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Abstract 

In this paper, for a given space X, a structural category C, and a faithful functor n from C to the 
category of spaces, we introduce a notion of (C, n)-bundle which contains as particular cases, the 
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overlays with a finite number of leaves and the standard classification of suspension foliations. 
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in shape theory the role of the standard fundamental groupoid. If the space X satisfies some 
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Introduction 

The study of covering spaces, G-bundles with G a topological group and vector bundles 

plays an important role in topology and geometry. In this paper, we have introduced the 

new notion of (C, v)-bundle over a space X, where C is a category and r/ : C + Top is 

a faithful functor into the category Top of spaces. 

Particular cases of this notion are the standard notion of covering space (if X is a 

CW-complex), the notion of overlaying space introduced by Fox [2] (for X a compact 

metrizable space), the standard construction of suspension foliation and some particular 

vector bundles that we call flat vector bundles. The category C plays the role of the 

structural group of a principal G-bundle. 

One advantage of our approach is that our theory and theorems are developed for any 

general topological space X without any typical conditions of local connectedness. 

In this paper, the fundamental progroupoid plays for the classification theorems the role 

that the fundamental group plays for the standard covering spaces. This fact establishes 

a natural connection with the shape theory introduced by Borsuk and used by Fox [2] 

to classify overlaying spaces with a finite numbers of leaves. On the other hand, we use 

locally constant presheaves in order to have a good relationship with some elementary 

theory of categories. 

The main result of the paper is Theorem 3.6 that gives an equivalence between the 

category of (C, q)-bundles over X and the category pro(7rCX, C) which is determined by 

the fundamental progroupoid rrCX of X and the category C. Where CX is the prospace 

associated with X when we consider the Tech nerve CX(M) of all covering reduced 

sieves directed by refinement. 

In foliation theory is very useful to consider coverings manifolds p : &!f + M of a 

foliated manifold M. In general the saturated subsets S of M have very bad properties 

of local connectivity. Therefore the restrictions maps p : p- ’ S + S are covering spaces 

that in general can not been classified by the fundamental group of S. Our theory of 

(C, q)-bundles is good enough to deal with these examples which are not included in the 

standard theory of covering spaces. In order to motivate the sort of coverings we want 

to classify, consider the following simple example which is a Fox overlaying space with 

an infinite number of leaves: 

Let I be the unit closed interval. In Aut(1) take the map h(t) = t2. In ll8 x I consider 

the discontinuous group generated by 

H:Rxl+IRxl, 

(Z, t) H (z - l,?). 

This action induces a natural projection 

p:RxI+S’x1 

that is illustrated in Fig. 1. 

The foliation induced on S’ x 1 is said to be the suspension of the representation 

7: rrl(S’ x I) + Aut(F) defined for z generator of rri (S’ x 1) as r](x) = h. If we 
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Fig. 1. Overlaying with an infinite number of leaves. 

consider X = Cl(L) = (S’ x (0)) U L U (S’ x { 1)) where L is a noncompact leaf of 

S’ x 1, then p :p-‘X --) X is a sort of covering space of X, which is not a locally 

connected space. Fox [2] gives a classification theorem for this kind of overlaying spaces 

with a finite number of leaves, but in this example p has a numerable infinite number of 

leaves. 

In this paper we not only generalize Fox’s classification theorem of overlays in order 

to include an arbitrary number of leaves, but also develop a theory genera1 enough to 

deal with many other frequent and interesting topological structures. In particular, for this 

example in Subsection 4.2.1, we see that the isomorphism classes of overlaying spaces 

of X with a countable number of leaves are given by the set of conjugation classes of 

representations of the form Z * Z + Aut(Z). 

1. Preliminaries 

In this section, we introduce some notation and terminology which is frequently used 

in this paper. 

Given a family U of open subsets of the space X. it is said that U is a sieve on X 

if U E U and V is an open subset such that V c U, then V E U. If U satisfies that 

X = U&u li, it is said that L4 is a covering sieve on X. We denote by 0 the covering 

sieve of all open. subsets of X. 
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Let U be a family of nonempty open subsets of X such that if U E U and 0 # V E 

0, V C U, then V E U. We say that U is a reduced sieve on X and if X = UwEu U, 

we say that U is a covering reduced sieve on X. 

We note that if U is a covering sieve on X, then ‘U = U \ (0) is a covering reduced 

sieve on X. An open covering ti of X always generates a covering sieve 

~29 = {U E 0 1 there is V E 1.9 such that U c V} 

and the corresponding covering reduced sieve ‘sd = {U E 0 1 U # 0 and there is 

V E 19 such that U c V}. 

A (reduced) sieve L4 can be considered as small category denoted again by U, where 

set of morphisms from U to V is given by Hom(U, V) = 1 if U c V, and otherwise 

Hom(U, V) = 8. 

Let U be a covering reduced sieve on X, and C a small category. As usual, we denote 

by Cue” the category whose objects are all functors P : W’P + C and morphisms P -+ P’ 

all the natural transformations 0 : P + P’ between such functors. A functor P : U”P --) C 

is also called a presheaf on U. A presheaf P: W’P + C is said to be locally constant if 

P carries any arrow U c V in U into an isomorphism Pr : P(V) -r P(U). We denote 

by (C”““)~c the category of locally constant presheaves on U (subcategory of C”““). For 

more details on presheaves and locally constant presheaves we refer to [6]. 

We shall also need some notions and properties of procategories and shape theory. For 

these subjects we refer the reader to [7] and [l]. In particular, we recall that for a given 

category C an object of proC which is called a proobject is a functor X : I --) C, where 

I is a small left filtering category. A morphism from X : I 4 C to X’ : I’ ---) C can be 

represented by a pair (cp, f(i’)), where ‘p: I’ 3 I is map and f (i’) denotes a family 

of maps f(i’) : X(cp(i’)) + X(i’), i’ E I’, such that if i’ -+ j’ is an arrow in I’, then 

there are k E 1 and arrows k + cp(i’), k + cp(j’) such that the composite X(k) + 

X(cp(i’)) -4 X(i’) + X(j’) is equal to the composite X(k) -+ X(cp(j’)) + X(j’). The 

full subcategory determined by proobjects whose indexing category is N = {. . . -+ 3 + 

2 --) 1 + 0) will be denoted by towC and its objects will be called towers. 

2. The category pro(G, C) 

In this section, for a given category C we define and study the category pro(G, C), 

where G is a progroupoid. Later in Section 3 we shall prove that the category of (C, q)- 

bundles is equivalent to a category of the form pro(G, C). 

Recall that a groupoid G is a small category where any morphism in G is an iso- 

morphism. Given two groupoids G, G’ a groupoid homomorphism is just a functor 

f : G + G’. Let Gpd denote the category of groupoids. 

We denote by [0, l] the groupoid with two objects 0, 1 and whose morphismfFt a;k 

the identities and two inverse maps u : 0 + 1, u-’ : 1 + 0. If G is a groupoid. me f~bss 

consider the product groupoid G x [0, l] and the groupoid homomorphisms a~, & IG -t 

G x [0, I], where, for example, 8, carries an arrow a : U --f U’ in G to tb ~E%M 
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Clock = (cy,ida) : (U,O) + (U’,O). Using this cylinder, we can consider homotopies 

taking commutative diagrams of the form 

G+Gf+g-G' 

aci+al I/” F > 

G x P, 11 

where G + G is the sum groupoid, and F is a groupoid homomorphism. 

We note that a homotopy F determines a natural transformation qF from f to g 

by ‘nr~(U) = F(idu,u). C onversely, a natural transformation q : f 4 g determines a 

homotopy Fq from f to g by F,(idU,u) = v(U). 

If G, G’ are two groupoids, we have the groupoid HOMG,~(G, G’) whose objects 

are given by the elements of the set HomGpd(G, G’) and if f, g : G + G’ are objects in 

HOMQ~(G, G’) a morphism 7 : f + g is a natural transformation from f to g. We denote 

by rra HOMC;‘~~(G, G’) the set of isomorphism classes of the groupoid HOMG,~(G, G’). 

The set Q HOMG,~(G, G’) is also the set of homotopy classes of groupoid homomor- 

phisms from G to G’. We also consider the category 7roGpd which has the same objects 

than Gpd and the horn-set is defined by 

Hom710Gr,d(G, G’) = TO HOMG,~(G, G'). 

Denote by y : Gpd + q,Gpd the projection functor which carries an arrow f : G + G’ 

to the homotopy class rf : yG + yG’. We note that f is an equivalence (of categories) 

if and only if .f is a homotopy equivalence; that is, if rf is an isomorphism in ToGpd. 

For a given progroupoid G : I ---f Gpd, we consider the category (G, C). An object of 

(G. C) is given by a pair (G(i), F) w h ere i is an object in I and F : G(i) + C is a functor. 

A morphism LY from (G(i), F) to (G(j), H) is a pair Q = (i ---f j, 0,: F A HG’;) 

where i + j is a morphism in 1 and da : F ---t H GS is a natural transformation (GS is 

the corresponding bonding map). 

Consider the class 

C = { CI 1 a is a morphism in (G, C) and 0, is an equivalence}. 

It is easy to check that the class C admits a calculus of right fractions, see [5]. There- 

fore we can consider the category of right fractions (G,C)C-’ that will be denoted by 

pro(G, C). 
If I is the indexing category of the progroupoid G, and i, j are two objects in I, we 

consider the category 1 J {1:, j} whose objects are given by a pair of maps (u, v), u : k t 

i: P: k + j and a morphism from (‘u, u) to (u’, v’) is given by a map 211: k + k’ such 

that ,u’w = 21, v’w = ‘u. If (G(i), F), (G(j), H) are two objects in pro(G,C), we take 

the category I 1 {i, j}, for an object (21, V) in I I {i, j}, and we write Ic = domain(u) = 

domain(v). From the definition of the horn-set in a category of right fractions, one has 

that: 

Hom,,(,:,c)((G(i),F). (G(j),H)) 2 $$HomcccF, (FG”, HG;). 
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Now assume that f : G + G’ is a morphism in pro Gpd represented by a pair (cp, f(2)). 

We are going to see how the pair (cp, f(i’)) ’ d m uces a fimctor (cp, f(i’))* : pro(G’, C) -+ 

pro(G, C). First we define a functor from (G’, C) to pro(G, C). Let 

Q’ = (i’ + j’, ,9,, : F’ + H’G;‘) 

be a morphism in (G’,C) from (G’(i’),F’) to (G’(j’), H’), then (cp, f(i’))* carries 

these objects to (G(cpi’), F’ f(i’)), (G(cpj’), H’f(j’)), respectively. In order to give 

(cp, f(i’))*(a’) we choose k in I and arrows k + cpi’, k --) cpj’ such that the dia- 

gram 

G(4) f (i’) rG’( 

G(k) 

G(cpj’) f w *G’ i. 

2) 

i’) 

is commutative. Then (cp, f(i’))*(c~‘) 1s t h e morphism of pro(G,C) represented by the 

natural transformation 

B,, * (f(i’)G$) : F’f(i’)G$ + H’f(j’)Gbj,. 

It is easy to check that two choices of k represent the same morphism in pro(G, C). The 

functor (cp, f(i’))* satisfies that if a’ is in C’, then (cp, f(i’))*(a’) is an isomorphism. 

Therefore we have an induced functor 

(cp,f(i’))* :pro(G’,C) + pro(G,C). 

We note that if (cp, f(2)) and ($J, g(i’)) represent the same morphism f : G + G’, 

then the functor (cp, f(i’)) * is isomorphic to the functor ($,g(i’))*. We will denote by 

f” : pro(G’, C) + pro(G, C) one of these functors. 

If f:G + G’ and g:G’ t G” are morphisms in pro Gpd represented by pairs 

(cp, f(i’)), (& s(i”)), then s.f can be represented by (cp$, g(i”)f($i”)). In the case that 

gf = id and fg = id, we have that (cp$,g(i)f ($i))*, ($p, f (i’)g(cpi’))* are isomorphic 

to identity functors. Therefore the functor (cp, f(i)) * is an equivalence of categories. 

We give some properties of the category pro(G, C) that will be used in this paper. 

Lemma 2.1. I” f : G ---) G’ is an isomorphism in proGpd, then f * : pro(G’, C) + 

pro(G, C) is an equivalence of categories. 

Lemma 2.2. Let f : G -+ G’ be a level morphism in pro Gpd such that for each i E I, 

f(i) : G(i) + G’( ‘) . 2 IS an equivalence, then f * : pro(G’, C) + pro(G, C) is an equivalence 

of categories. 

Proposition 2.3. Let G, G’ be objects in tow roGpd. If G is isomorphic to G’ in 

tow noGpd, then pro(G, C) is equivalent to pro(G’, C). 
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Remark. These results can be obtained changing in [4] the category Sets by the cate- 

gory C. 

3. (C, q)-bundles 

In this section we define a notion of (C, r/)-bundle that generalizes the one of covering 

projections in [4]. 

We will consider the category Top of topological spaces and continuous maps, a 

general category C, and a faithful functor 77 : C 4 Top. 

Let p : E ----f X a morphism in Top and Lf a covering reduced sieve of X. A (C. q)-atlas 

A for p: E --f X on U is a pair (P, {p~}r,~~) where P:Uop 4 C is a locally constant 

presheaf and (pr, : p-’ U + u x r/P(U)\ u EL!}. IS a family of isomorphisms over U 

such that if U CC V. U, V E U*P the following diagram is commutative: 

Two atlases A = (P? {(Pu}I;~u) and B = (Q? {q v trEv are said to be equivalent if } ) 
there exists a covering reduced sieve W refining both U and V, and a natural equivalence 

0 : Plv,m + &I wop such that the following diagram is commutative: 

p-‘W 

Definition 3.1. A (C, q)-bundle over X is a 

Top and [A] an equivalence class of atlases. 

pair (p: E + X. [A]) with p morphism in 

Definition 3.2. Let P = (p: E -+ X, [A]), P' = (p' : E --t X, [A']) be two (C, q)- 
bundles. A (C. v)-bundle transformation f : P 4 P’ is a continuous map f : E --i E’ 
such that p’f = p and there exist a covering reduced sieve W of X, atlases A for p and 

A' for p’ on W and a natural transformation 8 : P + P’ such that ‘v”w E W diagram 

below is commutative 

f 
+ (p')-' w 



92 S. Ardanza-Trevijano, L.-J. Herndndez-Paricio / Topo1og.y and its Applications 92 (1999) 85-99 

We shall denote by (C, q)-bundle(X) the category of (C, 7))-bundles and bundle trans- 

formations. If P is a (C, q)-bundle we will call C the structural category of P. 

Let 2.4 be a covering reduced sieve on X. A (C, q)-bundle P is said trivial on U if P 

admits an atlas on 24. We also say that P trivializes on U. A morphism f : P --f P’ is 

said to be trivial on U if there exists atlases A of P and A’ of P’ on U and a natural 

transformation 19 : P ---) P’ such that for any W E U diagram above is commutative. We 

denote by ((C, q)-bundle(X))u the subcategory of (C, q)-bundle(X) whose objects and 

maps trivialize on U. 

Theorem 3.3. (l?““) lc is equivalent to ((C, q)-bundle(X))u. 

Proof. Let P be a locally constant presheaf on U. We define the functor 

& : (CU”“),, + (CC, rlPunWX))u by 
E(P) = (P(P) : E(P) + X, W’)I), 

where E(P), p(P) and A(P) are defined as follows: 

In LIUEU(u x rlP(u)) we consider the following relation. Given (u, Z) E (U x 

VP(U)), (v, y) E (V x VP(V)), (u, z) - (u, y) if u = u and exists W c U n V with 

u E W and qP$ (x) = VP;(Y). It is easy to check that this is an equivalence relation, 

so we can define 

E(P) = u (U x VP(U))/ - and p(P)[(u,z)] = u. 
UEU 

In order to obtain the atlas, we will consider the presheaf P : LA’” 4 C. We have 

7r: u (u x VP(U)) --f E(P). 
UEU 

For U E U we will prove that 

mJ = ~l(Ox7p(U)) : (u x 77PW) + P(p)-‘(u) 
is an isomorphism in Top therefore the charts cp(P)u will be defined by cp(P)u = n,‘. 

TU is injective: Let [(u,~)] = [(u, y)] with (u,z), (v, y) E U x VP(U) then u = u 

and there exists W c U such that qP$(z) = vP$(y) since q is faithful and P$ is an 

isomorphism it follows that z = y. 

7ru is surjective: Let [(u,~)] E p-‘(P)U then p(P)[(u,z)] = u E U we have that 

(U,Z) E v x T/PV f or some V E U. Let be W = U n V then (u, Z) N (u, qPg(x)) - 

(% 17(PkY(Pl3(4) E (U x rlPU). 
TQ,J is continuous: This follows from the continuity of ‘in. 

Q is ~12 open map: Let (V x W) E U x qP( U) a basic open set. 7rr~ (V x W) is open 

in E(P) if n,‘(rr~(V x W)) is open in uVEU(U x VP(U)) but T;‘(QT(V x W)) = 

(U’ n V) x (P,“,‘,,)-‘P&,” W is an open set for any U’ E U. Therefore ?QJ is an 

homeomorphism. 

Now we prove that E: (C”““)l, t ((C, n)-bundle(X))u is a full embedding. Let 

P, Q E (CUD%. 
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& i.7 faithful: If 8, ,LL : P -+ Q are natural transformations for each U E ,?A we have: 

U x VP(U) Ap(P)-‘U Au x qP(U) 

id x~$(Ii) 

1 

E(Q) E(P) 

1 1 

id xqp(Ci) 

u x rlQU0 +-----dQ)-‘u- 2Lu *u u x vQR4 

If E(0) = I(y) then no(U) = n&V) an now by fidelity of 7, O(U) = p(U). d 

& is full: Just remind that a morphism f : E(P) 4 r(Q) is a continuous map 

f: E(P) + E(Q) such that p(Q)f = p(P) together with atlases -4, B over U and 

a natural transformation 8 : P + Q which for any U E U the associated diagram (see 

Definition 3.1) is commutative. It is easy to check that 8 is such that E(B) = f so I is 

full. 

& is essentially surjective: Given P E ((C, q)-bundle(X))u with atlas 

A = (Q, h>u~u) 

we will see that E(Q) Z P. The family of homeomorphisms (~6’ : U x r/Q(U) --) 

p-‘U 1 U E U} induce a map 

f = u .flUxaQ(Ci) : u (u x rlQW) ---) E 
UEU UEU 

with f(CIxqQ(Cr) = cPr/‘. Now we can consider {f~ = cp;‘p(P)u :p(Q)-‘U + p-‘U 1 

U E IA}. This family of homeomorphisms defines a continuous map f : E(Q) + E such 

that OTT = f and we have that 

P(Q)-‘u ’ >(P)_‘U 

PO(P)0 I ! 91, 

u x rlQ(U) id u x vQ(U) 

commutes, so f is an isomorphism; i.e., P is isomorphic to E(Q). Therefore one has 

that & is essentially surjective which completes the proof of the theorem. 0 

Given a covering reduced sieve U, if we take the class C of all morphisms in U, we 

have the corresponding category of fractions rrU = U[C-‘1 which is a groupoid. We 

note the existence of natural isomorphisms (YTU)“~ Z T(WP). Thus we use the notation 

TW’. For locally constant presheaves on U, one has: 

Lemma 3.4. Given a covering reduced sieve U on X, the category (C”““)l, of locally 

constant presheaves on U is equivalent to the functor category CTU”n. 

Proof. Denote by y :U“P 4 TU”P the projection functor. If P :Uop + C is locally 

constant, then P carries any arrow of U OP into an isomorphism. Therefore, P factors 
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through &P’ as P = F-y. Conversely, if F : TWP + C is a functor, because TLP 

is a groupoid F carries any arrow of nZ4 OP into an isomorphism. Then Fy is a locally 

constant functor. 17 

If U, 6 are open coverings of a space X. It is said that .?A refines 19, U 2 19 if for 

any U E .!A, there is V E 6 such that U c V. We note that for a given U, in general 

it is possible to find various V E 29 such that U c V. It would be interesting to have a 

canonical way of finding a V for each U. We solve this problem if we work only with 

covering reduced sieves. We note that if U, 8 are two covering reduced sieves then U 

refines 19 if and only if U c 19. If U E U, there is V E 6 such that U c V, but this 

implies that U E 19. If U c 19, there is an induced functor 4 : &lop ---t xti”P that again 

induces a functor Puop -+ Pvop. 

Using the equivalence of categories CTuO’ 3 (C”““)~c we have a new equivalence 

E’ obtained as the composite I’ = Ey* 

c * TU”P Ir, (cu”~)lc 5 ((C, n)-bundle(X))tl. 

If U refines 6 one has the following: 

Proposition 3.5. Let U, 6 be two covering reduces sieves on X. If U c 19, then the 

functor diagram 

C 
E’ rflop h ((C, n)-bundle(X))8 

I 
C ALP h ((C, q)-bundle(X))u 

E’ 

is commutative up to natural isomorphism. 

Proof. If F is an object in P*“‘, we have the presheaf P = yF, that satisfies that 

colim P(V) Z $$IIII P(U). 
XEVEz9 

From this fact, it follows easily the existence of a isomorphism of functors in the diagram 

above. 0 

Given a space X, we denote by COV(X) the set of open coverings U of X directed 

by refinement. We denote by GE?(X) the set of covering reduced sieves of X directed 

by refinement or equivalently by “inclusion”; that is if U,6 E CRS(X) then U 2 8 if 

and only if U c 6. Recall that Gpd denotes the category of groupoids. Using the directed 

set CRS(X) as an indexing category we can consider the progroupoid 

T crs(X) : CRS(X) + Gpd 
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defined by rr crs(X)(U) = 7~24 OP. Associated with the progroupoid rr US(X) we have 

the category pro(7r US(X), C) defined in Section 1. The main result, of this section is 

the following: 

Theorem 3.6. The category (C, r])-bundle(X) is equivalent to the category 

pro(3r crs(X),C). 

Proof. For the groupoid rr crs(X), consider the category (x US(X), C) defined in Sec- 

tion 1. Now we are going to define a functor 

&’ : (rr U-S(X), C) + (C, q)-bundle(X). 

Suppose that (vTZP’,F), (rrPP,G) are objects in (rr crs(X),C) and o = (24 c d, 

8, : F + G &‘) is a morphism in (rr crs(X), C). The functor &’ carries 

N : (7rZP’P. F) + (x Pp, G) 

to &‘a:I’(7rU0p,F) + &‘(~T?P’,G), where E’(rrZP,F) = E(Fy), &‘(7rPp,G) = 

E(G-y) and ifs E Fy(U), x E U E U, 

It is easy to check that if Q is in C, then E’cr is an isomorphism, hence there is an 

induced functor 

I’ : pro(7r U-S(X), C) -+ (C, q)-bundle(X). 

We note that if U, 6 are in CM(X), then U n 9 = {W 1 W E U and W E S} is 

in CRY(X). We also have that the inclusion of directed sets G%‘(X) -+ COV(X) is 

cofinal. 

If (rUaP, F ). (r P’P, G) are objects in pro(7r crs(X), C), one has that 

Hompro(x CTT(X),C)(~U~‘, F), (rf”, (3) 

colim 
VvECfB(X), WCUfM 

HomCxwoP (F 7rr, G rry) 

N colim 
WECRS(X), WcUnt9 

Hom((c,17)-bundle(x))w (f’(Fd?P’@$“9W)) 

- colim 
WECRS(X), WcUnlY 

Hom((C,~)-bundle(x))w (E’F, E’G) 

” HOm(c,+bundle(x) (E’F, E’G). 

Thus we have showed that E’ : pro(7r crs(X), C) + (C, q)-bundle(X) is a full faithful 

functor. 

On the other hand, if @ = (p : E ---f X, [A]) is an object in (C,q)-bundle(X) and d 

is aa atlas on a covering reduced sieve U. By Theorem 3.3 and Lemma 3.4, there is 

F:~U”P -+ C such that &‘(rU*P, F ) ” @. Therefore E’ : pro(7r U-S(X), C) + (C, v)- 

bundle(X) is an equivalence of categories. 0 
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Let P be a (C, v)-bundle. If C’ is a subcategory of C, we will say that P reduces C to 

C’ if there exists an atlas (P, { cpu}~~~) such that the presheaf P : U”p + C factorizes 

through the subcategory C’, i.e., P = iP with p : UOP + C’ functor, and i : C’ + C the 

inclusion functor. 

Remarks. 

(1) The inclusion i :C’ 4 C induces a faithful functor pro(r,C’) + pro(rr,C). The 

(C, n)-bundles represented by objects from pro(rr, C) isomorphic to objects from 

the subcategory pro(n, C’) are those which reduce C to C’. 

(2) We note that a (C, n)-bundle P reduces C to C’, the subcategory of identities of 

C, if and only if P is trivial; that is, E is a product. 

4. Examples and applications 

The category pro(7rCX, C) depends of the first variable 7rCX and of the second C. 

In the Subsection 4.1 we analyze how the progroupoid &X reduces in some cases to a 

groupoid, or to a group and in other cases reduces to a progroup or even to a topological 

group. In the second subsection we analyze the second variable for the cases C = Set, 

Top and the category of R-modules MR. It is interesting to note that the category 

pro(rCX, C) does not depend of the embedding functor n : C + Top. 

4.1. The progroupoid ~cr.s( X) 

The tech nerve CX(U) f o an open covering 24 of X is defined to be the simplicial 

set whose g-simplexes are given by: 

CX(U), = {(UO,. . ) u/J j uo,. . .) u, E u, uo n.. . n u* # S} 

We note that if U, V are covering reduced sieves and U > V, then one has an inclusion 

U c V that induces a map CX(U) + CX(V). This gives a functor CX : CRS(X) + SS 

and if K : SS + Gpd is the fundamental groupoid functor, then we have the progroupoid 

7rcx : CRS(X) + Gpd. The category pro(7rcrs(X),C) is equivalent to pro(7rCX,C) 

as it is proved in [4]. Therefore in order to classify (C, n)-bundles, we can use the 

progroupoid rrcrs(X) or the progroupoid 6’X. 

We note that if X is a locally path-connected and semilocally l-connected space then 

rcrs(X) is “weak equivalent” to the standard fundamental groupoid 7r = r(X). In this 

case the category pro(7rcrs(X), C) is equivalent to the functor category C”. If X is also 

connected then r(X) is equivalent to the fundamental group ~1 = YT~ (X) considered as 

a category with only one object. Now C no is the category of 7rt-objects in C. 

Given a pointed space (X, Q), if X is connected, then 7rCX is “weak equivalent” to 

the fundamental progroup XI C(X, ~a), obtained by taking pointed open coverings of the 

form (U, UO) with ~0 E UO E U and the corresponding pointed refinement. 
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4.2. Particular cases of (C, v)-bundles 

Firstly, we take C the category Set of sets and v : Set 4 Top the functor defined by 

,rl(X) = (X, dis), where dis denotes the discrete topology. Secondly, we take C = Top 

and 7): Top + Top, q(X) -+ X&, X with the discrete topology. Finally we analyze 

the case that C is a category of R-modules. 

4.2.1. (Set, q)-bundles 

In this case we consider the functor 17: Set + Top defined by q(X) = (X, dis). 

This induces the corresponding notion of (Set, v)-bundle over any topological space X. 

Nevertheless, if the space X is locally connected this notion is equivalent to the standard 

one of covering projection given for instance in Spanier’s book [9]. Therefore if X is 

a locally connected space, the category (Set,v)-bundle(X) is the category of covering 

projections of X. In this case the progroupoid 7rCX has the additional property of being 

isomorphic to a progroupoid whose bonding maps are surjections. This kind of surjective 

progroup have a very good connection with localic groupoids, see [8]. Of course, under 

good local connectedness condition the progroupoid &X reduces to the fundamental 

group. In this case, we have that the standard classification of covering spaces for a 

connected, locally path-connected and semilocally l-connected is a particular case of our 

main theorem. In this case the category of covering spaces is equivalent to the category 

of 7ri~] -sets where ~1 is the fundamental group of X. 

Suppose that X is a compact metrizable space. Then our notion of (Set, 7))-bundle 

is equivalent to the notion of overlay introduced by Fox [2]. Then if X is a compact 

metrizable space the category (Set, q)-bundle(X) is equivalent to the category of over- 

lays of X. For this case, our classification Theorem 3.6 generalizes Fox’s classification 

theorem. Then the category of “overlays” of X is equivalent to pro(7rCX, Set). With 

the additional condition of connectedness on X we have that the category of overlays 

over X is equivalent to pro(r, C(X, Q), Set) for any base point ~0 E X. For a con- 

nected space X, in order to obtain Fox’s classification theorem of overlays with R leaves 

it suffices to consider the full subcategory End(n) of Set determined by the finite set 

{ 1.. . n}. In this case, the objects of the category pro(nl C(X, ~0). End(n)) are given 

by representations of the form ~1 C(X. 20) + S,,, where S,, is the symmetric group of 

degree n,. 

Moreover, if (X, ~0) is also a l-movable pointed space, then pro(7rl C(X, x0). Set) 

is equivalent to the category of continuous ii,(X, zo)-sets where irl (X. x0) = 

lim ~1 C(X, 20) is the tech fundamental group provided with the inverse limit topol- 

ogy. 
For example, let X be the space considered in the introduction and take a base 

point 20 E X, here we have iii (X! 20) is a free group generated by two elements, 

with the discrete topology. If we want to classify the “overlays” with a numerable 

number No = IZI of leaves, as a consequence of our main theorem we obtain that 

pro(7rlC(X, 20). End(Z)) E Aut(Z) x Aut(Z) considered as a category where the ob- 

jects are its elements (f, 9) and the morphisms are given by maps u : Z 4 Z such that 
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uf = fu and ug = gu. The overlay of the introduction corresponds to the element (f, f) 

where f E Aut(Z), is given by f(z) = z + 1. 

4.2.2. (Top, q)-bundles 

Let q : Top -+ Top be the functor which carries a space A to VA = A with the discrete 

topology. An important particular case for this functor is the category of suspension 

foliations with base a manifold X and fiber a manifold F. 

In order to have an alternative description of the notion of (Top, q)-bundle we intro- 

duction the following concepts: 

A topological (T C -r’)-space is a set X endowed with two topologies r, r’ where 

r’ is finer than T. It is denoted by (X, r C 7’) and it is also called a (r C r/)-space. 

A covering U on X is a family of U E r such that X = UUEU U. A (r C: r/)-map 

is a r-continuous and r’-continuous map. A (T C r/)-space is said to be discrete if 7’ 

is discrete. A topological space (X, r) can be considered as a (T C r/)-space taking 

?- = 7’. 

Given a (T C +)-map p: E 4 X, where X is a space considered as a (r 2 T')- 

space, an atlas consists on a covering U and a family of (T C ?-‘)-homeomorphisms 

{cpu :p-‘U + U x F(U)} uEu where each F(U) is a discrete (T C r/)-space. 

Two atlases A = {cpu 1 U E U} and B = {$v 1 V E V} are said equivalent if there 

exists W refining both U and V such that if W c U fl V then 

w x F(U) sww,p-,w VP;’ -W x G(U) 

is W-constant. 

A flat bundle over X is a pair (p : E + X, [d]) with p and A as above. It is easy to 

check that the notion of (Top, n)-bundle is equivalent to the flat bundle. 

If X is a locally connected space, then two atlases of p are always equivalent, so we 

have that p: E 4 X is a flat bundle if and only if p trivializes over some U covering of 

X with (r C r')-diSCrete fiber. We note that we can look at a flat bundle in two ways, 

we can think as a locally trivial fiber bundle with locally constant cocycle. On the other 

hand, we can think that a flat bundle is a covering projection with discrete fiber. 

If X is locally path-connected and semilocally l-connected space, the progroupoid 

7rcrs(X) is equivalent to the standard fundamental groupoid 7r, and so the category 

flat-bundle(X) of flat bundles over X is equivalent to the category Top” of r-spaces. 

If X is also a connected space, then the fundamental groupoid is equivalent to the fun- 

damental group. Therefore the flat bundle category is equivalent to the r-spaces where 

rr is endowed with the discrete topology. Now we have that flat bundles with fiber F 

are classified by the representations 7r -+ Aut(F). Suppose that Aut(F) is provided with 

the compact open topology and Aut(F)d,, has the discrete topology, then the contin- 

uous homomorphism Aut(F)dzs --f Aut(F) induces on the classifying spaces the map 

B(Aut(F)& -+ B(Aut(F)). D enote by [n,Aut(F)] the conjugation classes of repre- 

sentations of YT on (Aut(F)d,,), then [7r, Aut(F)dis] ” [X, B(Aut(F)dis)] and the map 

B(Aut(F)d,,) 4 B(Aut(F)) gives for a flat F-bundle its forgetful structure of F-bundle 

with locally constant cocycle. 
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We finish this subsection with the following nice example: If X and F are topological 

manifolds with respective dimensions p, q then the F-flat bundles (with fiber F) over 

X is the category of suspension foliations with base X and fiber F [3]. In this case, 

the category pro(&X, End(F)) re d uces to the category of representations of the form 

T 4 Aut(F). 

4.2.3. (MR: q)-bundles 

Let MR be the category of R-modules. Consider the functor n : MR + Top defined 

by qfi1 = (M, tli,s), where dis is the discrete topology. If X is a locally connected space 

the notion of (MR,~)-bundle is equivalent to the notion of locally constant sheaf of 

R-modules on X. In particular, we obtain the category of locally constant sheaves of 

abelian groups on the space X. 

Finally consider the cases 72. = R, R = C. Let I& be the category of finite-dimensional 

vector spaces over R and q: VR --f Top such that qV = V with the standard topology. 

A flat vector bundle is a vector bundle whose cocycle is locally constant. It is easy to 

check that the notion of (VR> q)-bundle is equivalent to the notion of flat vector bundle. 

As another particular case of our classification theorem we have that the isomorphism 

classes of the category of (Vn. n)-bundles over a connected manifold X with R” as fiber 

are classified by the conjugation classes of representations of the form ~1 4 GL(n, R), 

where TTI is the fundamental group of the manifold X. 
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