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Abstract. We investigate a generalized spherical means operator, in other words the generalized
spherical mean Radon transform, acting on radial functions. We establish an integral representation
of this operator and find precise estimates of the corresponding kernel. As the main result, we prove
two-weight mixed norm estimates for the integral operator, with general power weights involved.
This leads to weighted Strichartz-type estimates for solutions to certain Cauchy problems for classical
Euler–Poisson–Darboux and wave equations with radial initial data.
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1. Introduction and preliminaries. The spherical mean Radon transform in
Rn, n ≥ 1, of a suitable function f is given by

Mf(x, t) =
∫
Sn−1

f(x− ty) dσ(y), (x, t) ∈ Rn × R+,

where dσ is the normalized (probabilistic) uniform measure on the unit sphere Sn−1 ⊂
Rn. This operator returns the mean value of f on the sphere centered at x and of
radius t.

The spherical means M are of great importance in analysis and have been widely
studied due to interest in their own right, their connections with a number of classical
initial-value PDE problems, as well as applications in physical/practical problems.
The last pertains to thermoacoustic and photoacoustic tomography, among others,
where inverse problems for M play a crucial role. A restriction of the action of M
to radially symmetric functions in the spatial variable is still of interest for the very
same reasons as just mentioned, but in various aspects admits more explicit analysis,
and, therefore, in this situation, one is able to obtain sharper or even optimal results.
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It is by no means possible to give here a reasonably complete account of the results
on M obtained so far. Thus we limit ourselves to mentioning only a few of them that
inspired this work.

The study of Lp estimates for the maximal operator M∗f = supt>0 |Mf(·, t)|
was initiated by Stein [19]. He proved that M∗ is bounded on Lp(Rn) if and only
if p > n/(n − 1), provided that n ≥ 3. Later, Bourgain [1] showed that the same
holds for n = 2. Duoandikoetxea and Vega [7] investigated weighted inequalities for
M∗ and its dyadic variant. Restricting himself to radial functions, Leckband [10]
proved an endpoint result for M∗, namely that it is of restricted weak type (p, p) for
p = n/(n − 1), n ≥ 2. Recently, still in the radial case, Duoandikoetxea, Moyua,
and Oruetxebarria [5] obtained weighted estimates for M∗ that are sharp for power
weights.

A generalization of M arises naturally in connection with a Cauchy problem for
the classical Euler–Poisson-Darboux (EPD) equation; see, e.g., [22, 3] and references
therein. One considers the transformation

Mβf(x, t) = F−1(mβ(t| · |)Ff
)
(x),

where F is the Fourier transform in Rn and the function defining the multiplier is
given by

mβ(s) = 2β+n/2−1Γ(β + n/2)
Jβ+n/2−1(s)
sβ+n/2−1 , s > 0,

with Jν denoting the (oscillating) Bessel function of the first kind and order ν. Given
t > 0, the operator f 7→ Mβf(·, t) extends meromorphically to all complex β with
poles at β = −n/2,−n/2 − 1,−n/2 − 2, . . . . For β = 0, one recovers the spherical
means, i.e., M0 = M . When β > 0, there is an integral representation (cf. [20, p. 171])

Mβf(x, t) =
Γ(β + n/2)
πn/2Γ(β)

∫
|y|<1

(
1− |y|2

)β−1
f(x− ty) dy,

the integration being over the unit ball in Rn. Moreover, one can represent Mβ in
terms of M via an Erdélyi–Kober fractional integral; see [17] for details.

Essentially the same generalization Mβ was considered by Stein [19], where he
obtained Lp norm estimates for the associated maximal operator. In the same paper,
Stein brings to readers’ attention an important link between Mβ and a Cauchy prob-
lem for the classical wave equation. It is noteworthy that any solution to a general
initial-value problem for the wave equation can be expressed in terms of M0 = M and
its time derivatives only, at least in odd dimensions n ≥ 3; see, e.g., [4] and references
therein.

The aim of this paper is to study Mβ acting on radially symmetric functions.
Such a transformation can be viewed as a family of operators {Mα,β

t : t > 0} (α
being a parameter depending on n, to be specified in a moment) acting on profile
functions defined on R+. Then Mα,β

t can be expressed in terms of the (modified)
Hankel transform Hα. The latter is defined for α > −1 and suitable functions f on
R+ by

Hαf(x) =
∫ ∞

0
f(y)

Jα(xy)
(xy)α

dµα(y), x > 0,

where dµα(y) = y2α+1dy. It is well known that Hα extends to an isometry on
L2(R+, dµα), which satisfies H−1

α = Hα. For α = n/2 − 1, the (modified) Han-
kel transform corresponds to the Fourier transform in Rn acting on radial functions.
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Thus (for suitable f)

(1.1) Mα,β
t f = Hα

(
mα,β(t·)Hαf

)
, t > 0,

where the Hankel multipliers are defined by means of the function

mα,β(s) = 2α+βΓ(α+ β + 1)
Jα+β(s)
sα+β , s > 0,

and α has the form α = n/2 − 1, n ≥ 1. However, from an analytic point of view,
there is no reason for restricting ourselves to the discrete set of α. Accordingly,
in what follows we allow a continuous range α > −1, actually the largest possible
so that the Hankel transform is defined on the whole L2(R+, dµα). There is also
a deeper motivation for considering general α, and this is related to certain PDE
problems involving Bessel operators rather than the standard Laplacian. We shall
always require (1.1) to be well defined on L2(R+, dµα). This happens exactly when α+
β ≥ −1/2, that is, when mα,β is bounded (this fact follows from basic asymptotics for
the Bessel function; see below). If this is the case, then Mα,β

t , t > 0, are (uniformly)
bounded operators on the L2 space.

Our principal objective is to prove two-weight mixed norm Lp−Lq(Lrt ) estimates
for Mα,β

t with possibly large classes of power weights admitted and possibly wide
ranges of the parameters involved. This is motivated by the limiting case r = ∞
corresponding to the maximal operator f 7→ supt>0 |M

α,β
t f | and the related inves-

tigations in [19, 1, 7, 10, 5]. However, comparing to 1 ≤ r < ∞, the case r = ∞
requires a different and in fact more subtle approach, and therefore it will be treated
in a separate paper.

For technical reasons, it is much more convenient to work with an integral operator
Mα,β
t that agrees withMα,β

t in L2(R+, dµα). Thus our strategy is to switch to Mα,β
t

and then find precise estimates of the associated integral kernel Kα,β
t (x, z) in order to

enable a direct and explicit analysis of the operator. The latter relies on estimating
first the norm of the kernel in power-weighted Lr(dt), 1 ≤ r <∞, and then showing
two-weight mixed norm estimates for the resulting integral operator independent of
the “time” variable t.

As illustrative applications of the mixed norm inequalities obtained, we derive
weighted Strichartz-type estimates for solutions of certain initial-value problems for
the EPD and wave equations, as well as similar differential problems based on the
one-dimensional Bessel operator Lα = d2

dx2 + 2α+1
x

d
dx . Such results seem to be desirable

from the PDE theory perspective.
An interesting aspect of our research is examining the behavior of the kernel

Kα,β
t (x, z). Perhaps a bit surprisingly, there are half-lines and segments in the (α, β)

plane where a kind of phase shift occurs. More precisely, the behavior of the kernel
is essentially different when (α, β) belongs to those singular sets, compared to the
behavior in neighborhoods of those sets. This phenomenon makes statements of the
kernel estimates somewhat complicated. Actually, something similar happens also in
the case of certain asymptotics for the Legendre functions through which we express
the kernel. The literature seems to tacitly omit those “singular” asymptotics. This
led us to derive them by ourselves, by means of combining various known facts and
some computations. Another topic that seems not to be covered properly by the (at
least standard) literature are zeros of Legendre functions. Here we also had to work
a bit by ourselves to derive what was needed for the purposes of this paper.
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1.1. Integral representation of the radial spherical means Mα,β
t . It turns

out that Mα,β
t can be represented as a standard integral operator provided that

α + β > −1/2. In case α + β = −1/2, there is a singular integral representation,
which is much more subtle and not treated in this paper.

Define the kernel

Kα,β
t (x, z) = 2α+βΓ(α+ β + 1)

∫ ∞
0

Jα+β(ty)
(ty)α+β

Jα(xy)
(xy)α

Jα(zy)
(zy)α

dµα(y).

As we shall see, Kα,β
t (x, z) is well defined for α > −1, α + β > −1/2, t > 0, and

(in general) t 6= |x − z|, t 6= x + z. The integral here converges absolutely when
α + β > 1/2; otherwise, the convergence at ∞ is only conditional in the Riemann
sense. Notice that the kernel is homogeneous in the sense that

(1.2) Kα,β
t (x, z) =

1
s2α+2K

α,β
t/s

(x
s
,
z

s

)
, s, t, x, z > 0.

This property is of importance from the point of view of analysis related to the
operator we now define.

For each t > 0, consider the integral operator

Mα,β
t f(x) =

∫ ∞
0

Kα,β
t (x, z)f(z) dµα(z)

on its natural domain DomMα,β
t consisting of all f for which the above integral

converges absolutely for a.a. x > 0. The following result gives a preliminary link
between Mα,β

t and Mα,β
t .

Proposition 1.1. Let α > −1 and α + β > −1/2. Then, for each t > 0,
C∞c (0,∞) ⊂ DomMα,β

t and

Mα,β
t f = Mα,β

t f, f ∈ C∞c (0,∞).

Proof. We shall use the basic asymptotics for the Bessel function,

Jα(u) ' uα, u→ 0+, Jα(u) = O(u−1/2), u→∞,

together with the following fact: if g = Hαf for some f ∈ C∞c (0,∞), then g is
continuous, g(u) = O(1) as u→ 0+, and, for any fixed k, g(u) = O(u−k) as u→∞;
see [13, section 2.1].

Let f ∈ C∞c (0,∞). Since, in view of what was said above, mα,β(t·)Hαf ∈ L1(dµα)
and also f ∈ L1(dµα), we can write

Mα,β
t f(x)

2α+βΓ(α+ β + 1)
=
∫ ∞

0

Jα(xy)
(xy)α

Jα+β(ty)
(ty)α+β Hαf(y) dµα(y)

=
∫ ∞

0

∫ ∞
0

Jα+β(ty)
(ty)α+β

Jα(xy)
(xy)α

Jα(zy)
(zy)α

f(z) dµα(z) dµα(y), t, x > 0.(1.3)

The proof will be finished once we show that changing the order of integration in (1.3)
is legitimate. It is easily seen that this is indeed the case when α + β > 1/2, since
then the last double integral converges absolutely, and one can use Fubini’s theorem.
However, in case α + β ≤ 1/2, the situation is more delicate, because the integral
defining Kα,β

t (x, z) converges in the Riemann sense, but not absolutely.
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To proceed, we assume that t, x > 0 are fixed, and f is also fixed and its support
is contained in an interval [A,B] with 0 < A < B < ∞. Splitting the outer integral
in (1.3) we reduce the problem to switching the order integration in∫ ∞

1

∫ B

A

Jα+β(ty)
(ty)α+β

Jα(xy)
(xy)α

Jα(zy)
(zy)α

f(z) dµα(z) dµα(y).

Next, we expand each of the three Bessel functions according to the large argu-
ment asymptotics (see [21, Chapter VII, section 7·21(1)]),

Jν(w) =

√
2
πw

cos
(
w − π

2

(
ν +

1
2

))
+O

(
w−3/2),

valid for positive w separated from 0. This leads to a splitting of the integrand into
eight terms. All the resulting double integrals converge absolutely, except for one,
written here up to some factors that can be neglected in further analysis:∫ ∞

1

∫ B

A

cos(ty − c1) cos(xy − c2) cos(zy − c2)
yα+β+1/2 f(z) dz dy.

In the last expression we can write the outer integral as a limit of integrals over
bounded intervals and exchange the order of integration due to absolute integrability.
This means that our task reduces to checking that one can pass within the limit under
the integral sign in

lim
N→∞

∫ B

A

GN (z)f(z) dz,

where

GN (z) =
∫ N

1

cos(ty − c1) cos(xy − c2) cos(zy − c2)
yα+β+1/2 dy.

If we now show that the sequence {|GN |} is controlled by an integrable function
over [A,B], then the desired conclusion will follow from the dominated convergence
theorem.

To continue, we invoke the product-to-sum formula

cos θ1 cos θ2 cos θ3 =
1
8

∑
(e1,e2,e3)∈{−1,1}3

cos(e1θ1 + e2θ2 + e3θ3),

getting

4 cos(ty − c1) cos(xy − c2) cos(zy − c2)

= cos
(
y(t+ x+ z)− c1 − 2c2

)
+ cos

(
y(t+ x− z)− c1

)
+ cos

(
y(t− x+ z)− c1

)
+ cos

(
y(x+ z − t) + c1 − 2c2

)
.

We now see that it is enough to verify the existence of an integrable over the [A,B]
majorant of {|HN (z)|}, where the new sequence is of the form

HN (z) =
∫ N

1

cos
(
y(z −D) + C

)
yλ

dy,

with 0 < λ ≤ 1 fixed and C,D ∈ R also fixed (of course, it may happen that
D ∈ [A,B]).
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We treat here a simplified model situation, which gets to the heart of the matter.
The general case then requires some elementary technical adjustments, which are left
to the reader. Let A = C = D = 0. Then, changing the variable of integration, we
get

HN (z) =
∫ N

1

cos(yz)
yλ

dy = zλ−1
∫ Nz

z

cos s
sλ

ds.

If λ < 1, the last integral stays bounded when N and z vary, since s−λ cos s is
integrable over (0,∞) (at ∞ in the Riemann sense only). Thus we see that the
required majorant is H(z) = czλ−1. When λ = 1 we split the last integral with
respect to the point 1 ∧ (Nz) and then easily see that in this case the majorant is
H(z) = c(1 + log+ 1

z ).

Later, in section 4, we will see that for each t > 0, L2(R+, dµα) ⊂ DomMα,β
t and

Mα,β
t is bounded on L2(R+, dµα). This together with Proposition 1.1 implies that
Mα,β

t and Mα,β
t coincide as operators acting on L2(R+, dµα).

1.2. Structure of the paper and notation. The rest of the paper is organized
as follows. In section 2, to taste the flavor of the problem and gain a better intuition,
we find sharp estimates of the integral kernel of Mα,β

t in the uncomplicated case
when α > −1/2 and β > 0; see Theorem 2.3. This is done by employing a relatively
simple positive integral representation for the triple Bessel function integral entering
the kernel. Then, with the aid of sharp bounds for certain elementary integrals (see
Lemmas 2.1 and 2.2), the result follows in a rather straightforward manner. We also
look at a few special cases of the parameters α, β in which the kernel Kα,β

t (x, z) is
totally computable. This reveals, in particular, that one has to be careful when it
comes to values of the kernel related to the singular surfaces t = |x− z| and t = x+ z,
even if those values are finite. In section 3, we estimate the kernel Kα,β

t (x, z) in the
general case when α > −1 and β > −α − 1/2. Here the strategy is to express the
triple Bessel function integral via suitable Legendre functions and then estimate the
resulting expressions by means of Legendre function asymptotics. Since the latter
seem to be incomplete, at least in the standard literature, we derive the missing cases
ourselves using known facts and formulas and explicit computations. Another impor-
tant issue we study in this section is the presence or lack of zeros of the Legendre
functions, since in the latter case the estimates of the kernel we get are in fact sharp.
Our main result on the behavior of Kα,β

t (x, z) is stated in Theorem 3.3. In section 4,
we prove that for each t > 0 the integral operator Mα,β

t is well defined and bounded
on L2(R+, dµα). Consequently, the L2-coincidence betweenMα,β

t and Mα,β
t is estab-

lished; see Corollary 4.2. In section 5, we estimate the norm of the kernel Kα,β
t (x, z)

in power-weighted Lr(dt). The bounds we get are fairly precise in general and sharp
in many cases; see Theorem 5.1. In section 6, we state the main result of the paper,
that is, the two-weight mixed norm estimate for Mα,β

t which is contained in Theorem
6.5. This is preceded by a sharp analysis of an auxiliary integral operator emerging
from the precise absolute estimates for the kernel Kα,β

t (x, z) obtained previously in
Theorem 3.3. Finally, section 7 is devoted to applications of the mixed norm esti-
mates. These pertain to weighted Strichartz-type estimates for solutions to certain
radial initial-value problems for classical EPD and wave equations, as well as Bessel
operator–based counterparts of these equations.

Throughout the paper we use fairly standard notation. Thus R+ = (0,∞). The
symbols “∨” and “∧” mean the operations of taking maximum and minimum, re-
spectively. We write X . Y to indicate that X ≤ CY with a positive constant C
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independent of significant quantities. We shall write X ' Y when simultaneously
X . Y and Y . X.

For the sake of brevity, we shall omit R+ when denoting Lp spaces related to the
measure space (R+, dµα). Given a nonnegative weight w, we denote by Lp(wpdµα) the
weighted Lp space with respect to the measure µα. This means that f ∈ Lp(wpdµα)
if and only if wf ∈ Lp(dµα). By convention, L∞(w∞dµα) consists of all measurable
functions f such that wf is essentially bounded on R+, and the norm of f in that
space is ‖wf‖∞. We write Lprad(. . .) for the subspace of Lp(. . .) consisting of radial
functions. As usual, for 1 ≤ p ≤ ∞, p′ denotes its conjugate exponent, 1/p+1/p′ = 1.

2. Pointwise kernel estimates I: A special case. In this section we prove,
by elementary methods, sharp estimates of the kernel Kα,β

t (x, z) in case α > −1/2
and β > 0. For such parameters the kernel is given by means of a well-studied gen-
eralization of the Weber–Schafheitlin integral. More precisely, formula [21, Chapter
XIII, section 13·46(1)] implies, for t, x, z > 0 such that t 6= |x− z| and t 6= x+ z, that

(2.1) Kα,β
t (x, z) = cα,β t

−2(α+β)
∫ A

0

(
t2 − x2 − z2 + 2xz cos θ

)β−1 sin2α θ dθ.

Here cα,β = 2Γ(α+ β + 1)/(
√
πΓ(α+ 1/2)Γ(β)) and

A =


0, t < |x− z|,
arccos

(
x2+z2−t2

2xz

)
, |x− z| < t < x+ z,

π, t > x+ z.

Notice that for α and β under consideration, Kα,β
t (x, z) is nonnegative, Kα,β

t (x, z) = 0
if t < |x− z|, and Kα,β

t (x, z) > 0 when t > |x− z|.

2.1. Two simple technical results. We need precise estimates of the following
integrals:

Iα,γ(B) :=
∫ 1

−1
(1−Bs)γ(1− s2)α−1/2 ds, 0 ≤ B ≤ 1,

Jα,β,γ(D) :=
∫ 1

0
(D − s)α−1/2(1− s)β−1sγ ds, D ≥ 1.

Lemma 2.1. Let α > −1/2 and γ ∈ R be fixed. Then

Iα,γ(B) '


(1−B)α+γ+1/2, α+ γ + 1/2 < 0,
1 + log 1

1−B , α+ γ + 1/2 = 0,
1, α+ γ + 1/2 > 0

uniformly in 0 ≤ B ≤ 1.

The case B = 1 in the statement of Lemma 2.1 and in the proof below should be
understood in the usual limiting sense.

Proof of Lemma 2.1. Assume, to begin, that γ ≥ 0. Then the essential contri-
bution to Iα,γ(B) comes from integration between −1 and 0. Therefore, taking into
account that 1−Bs ' 1 and 1− s ' 1 when −1 < s < 0, we can write

Iα,γ(B) '
∫ 0

−1
(1−Bs)γ(1− s2)α−1/2 ds '

∫ 0

−1
(1 + s)α−1/2 ds ' 1.
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This agrees with the asserted estimate, since γ ≥ 0 implies α+ γ + 1/2 > 0.
Assume next that γ < 0. Now the essential contribution to Iα,γ(B) comes from

integration between 0 and 1, and we have

(2.2) Iα,γ(B) '
∫ 1

0
(1−Bs)γ(1− s)α−1/2 ds.

When α+ γ + 1/2 > 0, we use the straightforward bounds∫ 1

0
(1− s)α−1/2 ds . Iα,γ(B) .

∫ 1

0
(1− s)α+γ−1/2 ds

to conclude that Iα,γ(B) ' 1. Thus it remains to treat the case α+γ+1/2 ≤ 0. Here
we may assume that B > 1/2, since otherwise Iα,γ(B) ' 1, as needed. Changing the
variable of integration s = 1 − 1−B

B w in (2.2) and remembering that now B ' 1, we
get

Iα,γ(B) ' (1−B)α+γ+1/2
∫ B/(1−B)

0
(1 + w)γwα−1/2 dw.

Denoting by Ĩα,γ(B) the last integral, we see that

Ĩα,γ(B) ' 1 +
∫ B/(1−B)

1
wα+γ−1/2 dw '

{
1, α+ γ + 1/2 < 0,
1 + log B

1−B , α+ γ + 1/2 = 0,

where in the log case B
1−B may be replaced by 1

1−B . The conclusion follows.

Lemma 2.2. Let α ∈ R, β > 0, and γ > −1 be fixed. Then

Jα,β,γ(D) ' Dα−1/2, D ≥ 2,

and

Jα,β,γ(D) '


(D − 1)α+β−1/2, α+ β < 1/2,
1 + log 1

D−1 , α+ β = 1/2,
1, α+ β > 1/2

uniformly in 1 ≤ D < 2.

The case D = 1 in the statement of Lemma 2.2 and in its proof is understood in
the limiting sense.

Proof of Lemma 2.2. Split the integral defining Jα,β,γ(D) according to the in-
tervals (0, 1/2) and (1/2, 1), and denote the resulting integrals by J0

α,β,γ(D) and
J1
α,β,γ(D), respectively. Then we have

J0
α,β,γ(D) ' Dα−1/2

∫ 1/2

0
sγ ds ' Dα−1/2.

For the complementary integral we write

J1
α,β,γ(D) '

∫ 1

1/2
(D − s)α−1/2(1− s)β−1 ds.

Changing now the variable of integration s = 1− (D − 1)w leads to

J1
α,β,γ(D) ' (D − 1)α+β−1/2

∫ 1
2(D−1)

0
(1 + w)α−1/2wβ−1 dw.
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For D ≥ 3/2, it follows that

J1
α,β,γ(D) ' (D − 1)α+β−1/2

∫ 1
2(D−1)

0
wβ−1 dw ' (D − 1)α−1/2 ' Dα−1/2.

On the other hand, if 1 ≤ D < 3/2, then

J1
α,β,γ(D) ' (D − 1)α+β−1/2

[
1 +

∫ 1
2(D−1)

1
wα+β−3/2 dw

]

'


(D − 1)α+β−1/2, α+ β < 1/2,
1 + log 1

D−1 , α+ β = 1/2,
1, α+ β > 1/2.

Combining the above estimates of J0
α,β,γ(D) and J1

α,β,γ(D) we arrive at the desired
conclusion.

2.2. Estimates of the kernel Kα,β
t (x, z). We are now ready to prove sharp

estimates of Kα,β
t (x, z). Recall that the kernel vanishes in the region {t, x, z > 0 : t <

|x− z|}.
Theorem 2.3. Let α > −1/2 and β > 0 be fixed. Let t, x, z > 0. Then

Kα,β
t (x, z) ' (xz)−α−1/2

t2α+2β

[
t2−(x−z)2]α+β−1/2


(

(x+z)2−t2
xz

)α+β−1/2
, α+ β < 1/2,

1 + log
(

xz
(x+z)2−t2

)
, α+ β = 1/2,

1, α+ β > 1/2

uniformly in |x− z| < t < x+ z, and

Kα,β
t (x, z) ' 1

t2α+2β

[
t2 − (x− z)2]β−1


(
t2−(x+z)2

t2−(x−z)2

)α+β−1/2
, α+ β < 1/2,

1 + log
(
t2−(x−z)2
t2−(x+z)2

)
, α+ β = 1/2,

1, α+ β > 1/2

uniformly in t > x+ z.

Taking into account the relation

(2.3) xz '
[
t2 − (x− z)2] ∨ [(x+ z)2 − t2

]
, |x− z| < t < x+ z,

we see that the behavior of Kα,β
t (x, z) depends on x and z only through |x− z| and

x+z. Moreover, this behavior depends essentially on the distances from t2 to (x−z)2

and (x + z)2, and some singularities occur when any of them tends to zero. It is
perhaps interesting to observe that the bounds from Theorem 2.3 can be written in a
more compact way as

Kα,β
t (x, z) ' t−2(α+β)

[(
t2 − (x− z)2) ∨ ∣∣t2 − (x+ z)2

∣∣]−α−1/2

×


[(
t2 − (x− z)2

)
∧
∣∣t2 − (x+ z)2

∣∣]α+β−1/2
, α+ β < 1/2,

1 + log t2−(x−z)2
[t2−(x−z)2]∧|t2−(x+z)2| , α+ β = 1/2,(

t2 − (x− z)2
)α+β−1/2

, α+ β > 1/2
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uniformly in t > |x− z| such that t 6= x+ z.

Proof of Theorem 2.3. We distinguish three cases emerging from splitting the
range of t2 according to the points (x − z)2, x2 + z2, and (x + z)2. Observe that
the middle point is the geometric center of the interval defined by the other points as
endpoints.

Case 1. t2 > (x+ z)2. Changing the variable of integration cos θ = −s in (2.1),
we get

Kα,β
t (x, z) = cα,β t

−2(α+β)
∫ 1

−1

(
t2 − x2 − z2 − 2xzs

)β−1(1− s2)α−1/2 ds

= cα,β t
−2(α+β)(t2 − x2 − z2)β−1

Iα,β−1

(
2xz

t2 − x2 − z2

)
.

Now an application of Lemma 2.1 gives

Kα,β
t (x, z) ' t−2(α+β)(t2 − x2 − z2)β−1


(
t2−(x+z)2

t2−x2−z2

)α+β−1/2
, α+ β < 1/2,

1 + log t2−x2−z2
t2−(x+z)2 , α+ β = 1/2,

1, α+ β > 1/2.

Since t2 − x2 − z2 ' t2 − (x− z)2, this is equivalent to the bounds of the theorem.
Case 2. x2 + z2 < t2 < (x+ z)2. Changing the variable of integration

cos θ = 1 − t2−(x−z)2
2xz s in (2.1) and then simplifying the resulting expression, we

see that
(2.4)

Kα,β
t (x, z) = cα,β t

−2(α+β)(2xz)−2α[t2 − (x− z)2]2α+β−1
Jα,β,α−1/2

(
4xz

t2 − (x− z)2

)
.

Since t2 > x2 + z2 is equivalent to 4xz
t2−(x−z)2 < 2, Lemma 2.2 implies

Kα,β
t (x, z)

' t−2(α+β)(xz)−2α[t2 − (x− z)2]2α+β−1


(

(x+z)2−t2
t2−(x−z)2

)α+β−1/2
, α+ β < 1/2,

1 + log t2−(x−z)2
(x+z)2−t2 , α+ β = 1/2,

1, α+ β > 1/2,

which with the aid of (2.3) leads to the estimates of the theorem.
Case 3. (x− z)2 < t2 ≤ x2 + z2. In view of (2.3), the estimate in question can

be stated simply as

Kα,β
t (x, z) ' t−2(α+β)(xz)−α−1/2[t2 − (x− z)2]α+β−1/2

.

But this is a straightforward consequence of (2.4) and Lemma 2.2, since t2 ≤ x2 + z2

means that 4xz
t2−(x−z)2 ≥ 2.

The proof of Theorem 2.3 is complete.

2.3. Some special elementary cases. It is interesting to observe that for
β = 0 the kernel Kα,β

t (x, z) can be computed explicitly. To this end let α > −1/2
and β = 0. We have

Kα,0
t (x, z) = 2αΓ(α+ 1)(txz)−α

∫ ∞
0

Jα(ty)Jα(xy)Jα(zy) y1−α dy.
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By virtue of formula [21, Chapter XIII, section 13·46(3)] (see also [16, formula (14) on
p. 230]), the kernel vanishes if either t < |x−z| or t > x+z, and for |x−z| < t < x+z
we have

(2.5) Kα,0
t (x, z) =

Γ(α+ 1)√
π22α−1Γ(α+ 1/2)

(txz)−2α
([
t2−(x−z)2][(x+z)2−t2

])α−1/2
.

In [10, 5], standard spherical means of radial functions in Rn, n ≥ 2, were con-
sidered. These means are represented via the one-dimensional kernel

(2.6) Lnt (x, z) =
4Γ(n/2)

Γ((n− 1)/2)
√
π

[
2(b2 − t2)1/2(t2 − a2)1/2

b2 − a2

]n−3
t2−n

b2 − a2 ,

where a = |x− z|, b = x+ z, |x− z| < t < x+ z; the related measure of integration is
zn−1dz. One can generalize (2.6) by letting n = 2α+ 2 and considering a continuous
range α > −1/2. Then it is straightforward to check that

L2α+2
t (x, z) = Kα,0

t (x, z), |x− z| < t < x+ z.

Moreover, the measure zn−1dz becomes dµα(z). Thus the kernel Kα,β
t (x, z) general-

izes L2α+2
t (x, z).

We now look closer at the more elementary case β = 0, α = 1/2, to see that one
indeed has to be careful when dealing with values of Kα,β

t (x, z) in the singular cases
t = |x− z| and t = x + z (anyway, values of the kernel for those t, x, z are irrelevant
for our purposes). We have

K
1/2,0
t (x, z) =

2
π

(txz)−1
∫ ∞

0
sin(ty) sin(xy) sin(zy)

dy

y
.

Using [15, formula (3) on p. 411], we find that

K
1/2,0
t (x, z) =

1
2

(txz)−1


0, |x− z| > t or t > x+ z,

1/2, t = |x− z| or t = x+ z,

1, |x− z| < t < x+ z.

Another example in the same spirit is the case α = −1/2, β = 1, computed by
means of [15, formula (21) on pp. 406–407]:

K
−1/2,1
t (x, z) =

1
t



0, t < |x− z|,
1/4, t = |x− z|,
1/2, |x− z| < t < x+ z,

3/4, t = x+ z,

1, t > x+ z.

The careful reader probably has noticed that the explicit formulas just given are
not consistent with the estimates of Theorem 2.3. More precisely, a kind of phase shift
occurs for α ≥ 1/2 and β = 0, as well as for α = −1/2 and β = 1. This interesting
and perhaps a bit unexpected phenomenon will be fully revealed in Theorem 3.3.

Further explicit formulas for the kernel are implicitly contained in section 3.2
below; see Remark 3.1.
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3. Pointwise kernel estimates II: General case. Recall that the kernel we
are dealing with is

Kα,β
t (x, z) =

2α+βΓ(α+ β + 1)
tα+β(xz)α

∫ ∞
0

Jα+β(ty)Jα(xy)Jα(zy)y1−α−β dy, t, x, z > 0.

In the previous section we found sharp estimates of this kernel when α > −1/2 and
β > 0. Now we consider all α > −1 and β > −α−1/2, that is, all (α, β) for which the
kernel is defined. Our aim is to find possibly precise estimates of Kα,β

t (x, z). Note
that one cannot hope for sharpness for all α and β in question, since in general the
kernel takes both positive and negative values.

Denote the integral entering the kernel by Iα,β ,

(3.1) Iα,β =
1

2α+βΓ(α+ β + 1)
tα+β(xz)αKα,β

t (x, z).

In order to estimate the kernel, we shall first study Iα,β .

3.1. Computation of the triple Bessel function integral Iα,β. To compute
Iα,β we use the formulas [16, 2.12.42 (11)–(13)] (see also [9, 6.578 (8)]), expressing
it in terms of the associated Legendre functions (in the corresponding formulas [21,
Chapter XIII, section 13·46(4), (5)] and [14, 10.22.72] there seems to be an error, an
incorrect constant in the Q part). What we get splits naturally into the three cases
below.

Case 1. t < |x− z|. Then Iα,β ≡ 0 (hence the whole kernel vanishes in this case).
Case 2. |x− z| < t < x+ z. Then

Iα,β =
1√
2π

(xz)α+β−1

tα+β (sin v)α+β−1/2P1/2−α−β
α−1/2 (cos v),

where v ∈ (0, π) is such that

(3.2) cos v =
x2 + z2 − t2

2xz
∈ (−1, 1),

and P is the Ferrers function of the first kind (the associated Legendre function of the
first kind on the cut); cf. [14, Chapter 14].

Case 3. t > x+ z. Then

Iα,β =

√
2
π3

(xz)α+β−1

tα+β (sinhu)α+β−1/2 sin(πβ)eπi(α+β−1/2)Q
1/2−α−β
α−1/2 (coshu),

where u > 0 is such that

(3.3) coshu =
t2 − x2 − z2

2xz
∈ (1,∞),

and Q is the associated Legendre function of the second kind; see [14, 14.3.7]. Since
Q

1/2−α−β
α−1/2 is not defined for β = 1, 2, . . . , the formula above must be understood in

a limiting sense. To overcome this inconvenience, instead of Q we rather use Olver’s
function (cf. [14, 14.3.10])

Q1/2−α−β
α−1/2 (y) = eπi(α+β−1/2)

Q
1/2−α−β
α−1/2 (y)

Γ(1− β)
,
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which (unlike Q1/2−α−β
α−1/2 ) is, in our situation, always real-valued and defined for all α

and β. This leads to

Iα,β = C(β)

√
2
π3

(xz)α+β−1

tα+β (sinhu)α+β−1/2Q1/2−α−β
α−1/2 (coshu),

with C(β) = sin(πβ)Γ(1 − β) understood in the limiting sense when β = 1, 2, . . . .
Observe that C(β) = 0 if and only if β = 0,−1,−2, . . . and for such β this part of
the kernel vanishes. Further, C(β) > 0 when β > 0, and for β < 0 the sign of C(β)
is (−1)bβc provided that β 6= −1,−2, . . . . Observe that the constant in question can
be written, with a limiting understanding, as C(β) = π/Γ(β), by Euler’s reflection
formula

(3.4) sin(πy)Γ(1− y)Γ(y) = π.

Summing up Cases 1–3, one has
(3.5)

Iα,β =
(xz)α+β−1
√

2πtα+β


0, t < |x− z|,
(sin v)α+β−1/2P1/2−α−β

α−1/2 (cos v), |x− z| < t < x+ z,

2
Γ(β) (sinhu)α+β−1/2Q1/2−α−β

α−1/2 (coshu), x+ z < t,

where v and u are related to t, x, z by (3.2) and (3.3).

3.2. Explicit instances of Legendre functions P1/2−α−β
α−1/2 and Q1/2−α−β

α−1/2 .

For some α and β, the functions P1/2−α−β
α−1/2 and Q1/2−α−β

α−1/2 can be expressed in a more
explicit way. We now derive some of these more elementary expressions. This is
of importance for our further development, since we need to cover certain values of
(α, β) for which asymptotics of P1/2−α−β

α−1/2 and Q1/2−α−β
α−1/2 (see section 3.3 below) are

in a sense singular and seem to be inaccessible in the standard literature on special
functions. Independently, of course, it is of interest to know as explicit a form of the
kernel as possible, at least for some α and β.

In what follows we always consider P1/2−α−β
α−1/2 on (−1, 1) and Q1/2−α−β

α−1/2 on (1,∞).
Also, we always assume α > −1 and α + β > −1/2, even though these assumptions
can be weakened in some places below. We will use the formulas (cf. [14, 14.3.1,
14.3.19, 14.3.20])

P1/2−α−β
α−1/2 (y) =

(
1 + y

1− y

)(1/2−α−β)/2

F
(
α+

1
2
,−α+

1
2

;α+ β + 1/2;
1− y

2

)
,

(3.6)

Q1/2−α−β
α−1/2 (y) = 2α−1/2Γ

(
α+

1
2

)
(y + 1)(1/2−α−β)/2

(y − 1)(α−β+3/2)/2 F
(
α+

1
2
, 1− β; 2α+ 1;

2
1− y

)(3.7)

=
−π

2 sin(π(α+ β − 1/2))
(3.8)

×
[

1
Γ(1− β)

(
y − 1
y + 1

)(α+β−1/2)/2

F
(

1
2
− α, α+

1
2

;α+ β +
1
2

;
1− y

2

)
− 1

Γ(2α+ β)

(y + 1
y − 1

)(α+β−1/2)/2
F
(

1
2
− α, α+

1
2

;
3
2
− α− β;

1− y
2

)]
,



MIXED NORM ESTIMATES FOR SPHERICAL MEANS 4415

where F stands for Olver’s hypergeometric function (see [14, sections 15.1, 15.2]),

F(a, b; c; y) =
1

Γ(c) 2F1(a, b; c; y),

with 2F1 being the Gauss hypergeometric function; note that these functions are
symmetric in the first two parameters. The formula (3.7) has to be understood in a
limiting sense for α = −1/2. In (3.8) we assume that α+β−1/2 is not integer. Then,
in cases when β is a positive integer or 2α + β is a nonpositive integer, the formula
has to be understood in a limiting sense. Furthermore, the following connection with
the classical Jacobi polynomials, here denoted by Pγ,δm , will be used (cf. [14, 18.5.7],
[11, p. 212]):

Pγ,δm (y) =
Γ(m+ γ + 1)

m!
F
(
−m,m+ γ + δ + 1; γ + 1;

1− y
2

)
(3.9)

=
Γ(γ + δ + 2m+ 1)Γ(−2m− γ − δ)

m!Γ(γ + δ +m+ 1)

(
y − 1

2

)m
(3.10)

× F
(
−m,−m− γ;−2m− γ − δ; 2

1− y

)
, m = 0, 1, 2, . . . ,

with suitable limiting understanding of the cases when singularities occur in (3.10).
For the sake of clarity, we restrict our attention to −1 < y < 1 in (3.9) and to y > 1
in (3.10).

In the computations of P1/2−α−β
α−1/2 and Q1/2−α−β

α−1/2 below we distinguish three main
cases.

Case 1. β is a nonpositive integer, say β = −n, n = 0, 1, 2, . . . . Observe that in
this situation always α > −1/2. We focus on P1/2−α−β

α−1/2 only, since for the considered

parameters the form of Q1/2−α−β
α−1/2 is irrelevant for the kernel (the part of the kernel

expressed by Q1/2−α−β
α−1/2 vanishes for these parameters; see (3.5)).

Applying the linear transformation (cf. [14, 15.8.1])

F(a, b; c; y) = (1− y)c−a−bF(c− a, c− b; c; y)

to (3.6) and then using (3.9), we arrive at an expression for P1/2−α−β
α−1/2 in terms of

Jacobi (actually ultraspherical) polynomials,

(3.11) P1/2−α−β
α−1/2 (y) =

2n−α+1/2n!
Γ(α+ 1/2)

[
(1 + y)(1− y)

](α−n−1/2)/2Pα−n−1/2,α−n−1/2
n (y).

Note that in the special case of n = 0 = β one has Pα−n−1/2,α−n−1/2
n (y) ≡ 1.

Case 2. 2α + β = 0. Notice that in this case −1 < α < 1/2. Using (3.6), (3.7),
and the identity (cf. [14, 15.4.6]) F(a, b; b; y) = (1− y)−a/Γ(b), we find that

P1/2−α−β
α−1/2 (y) =

2α+1/2

Γ(1/2− α)
[
(1 + y)(1− y)

]−(α+1/2)/2
,(3.12)

Q1/2−α−β
α−1/2 (y) =

√
π

2α+1/2Γ(α+ 1)
[
(y + 1)(y − 1)

]−(α+1/2)/2
.(3.13)

Here, in the computation related to Q1/2−α−β
α−1/2 , we used the duplication formula for

the gamma function,

(3.14) Γ(y)Γ(y + 1/2) =
√
π2−2y+1Γ(2y).
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Furthermore, in this computation we treated the value α = −1/2 in a limiting sense.
Case 3. α is half of an odd integer, say α = n + 1/2, n = −1, 0, 1, 2, . . .. Note

that in this situation β > −n− 1.
To begin, we first consider the subcase n = −1 separately. To this end, α = −1/2

and β > 0. The formulas we then get are

P1/2−α−β
α−1/2 (y) =

1
Γ(β)

(
1 + y

1− y

)(1−β)/2

,(3.15)

Q1/2−α−β
α−1/2 (y) =

1
2

[(
y + 1
y − 1

)(1−β)/2

+
(
y − 1
y + 1

)(1−β)/2]
.(3.16)

To obtain (3.15), one observes that the first parameter of F in (3.6) vanishes and,
consequently, this function is constant and equal to 1/Γ(β). As for (3.16), we use (3.7)
and, with a limiting understanding, the duplication formula (3.14) with y = α+ 1/2
to see that

Q1/2−α−β
α−1/2 (y) =

(
y + 1
y − 1

)(1−β)/2

2F1

(
α+

1
2
, 1− β; 2α+ 1;

2
1− y

)∣∣∣∣
α=−1/2

,

where the hypergeometric function is understood in a limiting sense. To find its
explicit form we eliminate the singularity by means of the identity (cf. [14, 15.5.15])

2 2F1

(
α+

1
2
, 1− β; 2α+ 1;

2
1− y

)
= 2F1

(
α+

1
2
, 1− β; 2α+ 2;

2
1− y

)
+ 2F1

(
α+

3
2
, 1− β; 2α+ 2;

2
1− y

)
.

Letting α = −1/2 on the right-hand side here and using the formula 2F1(a, b; a; y) =
(1− y)−b (essentially stated in Case 2 in terms of F), we see that

2F1

(
α+

1
2
, 1− β; 2α+ 1;

2
1− y

)∣∣∣∣
α=−1/2

=
1
2

[
1 +

(
y + 1
y − 1

)β−1]
.

Now (3.16) follows.
From now to the end of Case 3, we assume n ≥ 0. By (3.6) and (3.9) (recall that

F is symmetric in the first two parameters) one easily gets

(3.17) P1/2−α−β
α−1/2 (y) =

n!
Γ(2n+ β + 1)

(
1 + y

1− y

)−(n+β)/2

Pn+β,−n−β
n (y).

Finally, to compute Q1/2−α−β
α−1/2 for α = n+ 1/2, we first assume that β is not integer

and employ (3.8). Then, with the aid of (3.9),

Q1/2−α−β
α−1/2 (y) =

πn!
2 sin(π(n+ β))Γ(1− β)Γ(2n+ β + 1)

(3.18)

×
[(

y + 1
y − 1

)(n+β)/2

P−n−β,n+β
n (y)−

(
y − 1
y + 1

)(n+β)/2

Pn+β,−n−β
n (y)

]
.
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α+ β = −1/2

2α+ β = 0

−1 1 2

−1

−2

1

2

α

β

Fig. 1. Cases when the kernel has explicit form.

It remains to consider β = m, m = 1, 2, . . . (the case when β is a nonpositive integer
is irrelevant for our purposes). In this situation, Q1/2−α−β

α−1/2 can be computed in fact
for any α (recall that at the moment we are considering α 6= −1/2). Indeed, using
(3.7) and (3.10) we arrive at

Q1/2−α−β
α−1/2 (y) =

√
π(−1)m+1(m− 1)! Γ(2α+ 1)

2α−m+3/2Γ(α+ 1)Γ(2α+m)
(3.19)

×
[
(y + 1)(y − 1)

](1/2−α−m)/2P1/2−α−m,1/2−α−m
m−1 (y).

To be precise, here we also used the duplication and reflection formulas (3.14) and
(3.4). Note that for β = 1 and α = −1/2 one has Q1/2−α−β

α−1/2 (y) ≡ 1.

Remark 3.1. From the above considerations it follows that the kernel Kα,β
t (x, z)

can be written explicitly, by means of elementary functions and possibly Jacobi poly-
nomials, whenever 2α + β = 0 or −β ∈ N or α + 1/2 ∈ N; see Figure 1, where bold
lines represent the cases when the kernel has the explicit form.

3.3. Asymptotics of P1/2−α−β
α−1/2 and Q1/2−α−β

α−1/2 . To estimate the kernel our
strategy will be to employ known asymptotics of the Legendre functions near singular
points (−1+ and 1− in the case of P1/2−α−β

α−1/2 , and 1+ and∞ in the case of Q1/2−α−β
α−1/2 ).
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α+ β = −1/2

α+ β = 1/2

2α+ β = 0

−1 1 2

−1

−2

1

2

α

β

Fig. 2. The exceptional set EP.

These asymptotics will be taken either from the literature (cf. [8, section 3.9.2], [11,
Table 4.8.2], [14, section 14.8]) or from the explicit formulas derived in the previous
section in case (α, β) belongs to one of the exceptional sets EP, EQ that will be defined
in a moment. In the asymptotic expressions below we always write multiplicative
constants, usually depending on α and β, when they may decide about signs.

Recall that we are considering α > −1 and β > −α− 1/2. The cases of singular
points 1− and ∞ are clear, and we have

P1/2−α−β
α−1/2 (y) ' (1− y)−(1/2−α−β)/2, y → 1−,(3.20)

Q1/2−α−β
α−1/2 (y) ' y−α−1/2, y →∞.(3.21)

In order to treat the remaining two singular points, we define the exceptional sets

EP =
{

(α, β) : α+ β ≥ 1/2 and [−β ∈ N or 2α+ β = 0]
}

∪
{

(α, β) : α+ β < 1/2 and α+ 1/2 ∈ N
}
,

EQ =
{

(α, β) : α+ β ≥ 1/2 and 2α+ β = 0
}
∪
{

(α, β) : α+ β < 1/2 and β = 1
}
.

These sets are visualized in Figures 2 and 3 with bold lines and black dots.
At −1+ it happens that

(3.22) P1/2−α−β
α−1/2 (y) '


(1 + y)(1/2−α−β)/2 1

Γ(2α+β)Γ(β) , α+ β > 1/2,

− log(1 + y) sin[π(1/2− α)], α+ β = 1/2,
(1 + y)−(1/2−α−β)/2 sin[π(1/2− α)], α+ β < 1/2

as y → −1+ provided that (α, β) /∈ EP. On the other hand, for (α, β) ∈ EP the
asymptotic is different (or rather inverse; moreover, there are no logarithms when
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α+ β = −1/2

α+ β = 1/2

2α+ β = 0

−1 1

−1

1

2

α

β

Fig. 3. The exceptional set EQ.

α+ β = 1/2). More precisely, for (α, β) ∈ EP we have

P1/2−α−β
α−1/2 (y) '

{
(1 + y)(α+β−1/2)/2c1(α, β), α+ β ≥ 1/2,
(1 + y)(1/2−α−β)/2c2(α, β), α+ β < 1/2.

Here the constants c1, c2 are to indicate signs: c1 = 1 if 2α+ β = 0 and c1 = (−1)β if
β = 0,−1,−2, . . . ; c2 = 1 if α = −1/2 and c2 = (−1)α−1/2 for α = 1/2, 3/2, 5/2, . . . .

Finally, as y → 1+ and (α, β) /∈ EQ, we have

(3.23) Q1/2−α−β
α−1/2 (y) '


(y − 1)(1/2−α−β)/2 1

Γ(2α+β) , α+ β > 1/2,

− log(y − 1) 1
Γ(α+1/2) , α+ β = 1/2,

(y − 1)(α+β−1/2)/2 1
Γ(1−β) , α+ β < 1/2,

whereas for (α, β) ∈ EQ (see also (3.19) with m = 1 = β) we have

Q1/2−α−β
α−1/2 (y) '

{
(y − 1)(α+β−1/2)/2, α+ β ≥ 1/2,
(y − 1)(1/2−α−β)/2, α+ β < 1/2.

Neglecting signs, the asymptotics at−1+ and 1+ can be written in a more compact
way, respectively,

∣∣P1/2−α−β
α−1/2 (y)

∣∣ '


(1 + y)−|α+β−1/2|/2, (α, β) /∈ EP, α+ β 6= 1/2,
− log(1 + y), (α, β) /∈ EP, α+ β = 1/2,
(1 + y)|α+β−1/2|/2, (α, β) ∈ EP,

and

∣∣Q1/2−α−β
α−1/2 (y)

∣∣ '


(y − 1)−|α+β−1/2|/2, (α, β) /∈ EQ, α+ β 6= 1/2,
− log(y − 1), (α, β) /∈ EQ, α+ β = 1/2,
(y − 1)|α+β−1/2|/2, (α, β) ∈ EQ.
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No zeros

α+ β = −1/2
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Fig. 4. Zeros of P1/2−α−β
α−1/2 in (−1, 1).

3.4. Zeros of P1/2−α−β
α−1/2 and Q1/2−α−β

α−1/2 . We continue considering these func-
tions on (−1, 1) and (1,∞), respectively. Since we are going to obtain possibly sharp
estimates in terms of asymptotics of these functions, it is important to know whether,
given α and β, they have zeros. If this is not the case, asymptotics invoked in section
3.3 (see (3.20) and (3.21)) imply that the functions are strictly positive.

We will prove the following.

Proposition 3.2. Let α > −1 and α+ β > −1/2.
(a) The function P1/2−α−β

α−1/2 has no zeros in (−1, 1) if α ≥ −1/2 and β ≥ 0, or

α < −1/2 and β > −2α, or α ≤ 1/2 and β < 0. Otherwise, P1/2−α−β
α−1/2 has at

least one zero in (−1, 1).
(b) The function Q1/2−α−β

α−1/2 has exactly one zero if α < −1/2 and 1 < β < −2α.

Otherwise, Q1/2−α−β
α−1/2 has no zeros in (1,∞).

See Figures 4 and 5, where gray regions together with bold lines and black dots
represent pairs (α, β) for which P1/2−α−β

α−1/2 has no zeros in (−1, 1) and Q1/2−α−β
α−1/2 has

no zeros in (1,∞), respectively.

Proof of Proposition 3.2. We first prove (a). From the explicit formulas (3.11),
(3.12), (3.15), and (3.17) we know, respectively, that there is no zero when β = 0 or
β = −2α or α = −1/2 or [α = 1/2 and β < 0]. Further, by the first item (a) in
[14, section 14.16(ii)], it follows that there is no zero if α, β > 0 and α + β ≥ 1/2.
Combining the same condition with [14, 14.9.5] we infer that no zeros may occur if
α < 0 and β > −2α and α+ β ≥ 1/2. The lack of zeros in case −1/2 < α < 1/2 and
α+β < 1/2 follows from item (c) in [14, section 14.16(ii)], combined with [14, 14.9.5]
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Fig. 5. Zeros of Q1/2−α−β
α−1/2 in (1,∞).

when α < 0 comes into play. Altogether, the above shows that there are no zeros for
(α, β) indicated in item (a) of the proposition.

We now treat (α, β), for which there is at least one zero. The explicit formula
(3.17) shows that this is the case when α = 1/2, 3/2, 5/2, . . . and β < 1/2 − α (here
we use the standard fact that Jacobi polynomials Pγ,δm have m zeros in the interval
(−1, 1) whenever γ, δ > −1). Further, according to the first item (a) in [14, section
14.16(ii)], there is at least one zero provided that α+β ≥ 1/2 and β < 0. The regions
defined by the conditions n + 1/2 < α < n + 3/2, α + β < 1/2, 2α + β > n + 1,
n ∈ N, are covered by the first item (b) in [14, section 14.16(ii)], while the adjacent
regions n + 1/2 < α < n + 3/2, 2α + β ≤ n + 1, n ≥ 1, by the second item (a) in
[14, section 14.16(ii)]. The remaining two regions defined by α < −1/2, β < −2α
and 1/2 < α < 3/2, 2α + β ≤ 1, respectively, can be dealt with with the aid of
the asymptotics from section 3.3. Indeed, taking into account (3.20), it is enough, for
continuity reasons, to check that in the regions in question the asymptotic expressions
at −1+ are negative. But this immediately follows from (3.22).

Passing to (b), according to [14, section 14.16(iii)], Q1/2−α−β
α−1/2 has no zeros in

(1,∞) when α > −1/2 and at most one zero when α < −1/2. Moreover, by the
explicit formulas (3.16), (3.13), and (3.19) we know, respectively, that no zeros occur
when α = −1/2, or α < −1/2 and β = −2α, or α < −1/2 and β = 1. Further, the
lack of zeros for α < −1/2 and [β < 1 or β > −2α] follows by applying Whipple’s
formula [14, 14.9.16] and then using the criterion from [14, section 14.16(iii)] for the
associated Legendre function of the first kind. More precisely, this covers β > −2α,
and to treat β < 1 one combines the criterion just mentioned with the formula [14,
14.9.11]. Finally, there is one zero in the triangle α < −1/2, 1 < β < −2α, in view of
the asymptotic expressions (3.21) and (3.23). The conclusion follows.
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It is worth observing that the fact that P1/2−α−β
α−1/2 and Q1/2−α−β

α−1/2 have no zeros
in (−1, 1) and (1,∞), respectively, when α > −1/2 and β > 0, is a straightforward
consequence of (2.1) and (3.5).

3.5. Estimates of the kernel Kα,β
t (x, z). Using (3.1), (3.5), and the asymp-

totics from section 3.3, and taking into account continuity of the functions under
consideration, we conclude the following estimates for the kernel.

Region |x− z| < t < x+ z. If (α, β) /∈ EP, then

|Kα,β
t (x, z)| . (xz)β−1

t2α+2β

[
(sin v)2(1− cos v)

](α+β−1/2)/2

×


(1 + cos v)−(α+β−1/2)/2, α+ β > 1/2,
1− log(1 + cos v), α+ β = 1/2,
(1 + cos v)(α+β−1/2)/2, α+ β < 1/2,

whereas in case (α, β) ∈ EP one has a different and simpler (no logarithmic case)
bound

|Kα,β
t (x, z)|

.
(xz)β−1

t2α+2β

[
(sin v)2(1− cos v)

](α+β−1/2)/2

{
(1 + cos v)(α+β−1/2)/2, α+ β ≥ 1/2,
(1 + cos v)−(α+β−1/2)/2, α+ β < 1/2.

Here v is determined by (3.2). For those (α, β) for which P1/2−α−β
α−1/2 has no zeros in

(−1, 1) (see Proposition 3.2), the estimates are sharp, one can replace . by ', and,
moreover, one can suppress the absolute value of the kernel. Otherwise, the estimates
are sharp provided that cos v is in a (sufficiently small) neighborhood of −1 or 1.

Region x+ z < t. If (α, β) /∈ EQ and in addition −β /∈ N, then

|(−1)bβ∧0cKα,β
t (x, z)| . (xz)β−1

t2α+2β (sinhu)α+β−1/2(coshu+ 1)−α−1/2

×



(
coshu−1
coshu+1

)−(α+β−1/2)/2
, α+ β > 1/2,

1− log
(

coshu−1
coshu+1

)
, α+ β = 1/2,(

coshu−1
coshu+1

)(α+β−1/2)/2
, α+ β < 1/2,

and in case (α, β) ∈ EQ we have

|Kα,β
t (x, z)| . (xz)β−1

t2α+2β (sinhu)α+β−1/2(coshu+ 1)−α−1/2

×


(

coshu−1
coshu+1

)(α+β−1/2)/2
, α+ β ≥ 1/2,(

coshu−1
coshu+1

)−(α+β−1/2)/2
, α+ β < 1/2.

Here u is determined by (3.3). For those (α, β) for which Q1/2−α−β
α−1/2 has no zeros in

(1,∞) (see Proposition 3.2), the estimates are sharp, one can replace . by ', and,
moreover, one can suppress the absolute values. Otherwise, the estimates are sharp
provided that cosh v is sufficiently large or sufficiently close to 1.
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From the above bounds we can readily get estimates of Kα,β
t (x, z) in terms of

t, x, z. To do that, we use the following identities that hold when |x− z| < t:

1 + cos v = coshu− 1 =
1
2
|(x+ z)2 − t2|

xz
,

1− cos v = coshu+ 1 =
1
2
t2 − (x− z)2

xz
,

sin2 v = sinh2 u =
1
4
|(x+ z)2 − t2|

xz

t2 − (x− z)2

xz
.

As the outcome, also taking into account (2.3), we obtain the main result concerning
pointwise estimates of Kα,β

t (x, z).

Theorem 3.3. Assume that α > −1 and α+ β > −1/2. Let t, x, z > 0.
(1) The kernel Kα,β

t (x, z) vanishes when t < |x− z|.
(2) The following estimates hold uniformly in |x− z| < t < x+ z:

(2a) If −β ∈ N or 2α+ β = 0, then

|Kα,β
t (x, z)| . (xz)−α−1/2

t2α+2β

[
t2−(x−z)2]α+β−1/2

(
(x+ z)2 − t2

xz

)α+β− 1
2

.

(2b) If α+ 1/2 ∈ N, then

|Kα,β
t (x, z)| . (xz)−α−1/2

t2α+2β

[
t2 − (x− z)2]α+β−1/2

.

(2c) For all (α, β) not covered by items (2a) and (2b),

|Kα,β
t (x, z)| . (xz)−α−1/2

t2α+2β

[
t2 − (x− z)2]α+β−1/2

×


(

(x+z)2−t2
xz

)α+β−1/2
, α+ β < 1/2,

1 + log
(

4xz
(x+z)2−t2

)
, α+ β = 1/2,

1, α+ β > 1/2.

The absolute values in (2a)–(2c) can be suppressed and . can be replaced by
' if and only if (α, β) satisfy neither α > 1/2 and β < 0 nor α < −1/2 and
β < −2α.

(3) The following bounds are uniform in t > x+ z:
(3a) If −β ∈ N, then this part of the kernel vanishes.
(3b) If 2α+ β = 0 and β 6= 0, then

Kα,β
t (x, z) ' 1

t2α+2β

[
t2 − (x− z)2]β−1

(
t2 − (x+ z)2

t2 − (x− z)2

)α+β−1/2

.

(3c) If β = 1, then

Kα,β
t (x, z) ' 1

t2α+2β

[
t2 − (x− z)2]β−1

.

(3d) For all (α, β) not covered by items (3a)–(3c),

|Kα,β
t (x, z)| . 1

t2α+2β

[
t2 − (x− z)2]β−1
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×


(
t2−(x+z)2

t2−(x−z)2

)α+β−1/2
, α+ β < 1/2,

1 + log
(
t2−(x−z)2
t2−(x+z)2

)
, α+ β = 1/2,

1, α+ β > 1/2.

The relation . in (3d) can be replaced by ' if and only if (α, β) does not
satisfy 1 < β < −2α. If this is the case, then also the absolute value can be
suppressed provided that the kernel is multiplied by (−1)bβ∧0c.

Note that some estimates in Theorem 3.3 can be written in a simpler way by
plugging in specific values of the parameters; nevertheless, we keep the general for-
mulas for the sake of better comparison between the cases. Further, in all the cases
the estimates are sharp (. can be replaced by ') provided that (t, x, z) are restricted
to certain regions. More precisely, this happens when t is sufficiently close to |x− z|
or x+ z or ∞, that is,

dist(t, |x− z|) < ε
√
xz or dist(t, x+ z) < ε

√
xz or t > ε−1√xz

with ε > 0 small enough.

4. L2-boundedness of the integral operator Mα,β
t . The estimates of Theo-

rem 3.3 allow us to verify directly the L2-boundedness of the integral operator Mα,β
t .

Proposition 4.1. Let α > −1 and α + β > −1/2. Then, for each t > 0,
L2(dµα) ⊂ DomMα,β

t and Mα,β
t is bounded on L2(dµα).

This together with Proposition 1.1 implies the following.

Corollary 4.2. Let α > −1 and α+ β > −1/2. Then the operators Mα,β
t and

Mα,β
t coincide on L2(dµα).

Proof of Proposition 4.1. In view of the scaling property of the kernel (1.2), we
may assume t = 1. Then the estimates of Theorem 3.3 imply the following bound
uniform in x and z:

|Kα,β
1 (x, z)| .


0, 1 < |x− z|,
(xz)−α−1/2[1− (x− z)2]γ

(
(x+z)2−1

xz

)γ
, |x− z| < 1 < x+ z,

[1− (x− z)2]−α−1/2[1− (x+ z)2]γ , x+ z < 1,

where γ ∈ (−1, 0) is a constant depending on α and β; actually, taking γ = (α+ β −
1/2)∧ (−ε) with a small ε > 0 will suffice (ε to take care of the logarithms; otherwise,
ε = 0 would be enough). The right-hand side above can be simplified by taking into
account the constraints on x and z and the relations 4xz = (x + z)2 − (x − z)2 '
(x+ z)(x+ z − |x− z|). We get

|Kα,β
1 (x, z)| .


0, |x− z| > 1,

(xz)−α−1/2
(

(1−|x−z|)(x+z−1)
x+z−|x−z|

)γ
, |x− z| < 1, x+ z > 1,

(1− |x− z|)−α−1/2[1− (x+ z)]γ , x+ z < 1.

We will consider here separately the two integral operators defined by the expressions
on the right-hand side. It is enough to verify that each of them is bounded on L2(dµα).

Let

L(x, z) = χ{|x−z|<1, x+z>1}(xz)−α−1/2
(

(1− |x− z|)(x+ z − 1)
x+ z − |x− z|

)γ
,
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M(x, z) = χ{x+z<1}(1− |x− z|)−α−1/2[1− (x+ z)]γ ,

and denote the corresponding integral operators (integration with respect to dµα) by
L and M, respectively. Our strategy to show L2(dµα)-boundedness of L and M is
mainly based on the Schur test, applied to integral operators L̃ and M̃ defined by the
kernels (xz)α+1/2L(x, z) and (xz)α+1/2M(x, z), respectively, integration being with
respect to Lebesgue measure dx in (0,∞). Observe that L is bounded in L2(dµα) if
and only if L̃ is bounded in L2(dx), and similarly for M and M̃. Recall that, taking
into account the positivity and symmetry of our kernels, the Schur test says that the
bound ∫ ∞

0
(xz)α+1/2L(x, z) dz . 1, x > 0,

implies Lp(dx)-boundedness, 1 ≤ p ≤ ∞, of L̃; an analogous implication holds for M̃.
To proceed, we first focus on L, or rather L̃. We have (recall that −1 < γ < 0)

(xz)α+1/2L(x, z) = χ{|x−z|<1, x+z>1}

(
(1− |x− z|)(x+ z − 1)

(1− |x− z|) + (x+ z − 1)

)γ
' χ{|x−z|<1, x+z>1}

[
(1− |x− z|)γ + (x+ z − 1)γ

]
. χ{|x−z|<1}(1− |x− z|)γ + χ{|x−z|<1, x+z>1}(x+ z − 1)γ .

In the last sum the first term is given by an integrable convolution kernel, so it defines
an operator bounded on all Lp(dx), 1 ≤ p ≤ ∞ (clearly, the Schur test applies as well
with the same conclusion). To deal with the second term, we write∫ ∞

0
χ{|x−z|<1, x+z>1}(x+ z − 1)γ dz =

∫ x+1

|x−1|
(x+ z − 1)γ dz

' xγ+1 − [(x− 1) ∨ 0]γ+1 . 1, x > 0,

and invoke the Schur test. The Lp(dx)-boundedness of L̃ follows, and this implies the
L2(dµα)-boundedness of L.

Next, we analyze M. Here the Schur test leads to the conclusion when applied to
M̃, but with −1 < α < −1/2 excluded. Therefore, to cover all α > −1, we argue in
a more subtle way. In the first step we will show that the integral operator

M1f(x) =
∫ ∞

0
χ{|x−z|≤1/2}M(x, z)f(z) dµα(z)

is bounded on L2(dµα). Indeed, this follows by using the Schur test, since∫ ∞
0

χ{|x−z|≤1/2}M(x, z) dµα(z) '
∫ ∞

0
χ{|x−z|≤1/2, x+z<1}(1− x− z)γz2α+1 dz

≤ χ{x<3/4}(1− x)γ+2α+2
∫ 1

0
(1− s)γs2α+1 ds

. 1, x > 0.

It remains to verify that

M2f(x) =
∫ ∞

0
χ{x>z}χ{|x−z|>1/2}M(x, z)f(z) dµα(z)
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is bounded in L2(dµα), because then automatically the same is true for its dual M∗2
and M = M1 + M2 + M∗2.

Observe that the kernel of M2 can be estimated as

χ{x>z}χ{|x−z|>1/2}M(x, z) . χ{x>z, 1/2<x<1, z<1−x}(1− x)−α−1/2(1− x− z)γ ,

so it is enough to check the bound∥∥∥∥χ{1/2<x<1}(1− x)−α−1/2
∫ ∞

0
χ{z<1−x}(1− x− z)γf(z)z2α+1 dz

∥∥∥∥
L2(R+,dx)

. ‖xα+1/2f(x)‖L2(R+,dx), f ∈ L2(dµα).

By changing the variable 1 − x = y and letting F (z) = zα+1/2f(z), we see that this
task will be done once we justify that∥∥∥∥χ{y<1}

∫ y

0

(
z

y

)α+1/2

(y−z)γF (z) dz
∥∥∥∥
L2(R+,dy)

. ‖F‖L2(R+,dx), F ∈ L2(R+, dx).

Let I denote the left-hand side in the above estimate. Changing the variable
z = yr and then using Minkowski’s integral inequality, we get

I =
∥∥∥∥χ{y<1}y

γ+1
∫ 1

0
rα+1/2(1− r)γF (yr) dr

∥∥∥∥
L2(R+,dy)

≤
∫ 1

0
rα+1/2(1− r)γ

∥∥χ{y<1}y
γ+1F (yr)

∥∥
L2(R+,dy) dr.

To estimate the norm expression under the last integral, we change back the variable
yr = z and obtain∥∥χ{y<1}y

γ+1F (yr)
∥∥
L2(R+,dy)

=
1√
r

(∫ r

0

(z
r

)2(γ+1)
|F (z)|2 dz

)1/2

≤ 1√
r
‖F‖L2(R+,dz),

since 2(γ + 1) > 0. Consequently,

I ≤ ‖F‖L2(R+,dz)

∫ 1

0
rα(1− r)γ dr . ‖F‖L2(R+,dz).

This finishes proving L2(dµα)-boundedness of M2 and thus also of M.
The proof of Proposition 4.1 is now complete.

5. Time variable norm estimates of the kernel Kα,β
t (x, z). In this section

we find possibly sharp estimates (which in fact are sharp in some cases and presumably
sharp in all cases) of the norm of Kα,β

t (x, z) in Lr(tρdt). We consider here all power
weights tρ, ρ ∈ R, and 1 ≤ r <∞. The case r =∞ is not treated. It corresponds to
the maximal operator associated with radial spherical means, whose analysis requires
more subtle methods than those we apply for r < ∞; in particular, evaluating first
the supremum in t of the kernel does not lead to satisfactory results.
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Theorem 5.1. Assume that α > −1 and α + β > −1/2. Let 1 ≤ r < ∞, and
assume further that

(5.1) α+ β >
1
2
− 1
r

and
[ρ+ 1

r
< 2α+ 2 if − β /∈ N

]
.

Then, uniformly in x, z > 0,

∥∥Kα,β
t (x, z)

∥∥
Lr(tρdt) . (x+ z)−2α−1


|x− z|(ρ+1)/r−1, ρ+1

r < 1
1 + log1/r ( x+z

|x−z|
)
, ρ+1

r = 1

(x+ z)(ρ+1)/r−1, ρ+1
r > 1


×


1, β + 1

r > 1
1 + χ{β 6=0} log1/r (x

z ∨
z
x

)
, β + 1

r = 1(
x
z ∧

z
x

)β+1/r−1
, β + 1

r < 1

 .

Moreover, the relation . can be replaced by ' in the above estimate if any of the
following statements is true:

(a) α and β satisfy neither [α < −1/2 and β < −2α] nor [α > 1/2 and β < 0];
(b) α and β do not satisfy [1 < β < −2α or −β ∈ N], and x, z stay noncompara-

ble;
(c) α and β do not satisfy [1 < β < −2α or −β ∈ N] and (ρ+ 1)/r > 1.
Furthermore, if either of the conditions in (5.1) is not satisfied, then the Lr(tρdt)

norm of the kernel is infinite.

Observe that there are some α, β for which the unweighted norm (ρ = 0) is
infinite. This motivates the introduction of power weights.

In the proof of Theorem 5.1 we will use repeatedly the lemma below.

Lemma 5.2. Let γ > −1, δ ∈ R, and 0 < C < 1 be fixed.
(a) The following relation holds uniformly in 0 < A ≤ C:∫ A

0
wγ(1− w)δ dw ' Aγ+1.

(b) The following bounds hold uniformly in C ≤ A < 1:

∫ A

0
wγ(1− w)δ dw '


1, δ > −1,
log 1

1−A , δ = −1,
(1−A)δ+1, δ < −1.

For γ ≤ −1, the integral diverges to infinity for any 0 < A < 1.

Proof. This is a simple exercise.

Proof of Theorem 5.1. We will integrate against tρdt the right-hand sides of the
bounds in Theorem 3.3 raised to power r. We split this integration with respect to
the four regions

|x− z| < t <
√
x2 + z2 < t < x+ z < t <

√
2(x+ z) < t

and denote the resulting (nonnegative) integrals by I1, I2, I3, and I4, respectively.
These integrals, in general, will be analyzed separately. Then the resulting estimates
will be merged via considering comparable and noncomparable values of x and z.
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We proceed by considering the most involved situation when items (2c) and (3d)
from Theorem 3.3 are combined. It is convenient to distinguish three main cases
emerging naturally from the estimates in Theorem 3.3(2c) and (3d).

Case 1. α+ β > 1/2. We have

I1 = (xz)−(α+1/2)r
∫ √x2+z2

|x−z|

[
t2 − (x− z)2](α+β−1/2)r

tρ−2(α+β)r dt

=
1
2

(xz)−(α+1/2)r|x− z|ρ+1−r
∫ 2xz

x2+z2

0
w(α+β−1/2)r(1− w)(r−ρ−3)/2 dw,(5.2)

where the second identity follows by the change of variables t2 = (x − z)2/(1 − w).
Next, observing that on the interval of integration in I2 one has t ' x + z and
t2 − (x− z)2 ' xz, and the length of that interval is x+ z −

√
x2 + z2 ' xz/(x+ z),

we immediately get

I2 ' (x+ z)−2(α+β)r+ρ−1(xz)(β−1)r+1.

Finally, changing the variable t2 = (x− z)2/w we arrive at

I3 + I4 =
∫ ∞
x+z

[
t2 − (x− z)2](β−1)r

tρ−2(α+β)r dt

=
1
2
|x− z|−2(α+1)r+ρ+1

∫ ( |x−z|
x+z

)2
0

w(α+1)r+(1−ρ)/2−2(1− w)(β−1)r dw.(5.3)

Consider now comparable x and z. In this situation, xz ' (x + z)2. Further,
since the upper limit of integration in (5.2) is separated from 0, by Lemma 5.2(b) we
conclude that

(5.4) I1 ' (x+ z)−(2α+1)r|x− z|ρ+1−r


1, r > ρ+ 1,
1 + log x+z

|x−z| , r = ρ+ 1,(
x+z
|x−z|

)ρ+1−r
, r < ρ+ 1.

Since now
I2 ' (x+ z)−(2α+1)r+ρ+1−r,

it is straightforward to see that I2 is controlled by I1. As for I3 + I4, we observe that
the upper limit of integration in (5.3) is separated from 1 and apply Lemma 5.2(a) to
get

I3 + I4 ' (x+ z)−(2α+1)r+ρ+1−r.

Here the right-hand side is the same as in the case of I2. Summing up, I1 dominates
I2 + I3 + I4, and the desired bound for x ' z follows.

Now let x and z be noncomparable. For symmetry reasons, we may assume that
x � z. Then x + z ' |x − z| ' x. Taking into account that the upper limit of
integration in (5.2) is separated from 1 and applying Lemma 5.2(a), we obtain

(5.5) I1 ' x−(2α+1)rxρ+1−r
( z
x

)(β−1)r+1
.

Moreover, it is straightforward to see that I2 is comparable to the right-hand side
here. Passing to I3 + I4, we note that the upper limit of integration in (5.3) is now



MIXED NORM ESTIMATES FOR SPHERICAL MEANS 4429

separated from 0, so Lemma 5.2(b) can be applied. This leads to

I3 + I4 ' x−(2α+1)rxρ+1−r


1, 1

r > 1− β,
1 + log x

z ,
1
r = 1− β,(

z
x

)(β−1)r+1
, 1

r < 1− β.

Since, as easily verified, I3 + I4 controls I1 + I2, we get the bound asserted in the
theorem for x� z. The conclusion follows.

Case 2. α+β < 1/2. Since on the interval of integration in I1 we have (x+ z)2−
t2 ' xz, we get

I1 ' (xz)−(α+1/2)r
∫ √x2+z2

|x−z|

[
t2 − (x− z)2](α+β−1/2)r

tρ−2(α+β)r dt.

The right-hand side here corresponds to I1 from Case 1, so all the bounds for the
present I1 will be as in Case 1. Considering I2, we observe that on the interval of
integration t2 − (x− z)2 ' xz and t ' x+ z. Consequently,

I2 ' (xz)−(α+1/2)r(x+ z)ρ−2(α+β)r−1
∫ x+z

√
x2+z2

[
(x+ z)2 − t2

](α+β−1/2)r
t dt

=
1
2

(xz)−(α+1/2)r(x+ z)ρ+1−r
∫ 2xz

(x+z)2

0
w(α+β−1/2)r dw,(5.6)

where the last identity follows by the change of variables t2 = (x + z)2(1 − w). For
I3, we notice that on the interval of integration t ' x+ z, and we write

I3 ' (x+ z)−2(α+β)r+ρ−1

×
∫ √2(x+z)

x+z

[
t2 − (x− z)2]−(α+1/2)r[

t2 − (x+ z)2](α+β−1/2)r
t dt

' (x+ z)−(2α+1)r+ρ+1−r
(

xz

(x+ z)2

)(β−1)r+1

(5.7)

×
∫ (x+z)2

(x+z)2+4xz

0
w(α+β−1/2)r(1− w)(1−β)r−2 dw,

where the last relation is obtained by changing the variable

(5.8) t2 = (x+ z)2 + 4xz
w

1− w
.

Finally, on the interval of integration of I4 one has t2 − (x− z)2 ' t2 − (x+ z)2 ' t2
and therefore

I4 '
∫ ∞
√

2(x+z)
t−(2α+1)r+ρ−r dt ' (x+ z)−(2α+1)r+ρ+1−r.

Now let x and z be comparable. Then I1 satisfies (5.4). Further, the upper limit
of integration in (5.6) is separated from 0, and hence that integral has the size of a
(positive and finite) constant. Therefore, using also xz ' (x+ z)2,

I2 ' (x+ z)−(2α+1)r+ρ+1−r,
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which, as in Case 1, is controlled by I1. Clearly, the latter is also true for I4. As for
I3, the upper limit of integration is separated both from 0 and 1, so we get the same
behavior as for I2 and I4. Altogether, this gives the relevant bound for x ' z.

When x and z are noncomparable, say x � z, we argue in a similar way. I1
satisfies (5.5). To estimate I2 we just integrate in (5.6), getting the same behavior as
for I1, so

I1 + I2 ' x−(2α+1)rxρ+1−r
( z
x

)(β−1)r+1
.

The upper limit of integration in (8) is separated from 0, so applying Lemma 5.2(b)
we arrive at

I3 ' x−(2α+1)rxρ+1−r


1, 1

r > 1− β,
1 + log x

z ,
1
r = 1− β,(

z
x

)(β−1)r+1
, 1

r < 1− β.

Since I4 ' x−(2α+1)rxρ+1−r, we see that I4 . I3. Moreover, as easily verified, I1+I2 .
I3. Thus the estimate of the theorem follows for x � z and by symmetry also for
x� z.

Case 3. α + β = 1/2. To treat I1, we notice that on the interval of integration
(x + z)2 − t2 ' xz, and hence the logarithm can be neglected, and the estimates for
I1 are as in Cases 1 and 2. Dealing with I2, we take into account that t ' x + z on
the interval of integration and get

I2 ' (xz)−(α+1/2)r(x+ z)ρ−r−1
∫ x+z

√
x2+z2

logr
(

8xz
(x+ z)2 − t2

)
t dt

' (xz)−(α+1/2)r+1(x+ z)ρ−r−1
∫ 1/4

0
logr

1
w
dw.

Here the second relation is obtained by changing the variable [(x+z)2−t2]/(8xz) = w,
and the last integral is a (positive and finite) constant depending only on r. In I3, we
still have t ' x+ z, and thus

I3 ' (x+ z)ρ−r−1
∫ √2(x+z)

x+z

[
t2 − (x− z)2](β−1)r logr

(
2
t2 − (x− z)2

t2 − (x+ z)2

)
t dt

= 2(xz)−(α+1/2)r+1(x+ z)ρ−r−1
∫ (x+z)2

(x+z)2+4xz

0
(1− w)(1−β)r−2 logr

2
w
dw,

where the last identity follows by the change of variable (5.8) and the equality β −
1 = −(α + 1/2). Observe that in the last integral the logarithmic factor can be
neglected for our purposes, because it is integrable near 0, and the upper limit of
integration is always separated from 0; thus Lemma 5.2(b) is applicable. Finally, in
I4, t2 − (x− z)2 ' t2 − (x+ z)2 ' t2, so its behavior is the same as in Case 2.

From here we proceed similarly as in Cases 1 and 2 to see that I1 is the dominating
integral when x ' z, whereas for noncomparable x and z the dominating one is I3.
Then combining the behaviors of I1 and I3 we conclude the desired estimate in Case
3.

Proving the bound of Theorem 5.1 is accomplished in the most involved situation
when estimates of items (2c) and (3d) in Theorem 3.3 are combined. Other combi-
nations of items (2a)–(2c) and (3a)–(3d) are implicitly contained in the analysis thus
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far, since the other bounds coincide with subcases occurring in (2c) and (3d). Further
details are straightforward and thus omitted.

Tracing this proof reveals that the conditions (5.1) are indeed necessary to assure
integrability in various places. If either of them would not be satisfied, then we would
have I1 + I2 + I3 + I4 = ∞. Moreover, since the bounds of Theorem 3.3 are sharp
when t→ |x−z| or t→ x+z or t→∞, we infer that the Lr(tρdt) norm of the kernel
is infinite if (5.1) does not hold.

Finally, conditions (a)–(c) allowing us to replace . by ' are deduced from the
corresponding comments in Theorem 3.3 and mutual relations between the integrals
I1, . . . , I4. More precisely, for showing (b) and (c) the following fact is relevant:
assuming −β /∈ N, the sum I1 + · · · + I4 is controlled by I3 + I4 when x and z stay
noncomparable or r < ρ+ 1.

6. Mixed norm estimates for Mα,β
t . In this section our aim is to study

boundedness of Mα,β
t from Lp(dµα) to the mixed norm space Lq(Lrtρ)(dµα). More

generally, we are interested in two-weight mixed norm estimates of the form

(6.1)
∥∥∥∥∥Mα,β

t f(x)
∥∥
Lr(tρdt)x

−B
∥∥∥
Lq(dµα)

.
∥∥f(x)xA

∥∥
Lp(dµα)

which are uniform in f . Our objective is to find possibly wide ranges of the parameters
α, β,A,B, r, ρ, p, q for which (6.1) holds. Here, in general, we consider

(6.2) α > −1, β > −α− 1/2, 1 ≤ p, q ≤ ∞, 1 ≤ r <∞, A,B, ρ ∈ R.

The result below is a simple consequence of homogeneity of the kernel Kα,β
t (x, z);

see (1.2).

Proposition 6.1. Assume that the parameters satisfy (6.2). Then the condition

(6.3)
1
q

=
1
p

+
1

2α+ 2

(
A+B − ρ+ 1

r

)
is necessary for (6.1) to hold uniformly in, say, f ∈ C∞c (0,∞).

Notice that condition (6.3) is independent of β.
To proceed, we shall consider a positive kernel Kα,β

r,ρ (x, z) defined by the right-
hand side of the bound from Theorem 5.1, without assuming (5.1), and will analyze
the corresponding positive operator Kα,β

r,ρ .

6.1. Analysis of the auxiliary operator Kα,β
r,ρ . Let

Kα,β
r,ρ (x, z) = (x+ z)−2α−1


|x− z|(ρ+1)/r−1, ρ+1

r < 1
1 + log1/r ( x+z

|x−z|
)
, ρ+1

r = 1

(x+ z)(ρ+1)/r−1, ρ+1
r > 1


×


1, β + 1

r > 1
1 + χ{β 6=0} log1/r (x

z ∨
z
x

)
, β + 1

r = 1(
x
z ∧

z
x

)β+1/r−1
, β + 1

r < 1

 ,

and consider the associated integral operator

Kα,β
r,ρ f(x) =

∫ ∞
0

Kα,β
r,ρ (x, z)f(z) dµα(z).
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We denote by DomKα,β
r,ρ the natural domain of this operator, that is, the set of

all functions f for which the defining integral converges for a.a. x. Observe that a
necessary condition for DomKα,β

r,ρ to be nontrivial is ρ > −1, since otherwise for each
x > 0 the factor |x− z|(ρ+1)/r−1 is not locally integrable around x.

We will show the following sharp result.

Theorem 6.2. Assume that α, β,A,B, r, ρ, p, q are as in (6.2).
(i) The inclusion Lp(xApdµα) ⊂ DomKα,β

r,ρ holds if and only if ρ > −1 and

ρ+ 1
r
− 2α+ 2

p
−
(
β +

1
r
− 1
)
∧ 0 < A <

2α+ 2
p′

+
(
β +

1
r
− 1
)
∧ 0

(6.4)

(
both ≤ when p = 1 and

[
β = 0 or β +

1
r
− 1 6= 0

])
.

(ii) The estimate ∥∥x−BKα,β
r,ρ f

∥∥
Lq(dµα) .

∥∥xAf∥∥
Lp(dµα)

holds uniformly in f ∈ Lp(xApdµα) if and only if the following conditions are
satisfied:

(C1) p ≤ q;
(C2) 1

q = 1
p + 1

2α+2

(
A+B − ρ+1

r

)
;

(C3)
(
A− 2α+2

p′

)
∨
(
B − 2α+2

q

)
<
(
β + 1

r − 1
)
∧ 0

(≤ when p = q′ = 1 and [β = 0 or β + 1
r 6= 1]);

(C4) 1
q ≥

1
p −

ρ+1
r (> when p = 1 or q =∞).

Note that in general none of conditions (C1)–(C4) follows from the others. How-
ever, (C4) is superfluous when ρ+1

r > 1, and in case ρ+1
r = 1 it is equivalent to

(p, q) 6= (1,∞). Moreover, in view of (C2), condition (C4) can be replaced by
(C4’) A+B ≥ (2α+ 1)

( 1
q −

1
p

)
(> when p = 1 or q =∞).

Finally, notice that (C2) is exactly (6.3) from Proposition 6.1.
In order to prove Theorem 6.2 we now define auxiliary positive operators into

which Kα,β
r,ρ will be “decomposed.” Observe that

Kα,β
r,ρ (x, z)

' (x+ z)−2α−1(x+ z)(ρ+1)/r−1


1, β + 1

r > 1
1 + χ{β 6=0} log1/r (x

z ∨
z
x

)
, β + 1

r = 1(
x
z ∧

z
x

)β+1/r−1
, β + 1

r < 1


+ χ{x/2<z<2x}z

−2α−1
[
χ{ ρ+1

r <1}|x− z|
ρ+1
r −1 + χ{ ρ+1

r =1} log
1
r
x+ z

|x− z|

]
uniformly in x, z > 0. Accordingly, for η ∈ R, define

Hη
0 f(x) = x−2α−2+(ρ+1)/r−η

∫ x

0
z2α+1+ηf(z) dz,

Hη
∞f(x) = xη

∫ ∞
x

z(ρ+1)/r−1−ηf(z) dz,

H log
0 f(x) = x−2α−2+(ρ+1)/r

∫ x

0
log1/r

(
2x
z

)
z2α+1f(z) dz,
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H log
∞ f(x) =

∫ ∞
x

log1/r
(

2z
x

)
z(ρ+1)/r−1f(z) dz,

Tf(x) =
∫ 2x

x/2
|x− z|(ρ+1)/r−1f(z) dz,

Sf(x) =
∫ 2x

x/2
log1/r

(
x+ z

|x− z|

)
f(z) dz.

Then the following relation is uniform both pointwise and in f ≥ 0:

Kα,β
r,ρ f ' H

β+1/r−1
0 f +Hβ+1/r−1

∞ f + χ{β+1/r>1}(H0
0f +H0

∞f)

+ χ{β+1/r=1,β 6=0}(H
log
0 f +H log

∞ f) + χ{ ρ+1
r <1}Tf + χ{ ρ+1

r =1}Sf.

It is clear that Kα,β
r,ρ is bounded from Lp(xApdµα) to Lq(x−Bqdµα) (or well defined

on Lp(dµα)) if and only if all of the component operators appearing on the right-hand
side above have the property. Therefore we now analyze each of these operators.
We will argue similarly as in [13, section 4.1]. Our main tool will be the following
characterization of two power-weight Lp−Lq inequalities for the Hardy operator and
its dual; see, e.g., [2, 18] and [13, Lemma 4.1].

Lemma 6.3. Let a, b ∈ R, and let 1 ≤ p, q ≤ ∞.
(a) The estimate ∥∥∥∥xb ∫ x

0
g(y) dy

∥∥∥∥
Lq(R+,dx)

.
∥∥xag∥∥

Lp(R+,dx)

holds uniformly in g ∈ Lp(R+, x
apdx) if and only if p ≤ q and a− 1

p′ = b+ 1
q

and a < 1
p′ (≤ in case p = q′ = 1).

(b) The estimate ∥∥∥∥xb ∫ ∞
x

g(y) dy
∥∥∥∥
Lq(R+,dx)

.
∥∥xag∥∥

Lp(R+,dx)

holds uniformly in g ∈ Lp(R+, x
apdx) if and only if p ≤ q and a− 1

p′ = b+ 1
q

and b > − 1
q (≥ in case p = q′ = 1).

For further reference, we state the following conditions:
(C5) A < 2α+2

p′ +
(
β + 1

r − 1
)
∧ 0 (≤ when p = q′ = 1 and [β = 0 or β + 1

r 6= 1]);
(C5a) A < 2α+2

p′ + β + 1
r − 1 (≤ when p = q′ = 1);

(C5b) A < 2α+2
p′ (≤ when p = q′ = 1);

(C5c) A < 2α+2
p′ ;

(C6) B < 2α+2
q +

(
β + 1

r − 1
)
∧ 0 (≤ when p = q′ = 1 and [β = 0 or β + 1

r 6= 1]);
(C6a) B < 2α+2

q + β + 1
r − 1 (≤ when p = q′ = 1);

(C6b) B < 2α+2
q (≤ when p = q′ = 1);

(C6c) B < 2α+2
q .

Notice that (C5) and (C6) together are equivalent to (C3) from Theorem 6.2.
Analysis of H

β+1/r−1
0 . Substituting f(z) = z−2α−β−1/rg(z) we see that the

estimate ∥∥x−BHβ+1/r−1
0 f

∥∥
Lq(dµα) . ‖x

Af‖Lp(dµα)



4434 ÓSCAR CIAURRI, ADAM NOWAK, AND LUZ RONCAL

is equivalent to∥∥∥∥x−2α−β+ρ/r−1−B+(2α+1)/q
∫ x

0
g(z) dz

∥∥∥∥
Lq(R+,dx)

.
∥∥x−2α−β−1/r+A+(2α+1)/pg

∥∥
Lp(R+,dx).

By Lemma 6.3(a), this holds if and only if (C1), (C2), and (C5a) hold simultaneously.
Analysis of Hβ+1/r−1

∞ . Substituting f(z) = zβ−ρ/rg(z) we can write the estimate∥∥x−BHβ+1/r−1
∞ f

∥∥
Lq(dµα) . ‖x

Af‖Lp(dµα)

in the equivalent form∥∥∥∥xβ+1/r−1−B+(2α+1)/q
∫ ∞
x

g(z) dz
∥∥∥∥
Lq(R+,dx)

.
∥∥xβ−ρ/r+A+(2α+1)/pg

∥∥
Lp(R+,dx).

Applying Lemma 6.3(b), we see that this holds if and only if (C1), (C2), and (C6a)
hold simultaneously.

Clearly, this analysis of Hβ+1/r−1
0 and H

β+1/r−1
∞ is valid for any real η = β +

1/r − 1.
Analysis of H0

0 and H0
∞. This is a special case of the above, so we infer that∥∥x−BH0

0f
∥∥
Lq(dµα) . ‖x

Af‖Lp(dµα)

holds if and only if (C1), (C2), and (C5b) are satisfied. Further,∥∥x−BH0
∞f
∥∥
Lq(dµα) . ‖x

Af‖Lp(dµα)

holds if and only if (C1), (C2), and (C6b) are satisfied.
Analysis of H log

0 and H log
∞ . We observe that, given any η < 0,

(6.5) H0
0f . H

log
0 f . Hη

0 f and H0
∞f . H

log
∞ f . Hη

∞f, f ≥ 0.

This implies that conditions for boundedness of the logarithmic operators are (C1),
(C2), and either (C5a) or (C6a), with η = β + 1/r − 1 = 0, but excluding the case
p = q′ = 1 in which weak inequality appears in (C5a) and (C6a). Thus, assuming for
the moment that (p, q) 6= (1,∞), we see that

(6.6)
∥∥x−BH log

0 f
∥∥
Lq(dµα) . ‖x

Af‖Lp(dµα)

holds if and only if (C1), (C2), and (C5c) are satisfied, and similarly

(6.7)
∥∥x−BH log

∞ f
∥∥
Lq(dµα) . ‖x

Af‖Lp(dµα)

holds if and only if (C1), (C2), and (C6c) are satisfied.
The remaining case requires further treatment. Assuming (C1), (C2) and that

(p, q) = (1,∞), it is seen directly that (6.6) does not hold when A = 2α+2
p′ = 0 and,

similarly, (6.7) is not true if B = 2α+2
q = 0. So, in general, here the boundedness

conditions are (C1), (C2), and either (C5c) or (C6c), respectively.
Analysis of T in case ρ+1

r < 1 and S in case ρ+1
r = 1. Here we may assume

that (C1) and (C2) are satisfied, and ρ > −1. We can then invoke the analysis of
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T and S performed in [13, section 4.1], with the quantity ρ+1
2r playing the role of σ

from [13]. To be precise, here the bound ρ+1
2r < α + 1 may not be satisfied, but that

does not affect the arguments in question. Thus the conclusion is that (C4) from
Theorem 6.2 is necessary and sufficient (under the assumptions made) both for T and
S, separately, to be bounded from Lp(xApdµα) to Lq(x−Bqdµα).

We can finally prove the theorem.

Proof of Theorem 6.2. To prove (i), we proceed as in the proof of [13, Theorem
2.5(i)]. As there, we know that T is well defined on Lp(xApdµα) whenever σ = ρ+1

2r >
0, and S is always well defined on Lp(xApdµα). So one has to look at the Hardy-type
operators Hη

0 , H
η
∞, H

log
0 , H log

∞ .
Arguing as in [13] we find that the condition

ρ+ 1
r
− 2α+ 2

p
− η < A <

2α+ 2
p′

+ η (both ≤ if p = 1)

is necessary and sufficient for the sum Hη
0 + Hη

∞ to be well defined on Lp(xApdµα).
Further, using (6.5), we infer that the same condition with η = 0 is necessary and
sufficient for the sum H log

0 +H log
∞ to be well defined on Lp(xApdµα), but now without

weakening the inequalities in case p = 1. The latter is easily verified by means of
suitable counterexamples. Summing up,

H
β+1/r−1
0 +Hβ+1/r−1

∞ + χ{β+1/r>1}(H0
0 +H0

∞) + χ{β+1/r=1,β 6=0}(H
log
0 +H log

∞ )

is well defined on Lp(xApdµα) if and only if (6.4) holds. The conclusion follows.
The proof of (ii) is essentially contained in the analysis of Hβ+1/r−1

0 , Hβ+1/r−1
∞ ,

H0
0 , H0

∞, H log
0 , H log

∞ , T , S done above. Observe that (C5a), (C5b) when β + 1/r > 1
and (C5c) when β + 1/r = 1 and β 6= 0 altogether are equivalent to (C5). Analogous
observations pertain to (C6a), (C6b), (C6c), and (C6).

Remark 6.4. Perhaps a bit surprisingly, the operator Kα,β
r,ρ much resembles the

potential operator related to the modified Hankel transform; see [13, section 2.1].
Even more, if σ = ρ+1

2r < α+ 1 and [β+ 1/r−1 > 0 or (β, r) = (0, 1)], then the kernel
Kα,β
r,ρ (x, z) behaves exactly like the potential kernel Kα,σ(x, z), and one gets the same

boundedness results for the associated operators.

We now comment on a shape of the set of all 1 ≤ p, q ≤ ∞ for which the estimate
of Theorem 6.2 holds. Actually, we are going to look at the corresponding set D
of pairs ( 1

p ,
1
q ) in the closed unit square [0, 1]2. Then, depending on the parameters

involved, the following situations occur (but no others):
(S1) D is a segment in the lower triangle 1

p >
1
q , parallel to the diagonal and with

endpoints included and located on the boundary of the square.
(S2) D is a subsegment of that from (S1) having excluded any endpoint not lying

on the boundary of the square.
(S3) D is a subsegment of the diagonal of [0, 1]2, of length strictly smaller than

the diagonal, having excluded any endpoint not lying on the boundary of the
square.

(S4) D is just one point, the lower-right vertex of the square.
(S5) D is empty.

All segments of types (S1)–(S3) indeed occur with suitable choices of the parameters.

6.2. Main results. By homogeneity of the kernel (1.2) it follows that a power-
weighted space Lp(xApdµα) is included in DomMα,β

t for a given t > 0 if and only if
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Lp(xApdµα) ⊂ DomMα,β
t for all t > 0. Thus from Theorems 5.1 and 6.2(i) we con-

clude that all the weighted Lp(dµα) spaces admitted in Theorem 6.2 (i) are contained,
under all the relevant assumptions on the parameters, in DomMα,β

t , for all t > 0.
The main result of this paper is a straightforward consequence of Theorems 5.1

and 6.2. It reads as follows.

Theorem 6.5. Let α > −1, β > −α − 1/2, 1 ≤ p, q ≤ ∞, 1 ≤ r < ∞, A,B, ρ ∈
R, and assume that

α+ β >
1
2
− 1
r

and
[
ρ+ 1
r

< 2α+ 2 if − β /∈ N
]
.

Then, under conditions (C1)–(C4), Lp(xApdµα) ⊂ DomMα,β
t for each t > 0, and the

estimate ∥∥∥∥∥Mα,β
t f(x)

∥∥
Lr(tρdt)x

−B
∥∥∥
Lq(dµα)

.
∥∥f(x)xA

∥∥
Lp(dµα)

holds uniformly in f ∈ Lp(xApdµα).

Remark 6.6. The order of taking the norms in the mixed norm expression in
Theorem 6.5 can be exchanged. Indeed, in view of Minkowski’s integral inequality,
when q ≤ r,∥∥∥∥∥Mα,β

t f(x)x−B
∥∥
Lq(dµα)

∥∥∥
Lr(tρdt)

≤
∥∥∥∥∥Mα,β

t f(x)
∥∥
Lr(tρdt)x

−B
∥∥∥
Lq(dµα)

.

From Theorem 6.5 we conclude immediately the following two-weight mixed norm
estimate for the generalized spherical mean Radon transform Mβ in Rn, n ≥ 1.

Corollary 6.7. Let n ≥ 1. Then, under the assumptions and conditions of
Theorem 6.5 on the parameters, with α = n/2− 1, one has the estimate∥∥∥∥∥Mβf(x, t)

∥∥
Lr(tρdt)|x|

−B
∥∥∥
Lq(Rn,dx)

.
∥∥f(x)|x|A

∥∥
Lp(Rn,dx), f ∈ Lprad(Rn, |x|Apdx).

Here Mβf(·, t) is understood as the extension given by Mα,β
t of this operator defined

initially on L2(Rn, dx) ∩ Lprad(Rn, |x|Apdx) by means of the Fourier transform.

Theorem 6.5 and Corollary 6.7 are new results, even when specified to an un-
weighted setting (A = B = 0) or to nongeneralized radial spherical means (β = 0).
Moreover, given our strategy of proof, these results are pretty precise (if not sharp, at
least in some cases) in view of the sharpness statements in Theorems 3.3 (see also the
relevant comment succeeding this theorem) and 5.1, and the optimal result contained
in Theorem 6.2.

7. Applications to some PDE problems: weighted Strichartz estimates.
Let α > −1, β > −α−1/2, and assume that u(x, t) = cMα,β

t f(x), (x, t) ∈ R+×R+, is
a (weak) solution to a PDE problem with f entering an initial-value condition. Then
Theorem 6.5 and Remark 6.6 imply a weighted Strichartz-type estimate∥∥∥∥∥u(x, t)x−B

∥∥
Lq(dµα)

∥∥∥
Lr(tρdt)

.
∥∥f(x)xA

∥∥
Lp(dµα)

under the assumptions and conditions of Theorem 6.5 and provided that q ≤ r. More-
over, if u(x, t) = ctMα,β

t f(x) is the solution, then a similar Strichartz-type estimate
holds with the parameter ρ and the corresponding assumptions and constraints ad-
justed suitably.
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When α = n/2 − 1, β > −n/2 + 1/2, n = 1, 2, . . . , and v(x, t) = cMα,β
t f0(|x|),

(x, t) ∈ Rn × R+, is a spatially radial (weak) solution to a PDE problem with a
radial f = f0(| · |) entering an initial-value condition, then Theorem 6.5, together with
Remark 6.6, establishes the weighted Strichartz-type estimate∥∥∥∥∥v(x, t)|x|−B

∥∥
Lq(Rn,dx)

∥∥∥
Lr(tρdt)

.
∥∥f(x)|x|A

∥∥
Lp(Rn,dx),

provided that the parameters satisfy all the restrictions imposed by Theorem 6.5 and
q ≤ r. If v(x, t) = ctMα,β

t f0(|x|) happens to be such a solution, then again one infers
a Strichartz-type estimate by taking ρ̃ = ρ+ r instead of ρ.

We now give examples of Cauchy initial-value problems for several classical PDEs,
where solutions u(x, t) or v(x, t) of the above form indeed occur:

(I) EPD equation. Let n ≥ 1 and �β be the EPD operator related to Rn,

�βv = ∆xv − vtt −
n+ 2β − 1

t
vt.

Consider the Cauchy problem in Rn × R+,

(7.1) �βv = 0, v(x, 0) = f(x), vt(x, 0) = 0,

with a radial initial position f = f0(|·|). Then, assuming that β > −n/2+1/2,

v(x, t) = M
n/2−1,β
t f0(|x|)

is a solution to the singular Cauchy problem (7.1); see [22, 3, 17]. Note that
here the special case β = 2/3− n/2 corresponds to the Tricomi equation.

(II) Wave equation. Let n ≥ 1, and observe that �(1−n)/2 is the wave operator
related to Rn. Consider the Cauchy problem in Rn × R+,

(7.2) �(1−n)/2v = 0, v(x, 0) = 0, vt(x, 0) = f(x),

with radial initial speed f = f0(| · |). Then (see [19])

v(x, t) = tM
n/2−1,(3−n)/2
t f0(|x|)

is a solution to (7.2).
(III) Bessel EPD and wave equations. For α > −1, let Lα be the one-dimensional

Bessel operator

Lα =
d2

dx2 +
2α+ 1
x

d

dx
.

When α = n/2 − 1, n = 1, 2, . . . , Lα is the radial part of the standard
Laplacian in Rn. Let us consider the following differential problems in R+ ×
R+:

Lαu− utt −
2α+ 2β + 1

t
ut = 0, u(x, 0) = f(x), ut(x, 0) = 0,(7.3)

Lαu− utt = 0, u(x, 0) = 0, ut(x, 0) = f(x).(7.4)

Then, for β > −α− 1/2,

u(x, t) = Mα,β
t f(x)
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is a solution to (7.3), while

u(x, t) = tM
α,−α+1/2
t f(x)

is a solution to (7.4). Observe that the Bessel EPD operator appearing in
(7.3) is in fact a difference of two Bessel operators, one of them acting on the
spatial variable and the other on the time variable.

It is worth pointing out that solutions to (7.2) and (7.4) with the initial conditions
reversed, i.e., when the initial speed is zero and the initial position is prescribed, are
expressed as

v(x, t) =Mn/2−1,(1−n)/2
t f(x),

u(x, t) = tMα,−α−1/2
t f(x).

The parameters here, however, correspond to the critical line α + β = −1/2, where
Mα,β

t becomes a singular integral, a more subtle case that is not treated in this paper.
Another comment concerns connections of the above mentioned solutions with

initial positions/speeds. More precisely, the question explores in what sense the solu-
tions converge to initial conditions as time decreases to 0, and for what ranges of the
parameters the convergence takes place. In general, without requiring much regular-
ity of the initial data, this is a difficult question that requires studying time-maximal
operators. We refer the reader to [19, 12, 4, 6] for some partial results.
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