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Garling sequence spaces

Fernando Albiac, José L. Ansorena and Ben Wallis

Abstract

The aim of this paper is to introduce and investigate a new class of separable Banach spaces
modeled after an example of Garling from 1968. For each 1 � p < ∞ and each nonincreasing
weight w ∈ c0 \ �1, we exhibit an �p-saturated, complementably homogeneous, and uniformly
subprojective Banach space g(w, p). We also show that g(w, p) admits a unique subsymmetric
basis despite the fact that for a wide class of weights it does not admit a symmetric basis. This
provides the first known examples of Banach spaces where those two properties coexist.

1. Introduction, notation, and terminology

Let 1 � p < ∞ and let w = (wn)∞n=1 be a weight, that is, a sequence of positive scalars. Assume
that w is decreasing. Given a sequence of scalars f = (an)∞n=1 we put

‖f‖g(w,p) = sup
φ∈O

( ∞∑
n=1

|aφ(n)|pwn

)1/p

where O denotes the set of increasing functions from N to N. We consider the normed space

g(w, p) := {f = (an)∞n=1 : ‖f‖g(w,p) < ∞}.
A straightforward application of Fatou’s lemma gives that g(w, p) is a Banach space. Imposing
the further conditions w ∈ c0 and w /∈ �1 will prevent us, respectively, from having g(w, p) = �p
or g(w, p) = �∞. We will assume as well that w is normalized, that is, w1 = 1. Thus, we
put

W := {(wn)∞n=1 ∈ c0 \ �1 : 1 = w1 � w2 > · · ·wn � wn+1 � · · · > 0} .
The germ of this family of spaces goes back to [7], where Garling showed that for
w = (n−1/2)∞n=1 the canonical unit vectors of g(w, 1) form a subsymmetric basic sequence that
is not symmetric. Indeed, until then these two concepts were believed to be the same. Other
Garling sequence spaces have appeared in past literature since then. In [11], Pujara investigated
a variation of g(w, 2) for w = (n−1/2)∞n=1. He proved that those spaces are uniformly convex,
and that their canonical basis is subsymmetric but not symmetric. Dilworth et al. [6] studied
derived forms of g(w, 1) for various choices of weights w that yield spaces in which the canonical
basis is 1-greedy and subsymmetric but not symmetric.

Of course, all these spaces are inspired in sequence Lorentz spaces defined as

d(w, p) = {f = (an)∞n=1 : ‖f‖d(w,p) < ∞},
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where, if Π is the set of permutations on N,

‖f‖d(w,p) = sup
σ∈Π

( ∞∑
n=1

|aσ(n)|pwn

)1/p

.

The main difference between Lorentz sequence spaces and Garling sequence spaces is that,
unlike for d(w, p), the canonical basis of g(w, p) is not symmetric. We will tackle this issue in
Section 5. The canonical basis is subsymmetric, though. Moreover, while d(w, p) is known to
admit a unique symmetric basis, in Section 4 we prove that g(w, p) has a unique subsymmetric
basis. Along the way to proving the uniqueness of subsymmetric basis, we will show in Section 3
that many structural results of d(w, p) carry over to g(w, p). To be precise, we will show
that g(w, p) is complementably homogeneous and uniformly complementably �p-saturated.
As a consequence of the latter, g(w, p) is uniformly subprojective. Both subprojectivity and
complementable homogeneity have been used in the study of the closed ideal structure of
the algebra of endomorphisms of a Banach space. Subprojectivity was introduced in [13]
in order to study the closed operator ideal of strictly singular operators. For instance, if X
and Y are Banach spaces, Y is subprojective, and T ∈ L(X,Y ), then the dual operator T ∗

is strictly singular only if T is. If furthermore X = Y and is reflexive, the converse holds,
that is, if X is reflexive then T ∈ L(X) is strictly singular if and only if T ∗ is (see [10]
for further discussion of subprojectivity). Complementable homogeneity, meanwhile, has been
used in several recent papers (cf., for example, [5, 9, 14]) to show the existence of a unique
maximal ideal in L(X). In particular, the set of all X-strictly singular operators — those for
which the restrictions to subspaces isomorphic to X are never bounded below — acting on
a complementably homogeneous Banach space X forms the unique maximal ideal in L(X)
whenever it is closed under addition. By an argument in [8, Corollary 5.2] and the second
paragraph of the proof of [8, Theorem 5.3], it follows that the set of g(w, p)-strictly singular
operators forms the unique maximal ideal in L(g(w, p)).

We close this introductory section by setting the notation and recalling the terminology that
will be most heavily used. We will write F for the real or complex field and denote by (en)∞n=1 the
canonical basis of FN, that is, en = (δk,n)∞k=1, where δk,n = 1 if n = k and δk,n = 0 otherwise.
On occasion we will need to compare linear combinations of the vectors (en)∞n=1 with respect
to different norms; thus to avoid confusion we may denote by (dn)∞n=1, (fn)∞n=1, and (gn)∞n=1

the vectors (en)∞n=1 when seen, respectively, inside the spaces d(w, p), �p, or g(w, p). Also for
simplicity, when p and w are clear from context the norms in the spaces d(w, p) and g(w, p)
will be denoted by ‖ · ‖d and ‖ · ‖g, respectively. As it is customary, we write c00 for the space of
all scalar sequences with finitely many nonzero entries. If (xn)∞n=1 is a basis for a Banach space
X, and f =

∑∞
n=1 anxn ∈ X, then the support of f is the set supp(f) := {n ∈ N : an �= 0} of

indices corresponding to its nonzero entries. Given a basic sequence (zn)∞n=1 in X, 〈zn〉∞n=1

denotes its linear span and [zn]∞n=1 will be its closed linear span.
Given families of positive real numbers (αi)i∈I and (βi)i∈I , the symbol αi � βi for i ∈ I

means that supi∈I αi/βi < ∞, while αi ≈ βi for i ∈ I means that αi � βi and βi � αi for
i ∈ I. Now suppose (xn)∞n=1 and (yn)∞n=1 are basic sequences in X and Y , respectively. If for
some positive C, ∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥
X

� C

∥∥∥∥∥
∞∑

n=1

anyn

∥∥∥∥∥
Y

, (an)∞n=1 ∈ c00,

we say that (yn)∞n=1 C-dominates (xn)∞n=1, and write (xn)∞n=1 �C (yn)∞n=1. When the value
of the constant is irrelevant we will simply say that (yn)∞n=1 dominates (xn)∞n=1, and write
(xn)∞n=1 � (yn)∞n=1. Whenever (xn)∞n=1 �C (yn)∞n=1 and (yn)∞n=1 �C (xn)∞n=1, we say that
(xn)∞n=1 and (yn)∞n=1 are C-equivalent, and write (xn)∞n=1 ≈C (yn)∞n=1 or, simply, (xn)∞n=1 ≈
(yn)∞n=1.
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By a sign we mean a scalar of modulus one. A basic sequence (xn)∞n=1 is called unconditional
if (xσ(n))∞n=1 is a basic sequence for any σ ∈ Π. It is well known that a basic sequence (xn)∞n=1 is
unconditional if and only if there exists a constant C � 1 so that (xn)∞n=1 ≈C (εnxn)∞n=1 for any
choice of signs (εn)∞n=1. A basic sequence (xn)∞n=1 is called subsymmetric if it is unconditional
and equivalent to all its subsequences. It is called symmetric whenever it is equivalent to each
of its permutations. If (xn)∞n=1 is a subsymmetric basic sequence then there is a constant C � 1
such that (xn)∞n=1 ≈C (εnxφ(n))∞n=1 for any φ ∈ O and any choice of signs (εn)∞n=1. In this case
we say that (xn)∞n=1 is C-subsymmetric. Similarly, if (xn)∞n=1 is symmetric then there is C � 1
such that (xn)∞n=1 ≈C (εnxσ(n))∞n=1 for any choice of signs (εn)∞n=1 and any σ ∈ Π, in which
case we say that (xn)∞n=1 is C-symmetric. Note that C-symmetry implies C-subsymmetry,
which in turn implies C-unconditionality. Note also that every subsymmetric basis (xn)∞n=1 is
semi-normalized, that is, ‖xn‖ ≈ 1 for n ∈ N.

Given a function φ we denote by R(φ) its range. Let Of be the set of increasing functions from
an integer interval [1, . . . , r] ∩ N into N. Given φ ∈ Of we denote by r(φ) the largest integer
in its domain. A function in Of is univocally determined by its range. For w = (wn)∞n=1,
1 � p < ∞, and f = (an)∞n=1 ∈ FN we have

‖f‖pg = sup
φ∈Of

r(φ)∑
n=1

|aφ(n)|pwn. (1.1)

A Banach space with an unconditional (respectively, subsymmetric or symmetric) basis is
said to have a unique unconditional (respectively, unique subsymmetric or unique symmetric
basis) if any two semi-normalized unconditional (respectively, subsymmetric or symmetric)
bases of X are equivalent.

Given infinite-dimensional Banach spaces X and Y , L(X,Y ) denotes the space of bounded
linear operators from X into Y , and we will put L(X) to denote the space L(X,X). The symbol
X ≈ Y means that X and Y are isomorphic. The space X is said to be Y -saturated (or heredi-
tarily Y ) if every infinite-dimensional closed subspace of X admits a further subspace Z ≈ Y . If,
in addition, there is a constant C such that Z can be chosen C-complemented in X we say that
X is uniformly complementably Y -saturated. A Banach space X is said to be complementably
homogeneous whenever for every closed subspace Y of X such that Y ≈ X, there exists another
closed subspace Z such that Z is complemented in X, Z ≈ X, and Z ⊆ Y . A Banach space
X is said to be uniformly subprojective (see [10]) if there is a constant C such that for every
infinite-dimensional subspace Y ⊆ X there is a further subspace Z ⊆ Y that is C-complemented
in X.

Most other terminology is standard, such as might appear, for instance, in [1].

2. Preliminaries

In order to exhibit some embeddings involving Garling sequence spaces we will invoke the
weak Lorentz sequence space d∞(w, p) for w ∈ W and 1 � p < ∞, consisting of all sequences
f = (an)∞n=1 ∈ c0 so that

‖f‖d∞(w,p) = sup
n

(
n∑

k=1

wk

)1/p

a∗n < ∞,

where (a∗n)∞n=1 denotes the decreasing rearrangement of f . Note that d∞(w, p) is a quasi-Banach
space (see [3]).
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Lemma 2.1. Suppose 1 � p < ∞ and w = (wn)∞n=1 ∈ W. A sequence f = (an)∞n=1 ∈ FN

belongs to the space d∞(w, p) if and only if Df := supn ‖
∑n

k=1 akek‖d∞(w,p) < ∞, in which
case ‖f‖d∞(w,p) = Df .

Proof. We may suppose {n ∈ N : an �= 0} is infinite (otherwise there is nothing to prove).
Put sn = (

∑n
k=1 wk)1/p. Assume Df < ∞. In order to show that f ∈ c0 it suffices to see that

for each ε > 0 the set {k ∈ N : |ak| � ε} is finite. Let m ∈ N be such that Df < εsm. For a
given j, denote by (b∗n)∞n=1 the decreasing rearrangement of

∑j
n=1 anen. We have b∗m < ε and

so |{n � j : |an| � ε}| � m− 1. Since j is arbitrary, we are done.
Now we consider the decreasing rearrangement (a∗n)∞n=1 of f . Given n ∈ N, pick r ∈ N such

that |ak| < a∗n for k > r. We have a∗n = c∗n, where (c∗n)∞n=1 is the decreasing rearrangement of∑r
n=1 anen. Therefore a∗nsn � Df . In other words, f ∈ d∞(w, p) and ‖f‖d∞(w,p) � Df .
The reverse inequality and the converse implication are obvious. �

Proposition 2.2. Let 1 � p < ∞ and w ∈ W. Then

�p � d(w, p) ⊆ g(w, p) ⊆ d∞(w, p),

with norm-one inclusions.

Proof. The inclusion �p � d(w, p) is clear and well known.
Let f = (an)∞n=1 ∈ FN and φ ∈ Of . Pick σ ∈ Π extending φ. Then

r(φ)∑
n=1

|aφ(n)|pwn =
r(φ)∑
n=1

|aσ(n)|pwn �
∞∑

n=1

|aσ(n)|pwn � ‖f‖pd(w,p).

Taking the supremum on φ we get ‖f‖g(w,p) � ‖f‖d(w,p).
Now let f = (an)∞n=1 ∈ c00. For a given n ∈ N there is φ ∈ Of with r(φ) = n and |aφ(k)| � a∗n

for 1 � k � r(φ) = n. We have

a∗n

(
n∑

k=1

wk

)1/p

�
(

n∑
k=1

|aφ(k)|pwk

)1/p

� ‖f‖d(w,p),

so that ‖f‖d∞(w,p) � ‖f‖g(w,p). An appeal to Lemma 2.1 concludes the proof. �

Before proceeding with the proof of the aforementioned subsymmetry of the canonical basis
of Garling sequence spaces, let us introduce some linear maps that will be handy.

• Given a sequence of signs ε = (εn)∞n=1 we define Mε : FN → FN by

Mε((an)∞n=1) = (εnan)∞n=1.

• The coordinate projection on A ⊆ N is defined by

PA : FN → FN, PA((an)∞n=1) = (λnan)∞n=1,

where λn = 1 if n ∈ A and λn = 0 otherwise.
• Given φ ∈ O we define Vφ : FN → FN by Vφ((an)∞n=1) = (aφ(n))∞n=1, and
• Uφ : FN → FN by Uφ((an)∞n=1) = (bn)∞n=1, where

bn =
{
ak if n = φ(k),
0 if n /∈ R(φ).

Remark 1. Given φ ∈ O and n ∈ N, we have Uφ ◦ Vφ = IdFN and Vφ(en) = eφ(n).
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Proposition 2.3. Let w ∈ W and 1 � p < ∞. Let ε = (εn)∞n=1 be a sequence of signs, let
A be a subset of N, and let φ be a map in O.

(i) Mε and PA are norm-one operators from g(w, p) into g(w, p).
(ii) Vφ and Uφ are norm-one operators from g(w, p) into g(w, p).
(iii) Vφ is an isometric embedding from g(w, p) into g(w, p).
(iv) The standard unit vectors form a 1-subsymmetric basic sequence in g(w, p).

Proof. (i) is clear; (iii) is a consequence of (ii) and Remark 1; (iv) is a consequence of (i),
(iii), and Remark 1. Thus we must only care to show (ii). Let f = (an)∞n=1 ∈ FN. From (i) we
know that ‖Mε(f)‖g = ‖f‖g and that ‖PA(f)‖g � ‖f‖g. Since φ ◦ ψ ∈ O for all ψ ∈ O,

‖Vφ(f)‖pg = sup
ψ∈O

∞∑
n=1

|aφ(ψ(n))|pwn � ‖f‖g.

Let Uφ(f) = (bn)∞n=1. Pick ψ ∈ O. The function φ−1 ◦ ψ is an increasing map from a set
A ⊆ N to N. Put J = {n ∈ N : n � |A|} and choose γ : J → A increasing and bijective. Since
ρ := φ−1 ◦ ψ ◦ γ ∈ O ∪Of and n � γ(n) for all n ∈ J , we have

∞∑
n=1

|bψ(n)|pwn =
∑
n∈A

|aφ−1◦ψ(n)|pwn =
∑
n∈J

|aρ(n)|pwγ(n)

�
∑
n∈J

|aρ(n)|pwn � ‖f‖pg.

Taking the supremum on ψ yields ‖Uφ(f)‖g � ‖f‖g. �

Definition 1. Let (xn)∞n=1 be a basis for a Banach space X and let g =
∑∞

n=1 bnxn be
a vector in X. Given another f =

∑∞
n=1 anxn ∈ X we write f ≺ g (with respect to the basis

(xn)∞n=1) if

• supp(f) ⊆ supp(g),
• an = bn for all n ∈ supp(f), and
• ‖f‖ = ‖g‖.

We say that g is minimal in X (with respect to (xn)∞n=1) if it is minimal in X equipped with
the partial order ≺, that is, if f ≺ g implies f = g.

Remark 2. Note that if g is finitely supported with respect to a basis (xn)∞n=1 then there
exists a minimal f ≺ g.

Remark 3. Every sequence in d(w, p), 1 � p < ∞, is minimal. The situation is quite
different for g(w, p). For instance, if (1 − w2)tp � 1, then the vector g1 + tg2 is not minimal.

Lemma 2.4. Let w = (wn)∞n=1 ∈ W and 1 � p < ∞. For any A ⊆ N finite we have:

(i) ‖∑n∈A en‖g =
∑|A|

n=1 wn;
(ii) the vector

∑
n∈A en is minimal in g(w, p) (with respect to its canonical basis).

Proof. Part (i) can be obtained, for example, from Proposition 2.2. To prove (ii), let
f ≺ ∑

n∈A en. Then f =
∑

n∈B en for some B ⊆ A, and

|B|∑
n=1

wn = ‖f‖g =

∥∥∥∥∥
∑
n∈A

en

∥∥∥∥∥
g

=
|A|∑
n=1

wn.

Consequently |B| = |A| and so B = A. �
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Lemma 2.5. Let w ∈ W and 1 � p < ∞. Suppose f ∈ c00 is minimal in g(w, p) with respect
to the canonical basis. Then

‖f‖g =

⎛
⎝r(ψ)∑

n=1

|aψ(n)|pwn

⎞
⎠

1/p

, (2.1)

where ψ ∈ Of is determined by R(ψ) = supp f .

Proof. Given φ ∈ Of , let ψ be the map in Of determined by R(ψ) = R(φ) ∩ supp f . Let γ
be the inverse function of φ restricted to R(ψ). We have

r(φ)∑
n=1

|aφ(n)|pwn =
∑

n∈R(ψ)

|an|pwγ(n) �
∑

n∈R(ψ)

|an|pwψ−1(n) =
r(ψ)∑
n=1

|aψ(n)|pwn.

Therefore, in order to compute the supremum in (1.1) we can restrict ourselves to
{φ ∈ Of : R(φ) ⊆ supp f}, so that this supremum is attained. Let ψ be the element in Of

with R(ψ) ⊆ supp(f) where the supremum in (1.1) is attained. Let h be the projection of f
onto R(ψ). Then

‖f‖pg =
r(ψ)∑
n=1

|aψ(n)|pwn � ‖h‖pg,

hence h = f and R(ψ) = supp f . �

Recall that a block basic sequence of a basic sequence (xn)∞n=1 in a Banach space X is a
sequence (yn)∞n=1 of nonzero vectors of the form

yn =
pn+1−1∑
i=pn

aixi

for some (unique) (an)∞n=1 ∈ FN and some increasing sequence of integers (pn)∞n=1 with p1 = 1.

Definition 2. Let yn =
∑pn+1−1

i=pn
aixi, n ∈ N, be a block basic sequence of a basic sequence

(xn)∞n=1 in a Banach space X. Then:

(a) (yn)∞n=1 is said to be uniformly null if limn an = 0;
(b) (yn)∞n=1 is said to verify the gliding hump property if

inf
n∈N

sup
pn�i�pn+1−1

|ai| > 0.

Remark 4. A subsequence of a block basic sequence also is a block basic sequence.
Moreover, we have the following dichotomy: A block basic sequence is either uniformly null or
has a subsequence verifying the gliding hump property.

Lemma 2.6. Let (xn)∞n=1 be a semi-normalized basis in a Banach space X. If (yn)∞n=1 is a
semi-normalized uniformly null block basic sequence of (xn)∞n=1, then limn | supp(yn)| = ∞.

Proof. Assume that the claim fails. Then there is an infinite subset A ⊆ N with
D = supn∈A | supp(yn)| < ∞. Write yn =

∑pn+1−1
i=pn

aixi and put

Cn = max
pn�i�pn+1−1

|ai|, C = sup
n

‖xn‖, and B = inf
n

‖yn‖.
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We have B � CDCn for all n ∈ A. Letting n tend to infinity through A we obtain B � 0, an
absurdity. �

We shall also need two properties on block basic sequences of subsymmetric bases, which we
gather in the following proposition.

Proposition 2.7. Let X be a Banach space with a subsymmetric basis (xn)∞n=1 and suppose
that (yn)∞n=1 is a semi-normalized block basic sequence of (xn)∞n=1.

(i) If supn | supp(yn)| < ∞, then (yn)∞n=1 is equivalent to (xn)∞n=1.
(ii) If (yn)∞n=1 verifies the gliding hump property, then (xn)∞n=1 � (yn)∞n=1.

Proof. The proofs follow the steps of [2, Propositions 3 and 4] and so we leave them out for
the reader. �

To make this paper as self-contained as possible we record the following well-known fact.

Proposition 2.8 (cf. [2, Proposition 1]). Every subsymmetric basic sequence in a Banach
space is either weakly null or else equivalent to the canonical basis of �1.

Corollary 2.9. Let (xn)∞n=1 be a basic sequence in a Banach space X. If (xn)∞n=1 is
equivalent to the unit vector basis of g(w, p) for w ∈ W and 1 � p < ∞, then it is weakly null.

Proof. It is straightforward from Propositions 2.2, 2.3, and 2.8. �

We put an end to this preliminary section recalling a specific version of Bessaga–Pelczyński
Selection Principle that we will need below.

Theorem 2.10 (cf. [1, Proposition 1.3.10]). Let X be a Banach space with a basis (xn)∞n=1.
Let (yn)∞n=1 be a normalized weakly null sequence in X and let ε > 0. Then there exists
a subsequence (ynk

)∞n=1 of (yn)∞n=1 that is (1 + ε)-equivalent to a normalized block basic
sequence (zk)∞k=1 of (xn)∞n=1. Moreover, if T : [zk]∞k=1 → [ynk

]∞n=1 is the isomorphism given by
T (zk) = ynk

, we have that whenever Z ⊆ [zk]∞k=1 is C-complemented in X, then T (Z) is
C(1 + ε)-complemented in X.

3. Geometric properties of Garling sequence spaces

Our ultimate goal in this section is to establish the following set of structural results about the
spaces g(w, p).

Theorem 3.1. Let 1 � p < ∞ and w = (wn)∞n=1 ∈ W.

(i) The unit vectors in g(w, p) span the entire space and form a boundedly complete basis.
(ii) Every basic sequence in g(w, p) equivalent to its canonical basis admits a subsequence

spanning a complemented subspace in g(w, p).
(iii) The space g(w, p) is reflexive if 1 < p < ∞ and nonreflexive if p = 1.
(iv) No subspace of �p is isomorphic to g(w, p).
(v) For every ε > 0 and every infinite-dimensional closed subspace Y of g(w, p), there exists

a further subspace Z ⊆ Y that is (1 + ε)-isomorphic to �p and (1 + ε)-complemented in g(w, p).
(vi) The identity operator on �p factors through the inclusion map Id,g : d(w, p) → g(w, p).
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To that end, let us begin with the following proposition.

Proposition 3.2. Let 1 � p < ∞ and w = (wn)∞n=1 ∈ W. Every normalized block basic
sequence of the canonical basis of g(w, p) is 1-dominated by the canonical basis of �p.

Proof. Let

yn =
pn+1−1∑
i=pn

aigi, n ∈ N,

be a normalized block basic sequence. For i ∈ N, define n = n(i) ∈ N by pn � i � pn+1 − 1. Let
(bn)∞n=1 ∈ c00. Denote (ci)∞i=1 :=

∑∞
n=1 bnyn. We have ci = bn(i)ai for all i ∈ N. Let φ ∈ O. For

each n ∈ N, Jn := {i ∈ N : pn � φ(i) � pn+1 − 1} is an integer interval and, then, for some qn,
rn ∈ N ∪ {0}, Jn = {j ∈ N : 1 + qn � j � qn + rn}. We have

∞∑
n=1

|cφ(n)|pwn =
∞∑

n=1

|bn|p
∑
i∈Jn

|aφ(i)|pwi

=
∞∑

n=1

|bn|p
rn∑
j=1

|aφ(j+qn)|pwj+qn

�
∞∑

n=1

|bn|p
rn∑
j=1

|aφ(j+qn)|pwj

�
∞∑

n=1

|bn|p ‖yn‖pg

=
∞∑

n=1

|bn|p.

Taking the supremum on φ yields ‖∑∞
n=1 bnyn‖p �

∑∞
n=1 |bn|p. �

We are now able to state a powerful result. In its proof we will make use of the following
construction.

Definition 3. Let (xn)∞n=1 be a basis in a Banach space X. Given a block basic sequence
(yn)∞n=1 of (xn)∞n=1,

yn =
pn+1−1∑
i=pn

aixi, n ∈ N,

its left-shifted block basic sequence (ŷn)∞n=1 is the block basic sequence of (xn)∞n=1 constructed
from (yn)∞n=1 as follows: Consider φ ∈ O with range {i ∈ N : ai �= 0} and put

ŷn =
p̂n+1−1∑
i=p̂n

aφ(i)xi, n ∈ N,

where p̂1 = 1, and p̂n+1 − p̂n = | suppyn| for all n ∈ N.

Theorem 3.3. Let 1 � p < ∞ and w ∈ W. Suppose (yn)∞n=1 is a uniformly null normalized
block basic sequence of the canonical basis of g(w, p). Then for each ε > 0, there exists a
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subsequence (ynk
)∞k=1 of (yn)∞n=1 that is (1 + ε)-equivalent to the canonical basis of �p and

such that [ynk
]∞k=1 is (1 + ε)-complemented in g(w, p).

Proof. By Proposition 2.3(i), without loss of generality we can assume that each yn has
nonnegative coefficients with respect to (gi)∞i=1. For each n ∈ N pick a minimal ỹn ≺ yn. Let

ŷn =
pn+1−1∑
i=pn

aigi, n ∈ N,

be the left-shifted block basic sequence of (ỹn)∞n=1, where (ai)∞i=1 is a sequence of positive
scalars converging to zero and (pn)∞n=1 is an increasing sequence of integers with p1 = 1. By
Lemma 2.6 we have limn(pn+1 − pn) = ∞. Let w = (wn)∞n=1 and pick α = (1 + ε)−p ∈ (0, 1).
We claim that there exist increasing sequences of positive integers (qk)∞k=1 and (nk)∞k=1 with
q1 = 1 so that for each k ∈ N:

• qk+1 − qk = p1+nk
− pnk

,
• Ak :=

∑qk+1−1
i=qk

api+pnk
−qk

wi � α.

To prove the claim we proceed recursively. Suppose that qk and nk−1 have been constructed
(for the case k = 1 we put n0 = 0). Since w ∈ c0 we can find L ∈ N so that

L+qk−1∑
n=L+1

wn <
1 − α

2
.

Then we choose M ∈ N such that for any i � M

ai <

(
1 − α

2L

)1/p

.

Select j = nk ∈ N so that j >nk−1, pj �M , and pj+1 − pj >L+ qk. Set qk+1 = pj+1 − pj + qk.
Let φ ∈ O determined by

R(φ) = A := ∪∞
n=1 supp(ỹn).

We have ỹj = Vφ(ŷj). Hence, by Lemma 2.3(iii), ŷj is minimal. Then, by Lemma 2.5,

1 = ‖ŷj‖pg =
pj+1−pj∑

n=1

appj+n−1wn =
qk+1−1∑
i=qk

appj−qk+iwi−qk+1,

and so

1 −
qk+1−1∑
i=qk

api+pj−qk
wi =

qk+1−1∑
i=qk

api+pj−qk
(wi−qk+1 − wi)

�
qk+1−1∑
i=qk

1 − α

2L
(wi−qk+1 − wi)

�
qk+L−1∑
i=qk

1 − α

2L
+

qk+1−1∑
i=qk+L

(wi−qk+1 − wi)

=
1 − α

2
+

qk+1−qk∑
n=L+1

wn −
qk+1−1∑
n=L+qk

wn
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=
1 − α

2
+

L+qk−1∑
n=L+1

wn −
qk+1−1∑

n=qk+1−qk+1

wn

� 1 − α

2
+

1 − α

2
= 1 − α.

This completes the proof of our claim.
Consider the linear map S : FN → FN given by

S((ci)∞i=1) =

⎛
⎝ 1
Ak

qk+1−1∑
i=qk

ap−1
i+pnk

−qk
wici

⎞
⎠

∞

k=1

.

Let f = (ci)∞i=1 ∈ FN. Hölder’s inequality gives

‖S(f)‖pp =
∞∑
k=1

1
Ap

k

∣∣∣∣∣∣
qk+1−1∑
i=qk

cia
p−1
i+pnk

−qk
wi

∣∣∣∣∣∣
p

�
∞∑
k=1

1
Ap

k

⎛
⎝qk+1−1∑

i=qk

|ci|pwi

⎞
⎠

⎛
⎝qk+1−1∑

i=qk

api+pnk
−qk

wi

⎞
⎠

p−1

=
∞∑
k=1

1
Ak

⎛
⎝qk+1−1∑

i=qk

|ci|pwi

⎞
⎠

� α−1
∞∑
k=1

⎛
⎝qk+1−1∑

i=qk

|ci|pwi

⎞
⎠

= α−1‖f‖pg.
That is, S is an α−1/p-bounded operator from g(w, p) into �p.

The left-shifted block basic sequence of (ŷnk
)∞k=1, which we denote by (zk)∞k=1, is given by

the formula

zk =
qk+1−1∑
i=qk

ai+pnk
−qkgi, k ∈ N.

Since the left-shifted block basic sequences of (ỹnk
)∞n=1 and (ŷnk

)∞k=1 coincide, there is ψ ∈ O
such that Vψ(zk) = ỹnk

for all k ∈ N. Let T = S ◦ Uψ ◦ PA. By Proposition 2.3(i) and (ii), T
is a (1 + ε)-bounded operator from g(w, p) into �p.

By Proposition 3.2, (ynk
)∞k=1 �1 (fk)∞k=1. In other words, there is a norm-one operator

R : �p → g(w, p) with R(fk) = ynk
for all k ∈ N. For every k ∈ N we have

(T ◦R)(fk) = S(Uψ(PA(R(fk))))

= S(Uψ(PA(ynk
)))

= S(Uψ(ỹnk
))

= S(Uψ(Vψ(zk)))

= S(zk)
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=
1
Ak

⎛
⎝qk+1−1∑

i=qk

ai+pnk
−qka

p−1
i+pnk

−qk
wi

⎞
⎠ fk

= fk.

Hence, T ◦R = Id�p . We infer that R ◦ T is a projection from g(w, p) onto [ynk
]∞k=1 and that

(fk)∞k=1 �1+ε (ynk
)∞k=1. �

Remark 5. If we consider the natural lattice structure both in g(w, p) and in �p, the maps
R and T constructed in the proof of Theorem 3.3 are lattice homomorphisms.

Corollary 3.4. Every normalized block basic sequence of (gn)∞n=1 admits a subsequence
that dominates (gn)∞n=1.

Proof. This is an immediate consequence of Remark 4, Proposition 2.7(ii), Theorem 3.3, and
the inclusion �p ⊆ g(w, p) provided by Proposition 2.2, which reads as (gn)∞n=1 � (fn)∞n=1. �

Before proving Theorem 3.1 we need a couple more results.

Proposition 3.5. Let 1 � p < ∞ and w ∈ W. If (yn)∞n=1 is a semi-normalized block basic
sequence of the canonical basis of g(w, p) then

lim
m→∞

∥∥∥∥∥
m∑

n=1

yn

∥∥∥∥∥
g

= ∞.

Proof. From Remark 4 in combination with Proposition 2.7(ii) and Theorem 3.3, we infer
that we can find a subsequence (ynk

)∞k=1 that either dominates (gn)∞n=1 or else is equivalent to
(fn)∞n=1. In either case, since, by Proposition 2.2, (fn)∞n=1 dominates (gn)∞n=1, we have (gn)∞n=1 �
(ynk

)∞k=1. Put w = (wn)∞n=1. Appealing to the 1-unconditionality of (gn)∞n=1 and to Lemma 2.4,

m∑
k=1

wk =

∥∥∥∥∥
m∑

k=1

gk

∥∥∥∥∥
g

�
∥∥∥∥∥

m∑
k=1

ynk

∥∥∥∥∥
g

�
∥∥∥∥∥

j∑
n=1

yn

∥∥∥∥∥
g

, m ∈ N, j � nm.

Since w /∈ �1 we are done. �

Proposition 3.6. Let 1 � p < ∞ and w = (wn)∞n=1 ∈ W. Suppose (yn)∞n=1 is a block
basic sequence of the canonical basis of g(w, p). Then for any ε > 0, there exists a further
block basic sequence of (yn)∞n=1 that is (1 + ε)-equivalent to the canonical basis of �p and
(1 + ε)-complemented in g(w, p).

Proof. Without loss of generality we assume that (yn)∞n=1 is normalized. By Proposition 3.5
we can recursively construct an increasing sequence (pn)∞n=1 of positive integers such that
‖∑pn+1−1

i=pn
yi‖g � n for all n ∈ N. Then the block basic sequence

zn =

∑pn+1−1
i=pn

yi

‖∑pn+1−1
i=pn

yi‖g
, n ∈ N,

is uniformly null, and so by Theorem 3.3 we can find a subsequence (znk
)∞k=1 that is

(1 + ε)-equivalent to the canonical basis of �p and (1 + ε)-complemented in g(w, p). �
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Completion of the Proof of Theorem 3.1.

(i) By Proposition 3.5, no block basic sequence of (gn)∞n=1 is equivalent to the canonical
basis of c0. Appealing to [1, Theorem 3.3.2] we infer that (gn)∞n=1 is a boundedly complete
basic sequence.

Let us prove that [gn]∞n=1 = g(w, p). Take f = (an)∞n=1 ∈ g(w, p). Then
supm ‖∑m

n=1 angn‖g < ∞. Since (gn)∞n=1 is boundedly complete, the series
∑∞

n=1 angn

converges to some h ∈ g(w, p). Obviously, f = h.
(ii) Let (yn)∞n=1 be a basic sequence in g(w, p) equivalent to its canonical basis. By

Corollary 2.9, (yn)∞n=1 is weakly null. Then, applying Theorem 2.10 and passing to a
subsequence, we can assume that (yn)∞n=1 is a block basic sequence of (gn)∞n=1. By Theorem 3.3
and Remark 4, since (gn)∞n=1 has no subsequence equivalent to the �p-basis, passing to a further
subsequence we have that (yn)∞n=1 has the gliding hump property. Let K � 1 be such that
(yn)∞n=1 �K (gn)∞n=1. Write

yn =
pn+1−1∑
i=pn

aigi, n ∈ N,

for some (an)∞n=1 ∈ FN and some increasing sequence (pn)∞n=1 with p1 = 1. For each n ∈ N pick
an integer sequence (in)∞n=1 with pn � in < pn+1 and so that infn∈N |ain | := c > 0. Observe
that for any (bn)∞n=1 ∈ c00, by 1-subsymmetry of (gn)∞n=1 we have∥∥∥∥∥

∞∑
n=1

bin
ain

yn

∥∥∥∥∥
g

� K

∥∥∥∥∥
∞∑

n=1

bin
ain

gin

∥∥∥∥∥
g

� K

c

∥∥∥∥∥
∞∑

n=1

bingin

∥∥∥∥∥
g

� K

c

∥∥∥∥∥
∞∑

n=1

bngn

∥∥∥∥∥
g

.

Thus we can define a bounded linear map P : g(w, p) → [yn]∞n=1 by the rule
∞∑

n=1

bnen �→
∞∑

n=1

bin
ain

yn.

Since P (yn) = yn for all n ∈ N we are done.
(iii) Let us suppose that (gn)∞n=1 fails to be shrinking. Then due to the unconditionality

of (gn)∞n=1, there exists a block basic sequence (yn)∞n=1 of (gn)∞n=1 that is equivalent to the
canonical �1-basis (see, for example, [1, Theorem 3.3.1]). Now, by Proposition 3.6, we can find a
further block basic sequence equivalent to the canonical �p-basis. However, this is impossible if
p �= 1. Thus, for p > 1, (gn)∞n=1 is shrinking, and since it is also boundedly complete by part (i),
and unconditional, it must span a reflexive space by a theorem of James (see, for example,
[1, Theorem 3.2.19]). This proves the first part of (iii). The part about nonreflexivity in case
when p = 1 follows since g(w, 1) contains a (nonreflexive) copy of �1 by Proposition 3.6.

(iv) Assume that g(w, p) embeds into �p. Then �p contains a basic sequence (yn)∞n=1 ≈
(gn)∞n=1. By Corollary 2.9, (yn)∞n=1 is weakly null. Hence (see, [1, Proposition 2.1.3]) (yn)∞n=1

has a sequence equivalent to the canonical basis (fn)∞n=1 of �p. By Proposition 2.3, (gn)∞n=1 ≈
(fn)∞n=1, which is false by Proposition 2.2.

(v) Fix ε > 0, and let Y be an infinite-dimensional closed subspace of g(w, p). By a classical
result of Mazur (see, for example, [1, Theorem 1.4.5]), we can find a normalized basic sequence
(yn)∞n=1 in Y . In the case when p > 1, this basic sequence must be weakly null by the reflexivity
of g(w, p). For the case p = 1, we can assume by Rosenthal’s �1 theorem (see, for example, [1,
Theorem 11.2.1]) together with James’ �1 Distortion theorem (see, for example, [1, Theorem
11.3.1]) that (yn)∞n=1 admits a weakly Cauchy subsequence. By passing to a further subsequence
if necessary, the sequence (

y2n+1 − y2n

‖y2n+1 − y2n‖g

)∞

n=1
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is normalized and weakly null. Let us relabel if necessary so that in all cases 1 � p < ∞ we
have found a normalized and weakly null basic sequence (yn)∞n=1 in Y . By Theorem 2.10 we
can pass to a subsequence if necessary so that (yn)∞n=1 is (

√
1 + ε)-equivalent to a normalized

block basic sequence (y′
n)∞n=1 of the canonical basis of g(w, p). Moreover, if Z ⊆ [y′

n]∞n=1 is
C-complemented in g(w, p) and T is the operator defined by T (y′

n) = yn, then T (Z) is
(
√

1 + ε)C-complemented in g(w, p). Now we apply Proposition 3.6 to find a block basic
sequence (z′n)∞n=1 of (y′

n)∞n=1, which is (
√

1 + ε)-equivalent to the canonical basis (fn)∞n=1

of �p such that [z′n]∞n=1 is (
√

1 + ε)-complemented in g(w, p). For n ∈ N, let zn = T (z′n).
It is clear that (zn)∞n=1 is (

√
1 + ε)-equivalent to (z′n)∞n=1, and hence (1 + ε)-equivalent to

(fn)∞n=1. It follows that [zn]∞n=1 is a subspace of Y that is (1 + ε)-isomorphic to �p and
(1 + ε)-complemented in g(w, p).

(vi) The block basic sequence

yn =
∑2n−1

i=2n−1 gi∑2n−1

i=1 wi

, n ∈ N.

is normalized and uniformly null. By Lemma 2.4, each yn is minimal. Thus, given ε > 0, by
Theorem 3.3 we can find a subsequence (ynk

)∞k=1 of (yn)∞n=1 that is (1 + ε)-equivalent to the
canonical �p-basis and such that [ynk

]∞k=1 is (1 + ε)-complemented in g(w, p). Let P : g(w, p) →
[ynk

]∞k=1 be a projection with ‖P‖ � 1 + ε and let S : [ynk
]∞k=1 → �p be given by S(ynk

) = fk.
We have ‖S‖ � 1 + ε. Pick (zn)∞n=1 in d(w, p) so that yn = Id,g(zn). The sequence (zn)∞n=1

is also normalized. Then, by the d(w, p)-analog of Proposition 3.2 (see [2, Proposition 5])
(znk

)∞n=1 is 1-dominated by the canonical basis of �p, that is, the operator T ∈ L(�p, d(w, p))
given by T (fk) = znk

for k ∈ N verifies ‖T‖ � 1. The composition operator S ◦ P ◦ Id,g ◦ T is
the identity map on �p. �

The longed-for features of Garling sequence spaces that were advertised in Section 1 follow
now readily from Theorem 3.1.

Corollary 3.7. Let w ∈ W and 1 � p < ∞. The space g(w, p) is complementably
homogeneous and uniformly complementably �p-saturated.

Remark 6. There are d(w, p)-analogs of Theorem 3.1(ii) and Theorem 3.1(v) (cf.
[2, Theorem 1; 4, Corollary 12], respectively). Then, for w ∈ W and 1 � p < ∞, d(w, p) is
also complementably homogeneous and uniformly complementably �p-saturated.

4. Uniqueness of subsymmetric basis in g(w, p)

The spaces g(w, p) do not have a unique unconditional basis since they are not isomorphic to
any of the only three spaces that enjoy that property, namely c0, �1, or �2 (see, for example,
[1, Theorem 9.3.1]). The aim of this section is to show that they do have a unique subsymmetric
basis.

Theorem 4.1. Let 1 � p < ∞ and w ∈ W. Suppose (yn)∞n=1 is a subsymmetric basic
sequence in g(w, p). Then every subsymmetric basis for Y = [yn]∞n=1 is equivalent to (yn)∞n=1.
In particular, every subsymmetric basis in g(w, p) is equivalent to its canonical basis.

Proof. Assume that Y is not isomorphic to �p, else we are done. Now let (un)∞n=1 be any
subsymmetric basis for Y . Since neither (yn)∞n=1 nor (un)∞n=1 are equivalent to the canonical
basis of �1, Proposition 2.8 gives that both sequences are weakly null. Thus, we may apply
Theorem 2.10 to obtain (u′

n)∞n=1 a normalized block basic sequence of (yn)∞n=1 and (y′
n)∞n=1 a
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normalized block basic sequence of (un)∞n=1 with (u′
n)∞n=1 ≈ (un)∞n=1 and (y′

n)∞n=1 ≈ (yn)∞n=1.
By Theorem 3.3 neither (u′

n)∞n=1 nor (y′
n)∞n=1 are uniformly null since, otherwise, either (un)∞n=1

or (yn)∞n=1 would be equivalent to the canonical basis of �p. Combining subsymmetry with
Remark 4 it follows that, passing to subsequences if necessary, we may assume that both
(u′

n)∞n=1 and (y′
n)∞n=1 verify the gliding hump property. Proposition 2.7(ii) yields

(yn)∞n=1 � (u′
n)∞n=1 ≈ (un)∞n=1 � (y′

n)∞n=1 ≈ (yn)∞n=1. �

Remark 7. It is also easy to check that Theorem 4.1 holds as well for d(w, p) in place of
g(w, p) and so d(w, p) admits a unique subsymmetric basis (which is also symmetric).

5. Nonexistence of symmetric basis in g(w, p)

In 2004, Sari [12, § 6] proved that there exist Banach spaces, called Tirilman spaces, admitting
a subsymmetric basis but failing to admit a symmetric one (in fact, those spaces do not even
contain symmetric basic sequences!). The aim of this section is, on the one hand, to characterize
when g(w, p) admits a symmetric basis, and on the other hand, to show that for a wide class
of weights w ∈ W, the space g(w, p) does not have such a basis despite having a unique
subsymmetric basis.

Theorem 5.1. Let 1 � p < ∞ and w = (wn)∞n=1 ∈ W. The following are equivalent.

(i) The canonical basis is a symmetric basis in g(w, p).
(ii) g(w, p) admits a symmetric basis.
(iii) The canonical bases of g(w, p) and d(w, p) are equivalent, that is g(w, p) = d(w, p) up

to an equivalent norm.
(iv) g(w, p) and d(w, p) are isomorphic.
(v) d(w, p) contains a subspace isomorphic to g(w, p).
(vi) The inclusion map Id,g : d(w, p) → g(w, p) preserves a copy of d(w, p) that is comple-

mented in g(w, p). More precisely, there exists a subspace Y of d(w, p) such that Y ≈ d(w, p),
Id,g|Y is bounded below, and Id,g(Y ) is complemented in g(w, p).

(vii) There is an operator T ∈ L(d(w, p), g(w, p)) such that T ◦ Id,g preserves a copy of
d(w, p).

Proof. The implications (i) ⇒ (ii), (iii) ⇒ (i), (iii) ⇒ (iv), (iv) ⇒ (v), and (iii) ⇒ (vi) are
all trivial.

(ii) ⇒ (i): A symmetric basis for g(w, p) is also subsymmetric and so, by Theorem 4.1,
equivalent to (gn)∞n=1. Hence (gn)∞n=1 is symmetric.

(i) ⇒ (iii): There is a uniform constant K such that (gσ(n))∞n=1 ≈K (gn)∞n=1 for all σ ∈ Π.
Given f = (an)∞n=1 ∈ c0 and σ ∈ Π we have

∞∑
n=1

|aσ(n)|pwn � ‖(aσ(n))∞n=1‖pg � K‖f‖pg.

Taking the supremum over σ ∈ Π we get ‖f‖d � ‖f‖g. In other words, (dn)∞n=1 �K (gn)∞n=1.
The estimate (gn)∞n=1 �1 (dn)∞n=1 is a consequence of Proposition 2.2.

(v) ⇒ (iii): Let (yn)∞n=1 be a basic sequence in d(w, p) equivalent to the canonical basis of
g(w, p). By Corollary 2.9 (yn)∞n=1 is weakly null. Then, via Theorem 2.10 and passing to a
subsequence, we obtain that (yn)∞n=1 is equivalent to a (semi-normalized) block basic sequence
of (dn)∞n=1. By [2, Corollary 2] and passing to a further subsequence, we have (dn)∞n=1 �
(yn)∞n=1. Since (gn)∞n=1 �1 (dn)∞n=1 we are done.
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(vi) ⇒ (vii): Let P be a projection from g(w, p) onto Id,g(Y ) and S be the inverse map of
Id,g|Y . We have that S ◦ P ◦ Id,g preserves a copy of d(w, p).

(vii) ⇒ (iii): By [8, Theorem 5.5], the sequence ((T ◦ Id,g)(dn))∞n=1 does not converge to zero
in norm. This means that we can find a subsequence (T (gnk

))∞k=1 that is semi-normalized. As
(gn)∞n=1 is weakly null by Corollary 2.9, so is (T (gnk

))∞k=1. Pass to a further subsequence if
necessary so that, by applying Theorem 2.10, (T (gnk

))∞k=1 is (semi-normalized) and equivalent
to a block basic sequence of (dn)∞n=1. Again by [2, Corollary 2] we may assume, passing to a
further subsequence, that (T (gnk

))∞k=1 � (dn)∞n=1. Hence,

(dn)∞n=1 � (T (gnk
))∞k=1 � (gnk

)∞k=1 ≈ (gn)∞n=1 � (dn)∞n=1. �

Remark 8. Note that, by Theorem 3.1(viii), the inclussion map Id,g : d(w, p) → g(w, p) is
never strictly singular.

Remark 9. Observe that g(w, p) is never isometric in the natural way to d(w, p). Just
consider the minimum k ∈ N such that wk+1 < 1, so that, letting

0 < α <

(
1 − wk+1

k

)1/p

and f = ek+1 + α
∑k

n=1 en we have ‖f‖g = 1 < ‖f‖d.

Before constructing weights for which (gn)∞n=1 is not symmetric we need a few definitions.

Definition 4. Let w = (wn)∞n=1 be a weight.

(a) w is said to be essentially decreasing if supk�n wn/wk < ∞.
(b) w is said to be regular if

sup
m

1
mwm

m∑
n=1

wn < ∞.

(c) The conjugate weight w∗ = (w∗
n)∞n=1 is defined by

w∗
n =

1
nwn

, n ∈ N.

(d) w is said to be bi-regular if both w and w∗ are regular weights.

Lemma 5.2. A weight w is essentially decreasing if and only if there exists a normalized
nonincreasing weight v such that w ≈ v.

Proof. If (wn)∞n=1 is an essentially decreasing weight, then the weight v = (vn)∞n=1 given by
vn = (infk�n wk)/w1 does the trick. The converse is (also) trivial. �

Lemma 5.3. If a weight w is regular then w /∈ �1 and w∗ ∈ c0.

Proof. Assume, by contradiction, that w = (wn)∞n=1 ∈ �1, that is,
∑∞

n=1 wn ≈ 1. Then,
1/m � wm for m ∈ N, and so w /∈ �1. Now assume, again by contradiction, that
w∗ = (wn)∞n=1 /∈ c0. Then there is an infinite subset A ⊆ N with nwn ≈ 1 for n ∈ A.
Consequently,

∑m
n=1 wn � 1 for m ∈ A and so w ∈ �1. �

Lemma 5.4. Let w = (wn)∞n=1 be an essentially decreasing regular weight. Then:

(i) mwm ≈ ∑m
n=1 wn for m ∈ N;
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(ii) w∗ also is essentially decreasing.

Proof. (i) Let C = supk�n wn/wk. For any m ∈ N we have

mwm � C
m∑

n=1

wn.

(ii) By (i), w∗ ≈ (1/(
∑m

n=1 wn))∞m=1. We infer from Lemma 5.3 that w∗ is essentially
decreasing. �

Lemma 5.5. A bi-regular weight is essentially decreasing if and only if mwm �
∑m

n=1 wn

for m ∈ N.

Proof. The ‘only if’ part is a consequence of Lemma 5.4. Assume mwm ≈ ∑m
n=1 wn for

m ∈ N. By Lemma 5.3 w∗ is essentially decreasing. Then, by Lemma 5.4, w = w∗∗ is essentially
decreasing. �

Proposition 5.6. Let w = (wn)∞n=1 be a weight. The following are equivalent:

(i) w is essentially decreasing and bi-regular;
(ii) w is bi-regular and w∗ is essentially decreasing;
(iii) w is essentially decreasing and

sup
m

m∑
n=1

wm+1−n

nwn
< ∞. (5.1)

(iv) w∗ is essentially decreasing and (5.1) holds.

Proof. (i) ⇒ (ii) is straightforward from Lemma 5.4(ii), while (ii) ⇒ (i) is a consequence of
(i) ⇒ (ii) and the fact that w∗∗ = w.

(i) ⇒ (iii): Let w∗ = (w∗
n)∞n=1 and put

C = sup
k�n

wk

wn
< ∞, D = sup

m
w∗

m

m∑
n=1

wn < ∞,

C∗ = sup
k�n

w∗
k

w∗
n

< ∞, and D∗ = sup
m

wm

m∑
n=1

w∗
n < ∞.

Let m ∈ N and choose r ∈ N such that 2r − 1 � m � 2r. We have
m∑

n=1

wm+1−n

nwn
=

r∑
n=1

wm+1−nw
∗
n +

m∑
n=r+1

wm+1−nw
∗
n

� Cwr

r∑
n=1

w∗
n + C∗w∗

r

m∑
n=r+1

wm+1−n

� Cwr

r∑
n=1

w∗
n + C∗w∗

r

r∑
n=1

wn

= CD∗ + C∗D.

as desired.
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(iii) ⇒ (i): Let w∗ = (w∗
n)∞n=1 and put

C = sup
k�n

wk

wn
< ∞ and D = sup

m
w∗

m

m∑
n=1

wn < ∞.

Let us prove that w∗ is essentially decreasing. Let k and n be integers with 1 � n � k. Since
the function η given by η(x) := log(1 + x)/x is decreasing on (0,∞),

D �
n+k−1∑
j=1

wn+k−j

jwj
�

n+k−1∑
j=k

wn+k−j

jwj
� 1

C2

wn

wk

n+k−1∑
j=k

1
j

� 1
C2

wn

wk

∫ n+k

k

dx

x
=

1
C2

η(n/k)
w∗

k

w∗
n

� 1
C2

η(1)
w∗

k

w∗
n

.

Hence

w∗
k � (log 2)−1DC2w∗

n, n � k.

Now, for any m ∈ N,

1
mwm

m∑
n=1

wn =
1

mwm

m∑
n=1

wm+1−n � DC2

log 2

m∑
n=1

wm+1−n

nwn
� D2C2

log 2

and

1
mw∗

m

m∑
n=1

w∗
n = wm

m∑
n=1

1
nwn

� C

m∑
n=1

wm+1−n

nwn
� DC.

The equivalence (ii) ⇔ (iv) is a consequence of (i) ⇔ (iii) and the simple fact that
m∑

n=1

wm+1−n

nwn
=

m∑
n=1

w∗
m+1−n

nw∗
n

,

where w∗ = (w∗
n)∞n=1. �

Theorem 5.7. Let w be a normalized nonincreasing bi-regular weight and 1 � p < ∞. Then
w ∈ W and the canonical basis is not a symmetric basis for g(w, p).

Proof. The fact that w ∈ W is straightforward from Lemma 5.3. For each r ∈ N, consider
sequences f (r) = (ar,n)∞n=1 and g(r) = (br,n)∞n=1 given by{

ar,n = br,n = 0 if n > r,
ar,n = br,m+1−n = (nwn)−1/p if n � r.

Note that g(r) is a rearrangement of f (r). We have

sup
r∈N

‖f (r)‖g � sup
r∈N

‖f (r)‖p = sup
r∈N

(
r∑

n=1

1
n

)1/p

= ∞.

By Lemma 5.4(ii), w∗ = (w∗
n)∞n=1 is an essentially decreasing sequence. Let r ∈ N and φ ∈ O.

Denote by m(r, φ) the largest integer m such that φ(m) � r. We have φ(n) � n + r −m for
1 � n � m. Therefore,

sup
r∈N

‖g(r)‖pg = sup
r∈N, φ∈O

∞∑
n=1

|br,φ(n)|pwn
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= sup
r∈N, φ∈O

m(r,φ)∑
n=1

wnw
∗
r+1−φ(n)

� sup
r∈N, φ∈O

m(r,φ)∑
n=1

wnw
∗
m(r,φ)+1−n

= sup
m∈N

m∑
n=1

wnw
∗
m+1−n

= sup
m∈N

m∑
n=1

wm+1−n

nwn
.

Proposition 5.6 yields that the canonical basis is not symmetric. �

To give relief to Theorem 5.7 we need to exhibit examples of normalized nonincreasing bi-
regular weights. To that end, in light of Lemma 5.3, if suffices to give examples of essentially
decreasing bi-regular weights. Next, we give a very general procedure for constructing this kind
of weights. For instance, we will prove that, for 0 < a < 1 and b ∈ R, ((log(1 + n))bn−a)∞n=1 is
an essentially decreasing bi-regular weight.

Definition 5. A weight (un)∞n=1 is said to be asymptotically constant if

lim
j

sup
2j−1�k,n�2j

un

uk
= 1.

Proposition 5.8. Let 0 < a < 1 and (un)∞n=1 be an asymptotically constant weight. Then
w = (n−aun)∞n=1 is an essentially decreasing bi-regular weight.

Proof. Let b = 1 − a and consider v = (vn)∞n=1 given by vn = 1/un. We have
w∗ = (n−bvn)∞n=1, with 0 < b < 1 and v asymptotically constant. Then, taking into account
Lemma 5.5 it suffices to prove

m∑
n=1

n−aun ≈ tm := m1−aum, m ∈ N.

To that end, put

cj = sup
2j−1�n<2j

un, j ∈ N,

and let (an)∞n=1 be the unique weight such that a2j−1 = cj for j ∈ N and (an)2
j

n=2j−1 is in
arithmetic progression. Define (sn)∞n=0 by s0 = 0 and sn = n1−aan for n ∈ N. Since

lim
j

cj+1

cj
= 1,

we have tn ≈ sn for n ∈ N. Thus we need only to show that

sn − sn−1 ≈ n−aun, n ∈ N.

Given n � 2, pick j = j(n) ∈ N such that 2j−1 < n � 2j . We have

sn − sn−1

n−aun
=

n(an − an−1)
un

+
n1−a − (n− 1)1−a

n−a

an−1

un
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=
n

2j−1

cj
un

+ n

(
1 −

(
1 − 1

n

)1−a
)

an−1

un

≈ 1. �

We close with a most natural question that our work leaves open:

Question 1. Do there exist w ∈ W and 1 � p < ∞ so that g(w, p) admits a symmetric
basis?
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