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ABSTRACT: The overall purpose of the project, of which
this study is a part, was to examine the feasibility of onion
waste as a support-substrate for the profitable production of
food-grade products. This study focused on the efficient
production of ethanol from worthless onions by transform-
ing the onion juice into onion liquor via alcoholic fermenta-
tion with the yeast Saccharomyces cerevisiae. The onion
bioethanol produced could be later used as a favorable
substrate for acetic fermentation to finally obtain onion
vinegar. Near-infrared spectroscopy (NIRS), coupled with
the multivariate curve resolution-alternating least squares
(MCR-ALS) method, has been used to reveal the composi-
tional and spectral profiles for both substrates and products
of alcoholic fermentation runs, that is, total sugars, ethanol,
and biomass concentration. The ambiguity associated with
the ALS calculation was resolved by applying suitable
inequality and equality constraints. The quality of the
results provided by the NIR-based MCR-ALS methodology
adopted was evaluated by several performance indicators,
including the variance explained by the model, the lack of fit
and the agreement between the MCR-ALS achieved solution
and the results computed by applying previously validated
PLS reference models. An additional fermentation run was
employed to test the actual predictive ability of the ALS
model developed. For all the components resolved in the
fermentation system studied (i.e., total sugars, ethanol, and
biomass), the final model obtained showed a high predictive
ability and suitable accuracy and precision, both in calibra-
tion and external validation, confirmed by the very good
agreement between the ALS responses and the reference
values (the coefficient of determination was, in all cases, very
close to 1, and the statistics confirmed that no significant
difference was found between PLS reference models and
the MCR-ALS methodology applied). Thus, the proven

reliability of the MCR-ALS model presented in this study,
based only on NIR measurements, makes it suitable for
monitoring of the key species involved in the alcoholic
fermentation of onion juice, allowing the process to be
modeled and controlled in real time.
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Introduction

The food industry generates large volumes of wastes and by-
products, both solids and liquid, resulting from processing
and commercialization stages. The disposal and environ-
mental problems relating to agro-food industry waste
management are as heterogeneous and varied as the large
variety of different waste materials produced by different
sources. The EU waste management policy, which is set
out in a series of Directives and Thematic Strategies,
is ultimately focused on waste prevention and recycling,
seeking to achieve a significant reduction in waste volumes,
to decouple waste generation from economic growth and to
shift to more sustainable consumption patterns (European
Commission, 2006). Nevertheless, the overall volumes of
waste streams are continuing to grow and, if current trends
persist, the amount of waste produced in Europe in 2020
is expected to nearly double the amount produced today
(European Environment Agency, 2005). Therefore, current
European environmental regulations need to be comple-
mented by alternative practices to minimize and valorize
waste and thus achieve more efficient resource use.
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In particular, waste handling and disposal represent a
extremely delicate problem for the vegetable industry, owing
to the perishable nature of their products and to the fact that
vegetable business depends on a fragile balance between
supply and demand. In the case of onion processing
industry, over 450,000 tonnes of onion waste are generated
annually in Europe, mainly from the UK, Holland, Italy, and
Spain, in such a way that the worthless onions account for
the 20% of the total production. This percentage varies
depending on the harvest, but typically the surplus of onions
generated is quite high. Moreover, the current quality levels
demanded by customers and the search for products with
high quality levels lead to even more worthless onions being
discarded each year during selection and calibration stages
(irregular shape, injured parts, non-commercial sizes).
Total onion waste (which essentially comprises a mixture of
worthless onions, damaged, whole onions and outer, dry
leaves and fleshy tissues) is not particularly suitable as fodder
due to their strong characteristic aroma and its disposal
commonly involves landfill which results in very high
economic costs and a harmful environmental impact owing
to the rapid development of phytopathogenic agents (e.g.,
sclerotium cepivorum, white rot). Moreover, their removal
by incineration either does not seem proper, since it
would be rather expensive as a result of the high percentage
of moisture in the onion waste. Thus, onion producers
and processors, regulatory authorities and consumer
groups are all interested in developing alternative means
for the valorization of the onion waste to promote its
profitable usage and its subsequent conversion into food-
grade products.

Onion (Allium cepa L., Alliaceae) consumption has
increased steadily (about 25%) over the past decade,
reaching a global production of over 44 million tonnes,
since onions have been promoted as a healthy, nutritious
and versatile food, and also thanks to the popularity of
ethnic cuisines. Sensory properties as well as health benefits
of onions and many other Allium species (stressing their
anti-cancer, anti-thrombosis and anti-cholesterol proper-
ties, and their antibacterial character) can be related to the
broad variety of active compounds contained (Griffiths
et al., 2002; Hertog and Hollman, 1996; Hollman and Arts,
2000; Keusgen, 2002).

The proportion of fermentable sugars contained in
onions indicates that onion wastes could be successfully
utilized as a favorable substrate in fermentation processes. In
fact, several studies have reported the valorization of
onion by-products as potential source of different valuable
food ingredients (Aguilera et al., 2006), including seve-
ral biological approaches dealing with ethanol, vinegar
(Horiuchi et al., 1999, 2000a,b, 2004; Park et al., 1999), and
lactic acid (Gardner et al., 2001; Roberts and Kidd, 2005)
production from onions by fermentation. Vinegar produced
from worthless onions has very interesting potential as a new
functional condiment, owing to its particular physiological
properties. Onion vinegar can be obtained from onion juice
by a twofold fermentation process: the anaerobic transfor-

mation of fermentable sugars to ethanol (alcoholic
fermentation) and the aerobic conversion of ethanol to
acetic acid (acetic fermentation). Nevertheless, the vinegar
production from onion waste poses some potential
difficulties due to the relatively low concentration of
sugars compared with other substrates commonly used in
fermentation processes, and to the high concentration
of antibacterial and antioxidant substances which might
affect the fermentative capacity. Therefore, the control
and optimization of ethanol and vinegar production from
worthless onions require to carefully monitor all significant
parameters involved in the respective fermentation process.

In spite of their reliability, the conventional analytical
methods usually employed for off-line determination of
both substrates and products during alcoholic fermentation
(high performance liquid chromatography for sugars and
gas chromatography for ethanol) may be fairly elaborate,
costly and/or time-consuming, requiring samples pre-
paration and even chemical manipulation, so that a
significant time delay between sampling and analysis results
is unavoidably introduced. Thus, simpler and faster
methods, such as those based on spectroscopic techniques,
capable of being implemented to provide real-time
measurements, would provide a very attractive and useful
alternative analytical tool for real-time monitoring and
optimization of fermentation processes.

In this context, near-infrared spectroscopy (NIRS) has
demonstrated great potential for cost-effective real-
time bioprocess monitoring (Blanco et al., 2004; Ferreira
et al., 2005; Garrido-Vidal et al., 2004; Tosi et al., 2003;
Vaidyanathan et al., 2001). NIRS is a non-invasive and rapid
method, which allows the simultaneous determination
of multiple constituents from every single analysis, even
without any sample pre-treatment. Nevertheless, it should
be borne in mind that the actual applicability of NIRS to on-
line process control and monitoring depends crucially
on chemometrics, which supplies the suitable tools for
gathering and extracting significant information from highly
overlapped and noisy NIR spectra, and to improve method
specificity and sensitivity. Partial least squares (PLS) re-
gression can be considered, without question, to be the most
popular and widely applied regression technique used in
NIRS multivariate analysis. However, in order to develop
reliable and robust PLS calibration models based on NIR
measurement for predicting the diverse significant para-
meters involved in a fermentation process, the correspond-
ing calibration reference values must be assessed beforehand
using traditional analysis methods (i.e., PLS regression is not
applicable if the response variables associated with the
spectral data are not available).

There are, however, alternative chemometric methodol-
ogies exempted from this applicability limitation, such as the
so-called multivariate curve resolution methods (MCR),
which do not precise any reference analytical information
to extract from spectral data relevant information about
chemical changes occurring during complex evolving
processes (Jiang et al., 2004). Multivariate self-modeling
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curve resolution describes a family of different techniques
and algorithms, of which alternating least squares (ALS) is
the most widely applied, the aim being to estimate pure
component spectra and composition profiles from data
matrices of unresolved mixture spectra recorded from
evolutionary systems when no prior or little information is
available about the nature and composition of these
mixtures. MCR methodology has been successfully applied
to solve a broad variety of specific challenges in process
analysis (e.g., chemical reactions, industrial processes,
chromatographic elutions, or environmental data), also
including approaches for monitoring fermentation pro-
cesses (Blanco et al., 2006).

This study focuses on the potential to convert worthless
onions and by-products discarded as wastes into added-
value products such as onion vinegar and, more specifically,
on the first essential step of the fermentation system
involved in onion vinegar production: the effective pro-
duction of ethanol from juice extracted from worthless
onions via alcoholic fermentation. In order to find a suitable
methodology to monitor this process in real time, and given
that the combination of NIR spectroscopy with MCR-ALS
methodology appeared to have great potential for cost-
effective bioprocess monitoring, the objective of the present
study is precisely to examine the feasibility of implementing
a NIR-ALS-based approach for predicting the composi-
tional profiles of key species in alcoholic fermentations from
onion juice, which would enable the process to be controlled
in real time to ensure efficient ethanol yield. Thus, the main
strength of the monitoring approach proposed here has to
do precisely with unifying under the same methodology the
recording of NIR spectra during alcoholic fermentation
nearly in real-time and the application of MCR-ALS to the
analysis of monitored fermentation runs. Thus, a final and
reliable model (based only on NIR measurements) was
developed which would allow for a straightforward future
determination of both substrates and products in alcoholic
fermentation processes and contribute to the practical
valorization of onion wastes by transforming them into
onion vinegar.

Materials and Methods

Multivariate Curve Resolution

We will only provide an introduction to the MCR-ALS
method here; a more detailed description of the algorithm
can be found in literature (De Juan and Tauler, 2003; Tauler,
1995).

In MCR, a bilinear decomposition of an experimental
spectroscopic data matrix D (with I mixture spectra in rows
measured at J wavelengths) is generally performed using the
following model equation:

D ¼ CST þ E (1)

where C is an I�K matrix describing the variation of the
K chemical species contributing to the signal in the
I different observations of the data matrix (concentration
profiles), and ST is a K� J matrix describing how the
response of these K components considered changes with
respect to the J different wavelengths of the data matrix
(pure spectra profiles). The dimension relating to the
number of spectra recorded often coincides, for an evolving
system, with the dimension related to the temporal
variation. E is the residual matrix which contains the
variance of the data unexplained by CST (i.e., due to no
analyte) and is assumed to be independent and have
constant variance.

Thus, according to this bilinear model, resolving matrix
D implies firstly determining the number of analytes (K)
responsible for the observed data variance (i.e., the analytes
whose concentrations change with time and modify the
registered signal), then obtaining the composition profiles of
these species (C), and, finally, finding the pure spectra
profiles of these components (ST).

Nevertheless, the solution to this bilinear decomposition
for both concentration and spectral profiles is not unique
if no additional information is available, since it is subject to
rotational and intensity (scale) ambiguities (Tauler et al.,
1995). Fortunately, such ambiguities can be avoided, thus
considerably limiting the range of possible solutions, by
applying suitable constraints based on the particular nature
and available prior knowledge about the target system, to
model the shape of the concentration and/or spectral
profiles. Two types of constraints are commonly used in
MCR methods: inequality (natural) and equality con-
straints. Inequality constraints include:

(a) Non-negativity constraints: the concentration profiles of
the chemical components must be positive to have
physical meaning, and/or the pure component spectra
must be non-negative.

(b) Unimodality constraints: the concentration profiles have
unimodal peaks or cumulative shapes.

(c) Closure or mass balance constraints: the sum of all
concentrations remains constant throughout the pro-
cess.

Equality constraints refer to the possibility of fix known
values in the concentration profiles or in the spectra, for
example, pure spectra of known compounds or selectivity/
local rank information.

MCR-ALS methodology is based on the iterative
optimization of the resolved concentration profiles and
spectra subject to selected constraints, hence, to achieve a
result with chemical significance that fits satisfactorily
the experimental behavior observed. This optimization
is carried out for a previously determined number of
significant components in the system (chemical rank) and
using initial estimates of either concentration or spectral
profiles. The initial starting guess of C or ST can be obtained
by a number of exploratory procedures, including evolving
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factor analysis (EFA) (Maeder, 1987), needle search
(Gemperline, 1986) or simple to use interactive self-
modeling mixture analysis (SIMPLISMA) (Windig and
Guilmet, 1991) derived methods. The ALS optimization
algorithm consists of repeatedly alternating the following
two steps:

(a) From the initial or intermediate estimate of concentra-
tion profiles, the spectra profiles are obtained from the
least squares resolution:

ST ¼ pinvðCÞ � D (2Þ
(b) From the initial estimation of pure spectra or from the

spectral profiles of the previous step, a new estimate of
the concentration profiles is calculated by least squares:

C ¼ D � pinvðSTÞ (3Þ

Each application of these two ALS steps produces an
improved estimate of the constrained concentration and
spectral profiles, so that a simple iterative refinement pro-
cedure is carried out until no further improvement in the
estimates is found (i.e., the difference between the residual of
one iteration and the next is less than a prefixed convergence
value) or a maximum number of iterations is reached.

The performance of the optimization procedure can be
evaluated by several diagnostic parameters, such as the
percent of lack of fit (LOF), the percent of variance
explained (EV) and the standard deviation of residuals
respect experimental data (s):
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where dij represents the elements in experimental data
matrix D, and d̂ij the corresponding values computed by
using the MCR-ALS model according to Equation (1).

Medium and Strains

Red onions from the Figueres variety were used as
raw material for alcoholic fermentation. The product
had an initial pH of 5.09 and 9.178Brix. Onion juice
for fermentation was obtained from worthless onions as
follows. Onions were cut and the roots and stalks were
separated. Onions were then triturated in a vertical cutter
with a dicing grid of 10 mm� 10 mm. The pulp was then
pressed with a manual crusher. The extract was adjusted to

pH < 4.6 by adding citric acid (0.10%), packed in heat-
sealed pouches of 4 L and pasteurized at 1008C during 8 min.

A commercial Saccharomyces cerevisiae strain, trade mark
Uvaferm-CM, was used to inoculate the onion juice in the
alcoholic fermentation.

Batch Fermentation Runs

Two separate fermentation runs were conducted in a 20 L
bioreactor furnished with a double jacket through which
water was circulated for thermostating. Processes were run
without aeration (in order to minimize potential losses
of ethanol by evaporation) and agitation was controlled at
300 rpm during the fermentation.

The working volume was 10 L. The lyophilized strains
were added to approximately 800 mL of onion juice and
poured directly into the fermentor at 308C. No other
carbohydrates or nutrients were added to the original juice
extracted from worthless onions.

Temperature was carefully controlled during the process
and was set to 308C. Both fermentation processes were
monitored during around 40 h to ensure the completion of
alcoholic fermentation.

NIR Measurements

NIR spectra were on-line recorded on a near-infrared
spectrophotometer NIRSystems 5000 (Foss NIRSystems,
Raamsdonksveer, The Netherlands) equipped with a liquid
analyzer module, using a 2 mm flow cell. The instrument
was controlled by a compatible PC, and Vision v. 2.22
software package was used for data acquisition. Spectra were
collected directly from uncentrifuged samples, at regular
time intervals (45 min). Each spectrum was obtained from
32 scans performed at 2 nm intervals over the wavelength
range 1,100–2,500 nm. When NIRS is applied to liquid
samples, temperature control is essential to assess the
reproducibility of spectra. The heater of the liquid analyzer
module was set to maintain the temperature of the sample to
be measured constant at 438C. The software was pro-
grammed to maintain the flow cell inside the liquid analyzer
module for 105 s before scanning to allow the sample to
reach the desired temperature. In order to avoid potential
interferences, automated clean cycles were performed
between individual spectra collection (sample cell was
cleaned with diluted sodium hypochlorite chlorine (10%)).
Figure 1 shows the evolution of the NIR absorbance
spectra during the alcoholic fermentation of onion juice (in
particular, the variation of the spectra corresponding to the
fermentation batch used for the MCR-ALS model develop-
ment is displayed).

Data Processing

Two segments of the whole wavelength range 1,100–2,500 nm
were removed in all the spectra: first, the region from
1,880 to 2,080 nm due to the saturation of the signal
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caused by the strong combination band of O–H bonds
from water (1,950 nm), and second, the zone from
2,300 to 2,500 nm because of its considerably low signal/
noise ratio.

A total of two fermentation runs were completed
and monitored by NIRS in the present study. The first
monitored fermentation run (calibration run) was used to
develop the MCR-ALS model best fitting the experimental
system, by incorporating suitable inequality and equality
constraints. Then, an additional fermentation run (a
validation run conducted under similar conditions) served
to evaluate the actual reliability and applicability of the
ALS model previously obtained (which only relied on NIR
measurements) to monitoring and predicting the concen-
tration of both substrates and products of the alcoholic
fermentation of onion wastes.

Chemometric analysis of experimental data was per-
formed using various functions and toolboxes implemented
in MATLAB1 technical computing language, version
7.0 (Mathworks, Natick, MA). Specifically, all calculations
relating to MCR-ALS were carried out using the software
GUIPRO (Gemperline and Cash, 2003), which runs under a
MATLAB1 6.0 computer environment and higher.

Each individual experimental NIR spectrum was cor-
rected prior to any calculation by offset correction (i.e., by
subtracting its lowest absorbance value from the absor-
bances at the rest of wavelengths) in order to remove
constant background differences and any vertical shift in the
spectra (Fig. 2).

The chemical rank (rank in absence of experimental
noise), which indicated the number of significant compo-

nents in the system studied, was estimated by applying
singular value decomposition (SVD) (Malinowski, 1991).

The initial starting estimates of profiles were selected
using the needle search method as introduced in the
GUIPRO package.

Aside from the parameters already mentioned for testing
the performance of the ALS model finally obtained, and
taking into account that reference concentration of total
sugars, ethanol and biomass could be determined by using
previously validated PLS regression models (González-Sáiz
et al., 2007), the quality of the results provided by the MCR-
ALS approach in the concentration domain was evaluated
via the coefficient of determination (R2) between the ALS
provided and the PLS reference values.

Results and Discussion

Observations on NIR Spectra

Figure 1 shows the spectra of the samples collected at
different times throughout the fermentation process. The
dominant feature observed in the raw spectra was the water
absorption band at approximately 1,450 nm, which was
related to the first overtone band of the –OH stretching
mode. This intense, broad band masks significant informa-
tion in the spectra corresponding to much weaker and
overlapped bands attributable to the hydroxyl bond of other
main constituent present in the culture medium (ethanol
and carbohydrates). Scattering effects due to biomass
accumulation in the medium during alcoholic fermentation

Figure 1. Evolution of the absorbance NIR spectra over time along the alcoholic fermentation batch used for calibration purposes.
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gave rise to a slight baseline shift in the raw absorbance
spectra, which especially affects to low-absorbance regions
such as that ranging from 1,100 to 1,300 nm (Fig. 2a).
Changes in the spectra with time at 1,680–1,700 nm (Fig. 3a)
and 2,200–2,300 nm (Fig. 3b) regions (after applying offset
correction to eliminate any vertical shift in the spectra)
can be ascribed, respectively, to the first overtone for the
C–H bonds and to the combination bands for the –OH
group in ethanol structure, in such a way that spectral
absorbance increases in these regions as the fermentation
process progresses and ethanol is produced.

Number of Significant Components

As regards the rank of the studied system, and taking
into account that the singular values associated with the
significant components are expected to be much greater
than other noisy contributions to the variance of the
data, the number of relevant factors to be considered was
estimated by simply inspecting the eigenvalues computed by
SVD. The eigenvector plot of normalized eigenvalues
corresponding to the first five components for the 1,100–
1,880 nm/2,080–2,300 nm absorbance regions is presented
in Figure 4. The first eigenvector represented the variation of
sugar content in the culture medium, in such a way that
the main sugars contained in the onion juice (glucose,
fructose and sucrose), all consumed as substrates in

alcoholic fermentation, appeared grouped together as
one single, global component. As far as the second and
third eigenvectors are concerned, they described clearly
the change with time of the concentrations of ethanol
and biomass, respectively. In contrast, the erratic trends
exhibited by higher order eigenvector (e.g., those corre-
sponding to factors 4 and 5) indicated that they had no
chemical meaning. Thus, the rank analysis of the NIR data
from the calibration run allowed us to conclude that there
were only three significant components (K ¼ 3) in the
system, instead of five which was the number of main species
involved in the fermentation process (glucose, fructose,
sucrose, ethanol, and biomass). The reason for this rank
deficiency is that the concentration profiles of the absorbing
sugars are not independent since total sugar concentration
(the sum of the glucose, fructose, and sucrose concentra-
tions) is actually the essential substrate of alcoholic
fermentation.

Selection of ALS Constraints

After determining the number of relevant factors for the
alcoholic fermentation process studied, and as the first step
to commence MCR-ALS iteration, the initial estimates of
spectral profiles were computed based on the needle
search method. Then, The P-ALS algorithm implemented
in GUIPRO was applied to absorbance spectra recorded

Figure 2. Absorbance mesh detail in the 1,100–1,300 nm region (a) before and (b) after applying offset correction on calibration NIR spectra.
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Figure 4. Eigenvector plot corresponding to the first five factors for the spectral range examined in the absorbance spectral mode. [Color figure can be seen in the online

version of this article, available at www.interscience.wiley.com.]

Figure 3. Absorbance mesh detail (a) in the 1,680–1,770 nm, and (b) in the 2,200–2,300 nm regions after applying offset correction on NIR spectra.
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during alcoholic fermentation constraining all the concen-
tration profiles to be non-negative and unimodal, that is,
the temporal evolution of all the components (total
sugars, ethanol and biomass) during fermentation process
should be fitted to a growth/decay profile exhibiting a single
maximum value. The spectra of all the components were
forced to be non-negative, as corresponds to NIR spectro-
scopy properties. Moreover, the effect of incorporating
equality constraints for all components was additionally
explored as an attempt to resolve the problem of rotational
and intensity ambiguities. Thus, the first spectrum recorded
immediately before inoculation of the yeasts was assigned
to the component total sugars. The last sample of the
calibration batch, which was taken once the fermentation
process was completed and all sugars were consumed from
the medium, was properly filtered to remove the accumu-
lated biomass, in such a way that the corresponding
spectrum recorded from the resulting filtered sample was
used as reference spectrum for the component ethanol.
Finally, the difference spectrum obtained from subtracting
the reference spectrum for ethanol from the last spectrum
recorded during the batch was assigned to biomass.

Resolution Results

The application of the ALS procedure to the calibration
fermentation run, using the above-mentioned constraints,
allowed the resolution of both the concentration profiles
(Fig. 5) and pure spectra (Fig. 6) associated to each
significant component in the target system. The recovered

concentration and spectral profiles satisfactorily reproduced
the experimental data: 99.9959% of the variance asso-
ciated with the experimental NIR data was successfully
explained by the product CST. Additional figures of merit
that were used to evaluate the fit quality were the percentage
of lack of fit, which had a value of 0.0993%, and the standard
deviation of residuals respect experimental data, which was
equal to 0.0012. These extremely low LOF and s values
provided a global measure of the residual ‘‘noise’’ and
confirmed that most variability in the experimental spectra
was captured by the product CST.

It should be noted that the concentration profiles resolved
by ALS method were not directly obtained as true
concentration but rather as profile changes in concentration,
and had the same units as the intensities of the data.
However, the conversion of the recovered profiles to real
scale for the process can be suitably performed by taking into
account the maximum and minimum concentration values
predicted by the respective PLS reference model for each
constituent, so that the concentration profiles represented
in Figure 5 are effectively on real scale. Figure 7 shows
graphically the results provided by the ALS model
comparing the concentration values computed by MCR-
ALS for each component with the corresponding values
predicted by PLS regression, in such a way that it can be used
as an additional tool to evaluate the quality of the model
developed in the present study. A linear regression of the
ALS computed values for each modeled component versus
PLS reference values was applied in such a way that Figure 7
also includes the slope, intercept and determination
coefficient (R2 value) between the NIR-ALS computed

Figure 5. Resolved concentration profiles for total sugars, ethanol and biomass, extracted by the MCR-ALS procedure (all concentrations on a real scale). [Color figure can

be seen in the online version of this article, available at www.interscience.wiley.com.]
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Figure 6. Pure component spectra for total sugars, ethanol, and biomass recovered from NIR absorbance spectra using MCR-ALS both with inequality and equality

constraints. [Color figure can be seen in the online version of this article, available at www.interscience.wiley.com.]

Figure 7. Correlation plot of MCR-ALS computed versus PLS reference values for each resolved component: (a) total sugars, (b) ethanol, and (c) biomass, when working with

the alcoholic fermentation batch used for calibration. Figures of merit for the relationship between NIR computed values provided by the resulting ALS model and the corresponding

reference values are shown for each modeled component, as well as the 95% confidence interval of the linear fitting. [Color figure can be seen in the online version of this article,

available at www.interscience.wiley.com.]
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values and the respective values obtained by PLS calibration
for each resolved species, which may be used as useful
statistical measurements to better assess model performance
and confirm the feasibility of using it to control fermenta-
tion in real time. Prediction intervals at the 95% confidence
level were computed in all cases to properly estimate
reliability and uncertainty. The very good agreement
between the ALS and PLS values in all cases (the coefficient
of determination, R2, was 99.78%, 99.64%, and 97.58% for
total sugars, ethanol and biomass, respectively) revealed that
the inclusion of additional information in the form of the
selected equality constraints significantly improved the
reliability of the final ALS model to monitoring alcoholic
fermentation, thus enabling accurate tracking of the total
sugar consumption and ethanol and biomass production
during the process.

The optimal pure spectra profiles resolved by MCR-ALS
from the calibration run were then used to predict the
concentration profiles for a new fermentation run mon-
itored by NIRS (Fig. 8), performed under similar conditions,
in order to confirm the fitness of the proposed methodology
testing its performance when applied to an external vali-
dation run never employed in the ALS model development.
The concentration profiles for this additional fermentation
batch process were computed by least squares in accordance
with the ALS model equation:

Cnew ¼ Dnew � pinvðSTÞ (5)

where Dnew was the experimental NIR data matrix
corresponding to the validation run, Cnew was the predicted
concentration profiles for the new spectroscopic data,

and pinv(ST) was the pseudo-inverse of the pure spectra
profiles previously optimized based on the calibration run.
In Figure 9, the component profiles of alcoholic fermenta-
tion estimated using the proposed curve resolution model in
the analysis of the batch NIR spectra used for validation
are shown. The ALS model developed in this study proved
to be highly reliable for predicting unknown fermentation
samples, since, once the new concentration profiles had been
resolved, the variance explained by the product CnewST was
99.9998%, whereas the low values of both the percentage of
lack of fit and the standard deviation of the residuals with
regard to experimental signals (0.1354% and 0.0017%,
respectively) again proved that variability in the NIR data
on-line recorder during fermentation process was accurately
modeled. Figure 10 shows graphically the results provided
by the curve resolution approach for the test run, in such a
way that they could be compared with respective results
from the previously validated PLS models used as reference.
As in the case of the calibration run, in order to gain
further insight into the accuracy of the MCR-ALS model
developed, a linear regression of the ALS predicted values for
each fermentation component versus reference values for
the external validation run was applied, and a number of
regression statistics such as the slope, intercept, determina-
tion coefficient (R2), and confidence limits for the slope and
intercept at the 95% confidence level were calculated from
each regression plot. These correlation plots in validation
confirmed the reliability and accuracy of the proposed ALS
model as it can be inferred from the corresponding R2 values
for resolved components, in all cases very close to 1 (99.38%,
99.70%, and 94.13% for total sugars, ethanol and biomass,
respectively). Therefore, it may be argued that the model

Figure 8. Evolution of the absorbance spectra over time along the alcoholic fermentation batch used for validation purposes.
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Figure 9. Concentration profiles predicted for total sugars, ethanol, and biomass by applying the MCR-ALS model to the fermentation batch used as validation run. [Color

figure can be seen in the online version of this article, available at www.interscience.wiley.com.]

Figure 10. Correlation plot of MCR-ALS predicted versus PLS reference values for each resolved component: (a) total sugars, (b) ethanol, and (c) biomass, when working

with the alcoholic fermentation batch used for external validation. Figures of merit for the relationship between NIR predicted values provided by the resulting ALS model and the

corresponding reference values are shown for each modeled component, as well as the 95% confidence interval of the linear fitting. [Color figure can be seen in the online version

of this article, available at www.interscience.wiley.com.]
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developed represents a very useful tool for simultaneously
monitoring the evolution of the main species involved in the
alcoholic fermentation of onion juice.

Conclusions

The present work focused on the production of ethanol
from the juice extracted from worthless onions via alcoholic
fermentation by the yeast S. cerevisiae as an alternative
strategy for adding value to onion waste, and on the search
for a suitable methodology for monitoring such a process in
real time.

The results reported in this study have shown that the ALS
analysis of NIR spectra recorded during batch processes
can be successfully applied to reveal the kinetic variables
of alcoholic fermentation (i.e., total sugars, ethanol, and
biomass) in spite of the complexity inherent in the study
of biological systems. The goodness of the concentration
profiles recovered for all the components modeled was
evaluated by comparison with previously validated PLS
reference models. The ALS model developed was also
applied in a test fermentation run carried out under similar
conditions in order to better validate its actual reliability
and applicability to predicting the concentration of both
substrates and products. Several equality and inequality
constraints were successfully introduced to improve final
resolution and to minimize the ambiguities related to MCR-
ALS methodology.

The use of the simple and reliable monitorization strategy
proposed in the present study (developed only from NIR
measurements) has the potential of significantly reducing
analytical time, efforts and costs of assessing key species
involved in fermentation, allowing near-real-time determi-
nation fundamental for the control and global optimization
of the process.
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