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This study aimed to identify and to characterize rhizospheric-derived enterococci. The results showed the prevalence
of Enterococcus faecium species (97%) vs. Enterococcus durans (3%). Susceptibility testing for antibiotics showed a
low percentage of resistance to erythromycin (3.2%) and tetracycline (11.2%), and intermediate resistance to vancomycin
(6.5%). Nevertheless, a high proportion of bacteriocin production was recorded. Furthermore, PCR detection of antibiotic
resistance and bacteriocin production-encoding genes was investigated. Pulsed-field gel electrophoresis typing (PFGE)
showed a great variability of enterococci in the rhizosphere. Moreover, mutilocus-sequence-typing analysis (MLST)
revealed the identification of three new sequence types (STs), which were registered as ST613, ST614 and ST615.
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Soil is a vast reservoir for microorganisms. Many bacteria

have been found in soils, especially in the rhizosphere, and

the abundance in vegetated soils is due to the availability of

nutrients via plant roots and to the diversity of ecological

niches (16).

Enterococcus spp. colonizes the gastrointestinal tract of

many animals and is also commonly found in soil, plants,

vegetables and water (1, 2, 31, 32). Together with coliform

bacteria, enterococci are considered as an indicator of fecal

contamination (21); however, other studies have suggested

that these bacteria were likely derived from environmental

sources unrelated to fecal contamination. According to Mundt

et al. (33, 34), enterococi also occur on plants in a truly

epiphytic relationship and are able to spread by seeds and

reproduce on growing plants. E. faecium is the enterococcal

species with the highest level of resistance to antibiotics

compared to other species (26). The high use of antibiotics

in human and veterinary medicine, livestock, aquaculture,

and agriculture, associated with the diverse mechanisms of

bacterial genetic transfer, could cause antibiotic molecules,

antibiotic-resistant bacteria and/or their resistance genes in

different habitats (14, 23, 26, 36, 45). Enterococci are

intrinsically resistant to semi-synthetic penicillins, amino-

glycosides (low level), vancomycin (low level for some

species such as E. gallinarum, E. casseliflavus and E.

flavescens), lincosamides (most), polymyxines, streptogramin

A (E. faecalis) and monobactams (13, 35). In addition, they

are able to acquire multi-resistance to many antibiotics (1,

37, 39, 42, 43).

The problem of antibiotic resistance in enterococci is not

only restricted to the clinical setting but also to other

environments, such as the intestinal tract of healthy humans,

sewage water and food-producing animals (4, 38, 41). Little

is known about antibiotic resistance in enterococci in the

natural environment, especially in soil. The main objectives

of the current study were to determine the taxonomy and

genetic diversity of enterococci in the rhizosphere ecosystem

and to evaluate their content in antibiotic resistance and

virulence genes, and also to evaluate their antibiotic resistance

pattern and their ability to produce bacteriocins.

Enterococcal isolates were recovered from 31 rhizospheric

samples of olive plants obtained from eight different regions

in the south and north of Tunisia. Although the major part

of the country is characterized by a sub-arid climate, the

northern regions differ mainly by darker soil and more

abundant rainfall than in the southern parts. Enterococci were

isolated by the enrichment method according to the procedure

of Zamudio-Maya et al. (47), with some modifications.

Briefly, 1 g sample was resuspended in 5 mL MRS broth

and incubated at 30°C for 2–3 days. The obtained cultures

were diluted and spread onto MRS agar medium supple-

mented with 0.01% (w/v) bromocresol green to enhance the

morphological differentiation of lactic acid bacterial colonies.

Entrococcal isolates were identified to the genus level by

biochemical methods (Gram staining, bile-esculine and

hypersaline reaction) and to the species level by molecular

PCR assays using specific primers for ddlE. faecalis, ddlE. faecium,

vanC-1, vanC-2, mur-2eh and mur-2ed genes specific for

E. faecalis, E. faecium, E. gallinarum, E. casseliffavus,

E. hirae and E. durans, respectively, as previously described

(5, 12, 30).

Antibiotic susceptibility testing was performed by the disk

diffusion method on BHIA following previously reported
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criteria (CLSI 2010). The antibiotics tested (Bio-Rad

Laboratories, Hercules, CA, USA) were as follows: erythro-

mycin, ampicillin, vancomycin, teicoplanin, streptomycin,

gentamicin, tetracycline, chloramphenicol, trimethoprim-

sulfamethoxazol and pristinamycin. High-level amino-

glycoside resistance was detected using high-charge disks of

gentamicin (Gen, 120 µg) and streptomycin (Strep, 300 µg).

MICs for vancomycin and streptomycin were also determined

using broth dilution and agar dilution methods (CLSI 2010).

E. faecalis ATCC 29212 was used as the quality control

strain for all susceptibility testing.

Genomic DNA of enterococci was obtained using a

commercial solution for DNA extraction “Instagene matrix”

(BioRad). The genes studied were as follows: erm(A),

erm(B), erm(C), erm(T), msr(A), tet(M) and tet(L) encoding

resistance to erythromycin or tetracycline (43). Vancomycin

resistance mechanisms were analyzed by PCR using specific

primers for amplification of vanA, vanB, vanC-1, vanC-2/3

and vanD genes (28), and Taq polymerase (Bioline, Labolan,

Spain). For vancomycin-resistant strains negative for the

above referred genes, new PCR were performed with

degenerated primers in order to amplify different D-Ala

ligases: vanV1 (GGIGAAGATGGITCITTICAAGG) and

vanV2 (IGTAAAICCIGGIATIGTATT), (12); vanV3 (GAR

GATGGITSCATMCARGGW) and vanV4 (MGTRAAIC

CIGGCAKRGTRTT), (7) and NvanF (GTTTGGGGGTTGC

TCAGAGG) with NvanR (TCACCCCTTTAACGCTAATA

CGATC), and the obtained amplicons were sequenced (46).

The presence of hyl and esp genes, encoding virulence

factors (glycosil-hydrolase and enterococcal surface protein,

respectively), were studied by PCR (40). All PCR reactions

included positive and negative controls from the University

of Rioja (Spain).

The antimicrobial activity of bacterial cultures was assayed

using the toothpick method previously described (11). Briefly,

50 µl of an overnight culture in BHI broth of the indicator

strains (Listeria monocytogenes C137, E. gallinarum C86,

E. faecium AR1, E. faecium AR36, E. faecium AR58, E.

faecalis AR42 and E. faecalis AR69) was added to 5 mL

molten Tryptic Soy Broth (Becton Dickinson, Franklin Lakes,

NJ, USA), supplemented with 0.7% (w/v) agar and 0.5%

(w/v) yeast extract, mixed and poured onto a yeast extract-

supplemented Tryptic Soy Agar (Becton Dickinson) plate. A

single colony of each isolate was transferred with a sterile

toothpick to the agar plate previously seeded with the

indicator microorganism. The plates were then incubated at

37°C for 24 h. Antimicrobial activity was visually detected

by the presence of clear inhibition zones around the producer

strains (only inhibition halos with diameters higher than 3

mm were considered as a positive result). Bacteriocin

structural genes (entA, entB, entP, entQ, entAS-48, ent L50A/

L50B and bac31) were studied by PCR in all bacteriocin

producer (Bac+) enterococci using the primers and conditions

previously described (10).

The genetic relationship among enterococcal strains was

determined by pulsed field gel electrophoresis (PFGE) using

SmaI enzyme as previously described (44). PFGE patterns

were checked both visually and by numerical analysis

after conversion and normalization. Band pattern similarity

analysis was performed using GEL-Pro 3.1 software (Media

Cybernetics, USA). PFGE patterns were clustered by the

unweighted pair group method using arithmetic averages as

determined with the MVSP 3.13I software program (Kovach

Computing Services). A cutoff value of 85% identity was

defined.

Multilocus sequence typing (MLST) was performed in 5

selected E. faecium isolates according to Homan et al. (19).

The generated sequences were analyzed to determine the

corresponding sequence type (ST) and clonal complex (CC)

at the URL (http://mlst.ucc.ie/).

Sixty-three enterococcal isolates were recovered from the

31 samples of olive rhizospheres tested. Biochemical and

molecular identification showed the presence of only two

enterococcal species: E. faecium, which represented most of

the isolates (61 isolates, 97%) and E. durans (2 isolates, 3%).

Our study showed a low percentage of resistance to

erythromycin (3.2%). The presence of antibiotic resistance

genes was studied by PCR in the two erythromycin-resistant

E. faecium isolates, but they did not harbor the erm(B),

erm(A), erm(C), erm(T) or msr(A) gene.

Tetracycline-resistance was detected in 7 isolates (11.2%)

(6 E. faecium and 1 E. durans) and the genes tet(L) and/or

tet(M) were demonstrated in all of them [tet(M) in 4 E.

faecium and E. durans isolates and tet(M)+tet(L) in 3 E.

faecium isolates].

Our isolates also showed a high frequency of resistance to

ciprofloxacin (44.5%), but none exhibited a high level of

resistance to gentamicin or streptomycin.

Three E. faecium isolates presented MICs for vancomycin

between 8 and 16 µg mL−1, in the range of the intermediate

resistance category according to CLSI 2010. They also

appeared intermediately resistant to teicoplanin by the disk

diffusion test. PCRs for vanA, vanB, vanC1, vanC2/3 and

vanD genes were negative in these three isolates. The

amplicon obtained with degenerated vanV1V2 primers was

sequenced but corresponded with the specific ligase of the

E. faecium species. In addition, no van genes were identified

when primers vanV3/vanV4 and NvanF/NvanR were used

in PCR reactions.

The hyl gene, encoding a glycosil-hydrolase, was identified

in two tetracycline-resistant E. faecium isolates and one

showed the intermediate phenotype of vancomycin resistance.

The esp gene, encoding an enterococcal surface protein, was

not observed among our enterococci.

All 61 E. faecium and 2 E. durans isolates identified were

analyzed by PFGE using the SmaI restriction enzyme,

detecting the high diversity of PFGE patterns among them.

Indeed, 55 E. faecium and 2 E. durans exhibited 44 different

pulsotypes, when considering that 85% is the homology level

of group differentiation. The remaining 6 E. faecium isolates

were not typable by PFGE despite repetition of the experiment

(Fig. 1).

Furthermore, MLST was performed on five selected

strains (3 vancomycin intermediate-resistant strains and two

erythromycin strains). The obtained results revealed that

two vancomycin intermediate-resistant E. faecium strains

were classified by MLST analysis into sequence types ST21

and ST606. Interestingly, new sequence types (STs) were

identified for three E. faecium isolates (2 erythromycin-

resistant isolates and one vancomycin intermediate-resistant
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isolate, which also harbored the gene hyl). The new detected

sequences were registered on the MLST website (http://

efaecium.mlst.net/) as ST613, ST614 and ST615 (Table 1).

Forty-one percent of isolates (n=26) showed antimicrobial

activity against at least one of the tested indicator bacteria.

All belonged to the E. faecium species. Twenty of the 26

bacteriocin-positive (Bac+) E. faecium strains revealed the

presence of the genes entA and/or entB (entA: 2 strains;

entB: 14 strains; entA+B: 4 strains), encoding enterocins A

and B, respectively.

In the current study, we reported the isolation and

characterization of enterococci from rhizosphere samples.

Although their frequent association with fecal and food

samples, different studies have reported the occurrence of

enterococci in soils (2, 8, 15, 32, 34). In accordance with our

results, some of these studies also showed the predominance

of the species E. faecium among the material which is in

direct contact with the rhizosphere but in the presence of

other species (2, 32). The predominance of this species is

probably due to its broad spectrum of natural and acquired

resistance and its ability to survive heat treatments and

adverse environmental conditions (17, 23). Besides E.

faecium, there was a small proportion of E. durans. Indeed,

according to the classification of Kholer et al. (24) and Cools

et al. (9), this species was revealed to belong to the E. faecium

group, as they exhibited the same phenotypic properties of

resistance to hostile environmental conditions (salinity and

desiccation, among others). Fecal bacteria are known to

have a limited lifespan in the environment, which could

partially explain the absence of other enterococcal species

characterized by their fragility once released into the soil

(20). E. faecium seems, however, to be more adapted to such

an environment and its presence could be supported by the

availability of root exudates in this specific ecosystem closet

to the plant roots (22). Nevertheless, many ecological

questions related to its role in soils and plants remain unclear.

A low frequency of resistance to antibiotics (erythromycin

and tetracycline) was detected among rhizospheric entero-

cocci compared to clinical and animal isolates (2, 38), with

a frequency higher than 50% for erythromycin and tetra-

cycline. These results are similar to those reported by Muller

et al. (32) for plant-associated enterococci and could be

explained by the nature of the soil (non-agricultural soils)

from which the samples were obtained. In fact, a major route

of the dissemination of antibiotics to the environment is the

application of slurry from treated farm animals to soils.

Manure might contain fecal bacteria carrying resistance

genes, possibly on mobile genetic elements that could be

transferred to other soil bacteria (3, 9). Others mechanisms

of resistance to macrolides could be present in erythromycin-

resistant isolates, contrary to other studies (20, 37) indicating

that erm(B) is the most frequent resistance gene found among

erythromycin-resistant enterococci from the environment,

food, animals and humans. Some authors have postulated

that antibiotic resistance genes could be intrinsic in some soil

bacteria with other functions, as is the case of metabolic or

intercellular communication functions, and deviation from

the primary role of these genes could be a response to the

selective pressure of antibiotics (29).

We noted 7 tetracycline-resistant isolates. The overuse of

Fig. 1. Dendrogram obtained by UPGMA showing the different
pulsotypes, the new mutilocus sequence types (MLST), resistance
phenotypes and detected genes related to antibiotic resistance,
bacteriocin and virulence among enterococci isolated from
rhizospheres. ERY, erythromycin; CIP, ciprofloxacin; TET, tetra-
cycline, SXT, trimethoprim-sulfamethoxazole.

Table 1. Characteristics of the five Enterococcus faecium isolates selected for mutilocus-sequence-typing analysis (MLST)

Strain
Phenotype of 

resistance
atpA adk ddl gyd gdh purK pstS Sequence Type (ST) Genes detected

E. faecium Ery/Sxt/Cip 6 6 6 3 14 4 46 ST613 (new)

E. faecium Sxt/Cip/Van* 2 1 7 1 1 6 ST606 entA, entB

E. faecium Sxt/Cip/Van* 9 1 3 1 1 2 1 ST21

E. faecium Ery/Sxt 10 6 13 17 9 17 19 ST614 (new)

E. faecium Sxt/Cip/Tet/Van* 5 1 40 2 12 3 1 ST615 (new) tetM, hyl

Abbreviations and symbols: Ery, erytromycin; Cip, ciprofloxacin; Van*, vancomycin, intermediate resistance; Tet, tetracyclin, SXT, Trimethoprim-
Sulfamethoxazol; ST, sequence type; ent A, gene coding for enterocin A; ent B, gene related to enterocin B; hyl, gene coding for glycosil-hydrolase;
atpA, adk, ddl, gyd, gdh, purK and pstS, housekeeping genes for MLST of E. faecium.
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tetracycline in clinical therapy and animal husbandry allows

the accumulation of antibiotics in soils receiving animal waste

as fertilizer and consequently the emergence of resistant

bacteria by horizontal transfer of mobile genetic elements (3).

Interestingly, we detected four strains intermediately

resistant to vancomycin, for which the mechanisms of

resistance are still unknown and need to be studied in the

future. In fact, Kuhn et al. (25) did not detect vancomycin-

resistant enterococci in soil from different European regions,

but only in sewage water; however, Guardabassi et al. (18)

indicated that soil is a rich reservoir of genes conferring

glycopeptide resistance in clinical bacteria.

The overuse of antibiotics related to the family of

fluoroquinolones in veterinary therapy probably contributed

to the selection of resistant bacteria to ciprofloxacin. The

mechanism of resistance is mainly associated with mutations

in gyrA and parC genes causing the low affinity of quinolones

for their targets (6). The high frequency of resistance to

trimethoprim-sulfamethoxazole (100%) is explained by the

fact that this antibiotic has low intrinsic activity against

enterococci.

The virulence genes hyl and esp were not detected among

our enterococcal isolates, except for two strains that harbored

the hyl gene. According to Laverde Gomez et al. (27), this

gene is located on a megaplasmid, which is widely distributed

among clinically associated E. faecium and seems to be

restricted to this species.

The high rate of antimicrobial activity among the isolates

is in agreement with those already reported by Del Campo

et al. (11) and De Vuyst et al. (10). The majority of our

isolates showed the ability to produce bacteriocins, which

was partially explained by the presence of the genes entA

and entB. However, for Bac+ strains and those negative for

all bacteriocin tested genes, antimicrobial activity could be

related to new enterococcal bacteriocins or other non-tested

known genes. Enterococcal strains that produce bacteriocins

seem to have an ecological advantage when compared

with other non-producing bacteria which inhabit the same

ecosystem (38), or which compete for colonization and

invasion in a particular ecological niche. In addition,

enterococci are good acidifiers in the presence of available

sugars, and the inhibitory effect owing to acid production

could be considered an advantage in addition to bacteriocin

production, and is equally responsible for survival and

colonization.

We note that enterococci in rhizospheres are characterized

by high genomic diversity, detected by PFGE patterns. In

addition, the MLST method has demonstrated new genetic

lineages of E. faecium among rhizosphere isolates. Mean-

while, sequence type ST21 was also reported by Homan et

al. (19) in two vanA-containing E. faecium strains isolated

from a cat and a hospitalized human. Environmental

enterococci could therefore be considered as important source

of original emergent types exhibiting new mechanisms of

antibiotic resistance and as good candidates and suppliers of

antimicrobial compounds.
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