, M. J. Org. Chem. 1989, 54, 718. (b) Cacchi, S.; Misiti, D. Synthesis 1980, 243. (c) Breuilles, P.; Leclerc, R.; Uguen, D. Tetrahedron Lett. 1994, 35, 1401. (d) Liu, K.-T.; Shih, M.-H.; Huang, H.-W.; Hu, C. J. Synthesis 1988, 715.
 (13) (a) Snyder, H. R.; Elston, C. T. J. Am. Chem. Soc. 1954, 76, 3039. (b) Hauser, C.; Eby, C. J. Am. Chem. Soc. 1957, 79, 725.
 (14) (a) Hauser, C.; Murray, J. J. Am. Chem. Soc. 1955, 77, 2851. (b) Uhlig, F.; Snyder, H. R. Adv. Org. Chem. 1960, 1, 35. (c) Popp, F. D.; McEwen, W. E. Chem. Rev. 1958, 58, 321.
 (15) The hydrolysis in PPA of the methyl carboxylates, starting from carboxylic acids 5a,b, gave rise to the desired amides $8 \mathrm{a}, \mathrm{b}$ (62%) accompanied by the product i, arise from intramolecular FriedelCrafts and further decarboxylation: 12% yield, oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 1.16-1.81(\mathrm{~m}, 6 \mathrm{H}) ; 2.04-2.17(\mathrm{~m}, 2 \mathrm{H}) ; 2.73-2.79(\mathrm{~m}, 1 \mathrm{H}) ; 3.34-3.42-$ $(\mathrm{m}, 1 \mathrm{H}) ; 7.27-7.80(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 22.4 ; 22.7 ; 23.1 ; 31.4$; $38.8 ; 48.5 ; 123.9 ; 124.9 ; 127.3 ; 134.3 ; 135.6 ; 158.4 ; 208.0$. Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$ C: $83.82, \mathrm{H}: 7.58$. Found C: $83.99, \mathrm{H}: 7.69$. The structure assignment for \mathbf{i} is supported by selective proton-proton homonuclear decoupling experiments and a proton-proton COSY experiment.

[^5]: (16) The assignment of all separate signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra was made on the basis of coupling constants, selective proton-proton homonuclear decoupling experiments, and proton-proton COSY experiments.
 (17) The author has deposited atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.

