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Abstract 
This article presents a methodology for the construction and use of metamodels with Deep Learning (DL) 

methods that are useful for making multi-criteria decisions in the design and optimization of one-way slabs. 

The main motivation behind this research has been to examine the possibilities of improving slab design by 

including this methodology in future tools, which is capable of calculating thousands of solutions in real time 

based on the designer’s specifications. The process of creating these metamodels begins by developing a 

database of millions of combinations of slab designs. These combinations are calculated with a heuristic 

algorithm that provides the following results: rigidity, deflection, cost per square meter, CO2 emissions and 

embodied energy. Once a database including the entire universe of possible solutions has been created, a 

metamodel is developed that is capable of "condensing” the implicit knowledge contained in the database. 

This metamodel is included within a Decision Support System (DSS) that produces thousands of solutions for 

slabs that all comply with a range of specifications designated by the design plan. Furthermore, the 

methodology described herein proposes the use of Pareto-optimal solutions and graphic tools to help 

designers make multi-criteria decisions regarding the solutions that best fit their needs. A case study is 

presented to illustrate this proposal: optimizing slab design in two buildings according to technical, economic 

and sustainability criteria. The results indicate that the multi-criteria solutions obtained would entail a 

significant reduction in both emissions and embodied energy as compared to mono-criteria solutions, 

without significantly increasing costs. 
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1. INTRODUCTION 

The construction industry constitutes a business sector that consumes great quantities of energy while also 

emitting large amounts of CO2. Breaking down this consumption, building a reinforced concrete structure 

represents between 59.57% and 66.73% of the total energy consumed [1]. Likewise, a building’s use phase 

represents a large part of total CO2 emissions. Therefore, much research in recent years has focused on 

improving the energy efficiency of building operation [2]. And as the Net Zero Energy Building concept 

spreads rapidly, reducing CO2 emissions and the amount of energy consumed during the manufacture of 

construction materials is also gaining importance. Thus, adequate design of reinforced steel elements must 

consider energy consumption and emissions generated during material production. 

Over the past few decades, numerous studies have investigated optimizing the design of reinforced steel 

elements in terms of cost and emissions. For example, Park et al. [3] applies genetic algorithms (GA) to design 

composite columns in high-rise buildings (35 stories) and identifies specific dimensions and reinforcements 

that reduce cost and CO2 emissions. Another study focuses on designing bridge piers and uses hybrid multi-

objective simulated annealing (SA) algorithms, and incorporates the aforementioned objective functions 

(cost and emissions), as well as reinforcing steel congestion [4]. Two studies on designing reinforced concrete 

footings that reduce cost and CO2 emissions should be mentioned. The first study utilizes the optimization 

methodology known as Big Bang-Big Crunch to optimize isolated footings in accordance with the 

specifications prescribed by the American Concrete Institute (ACI 318-11) [5]. The second study develops a 

new method called hybrid firefly algorithm (FA) to apply to spread footing [6]. Regarding the optimum design 

of reinforced concrete retaining walls, Khajehzadeh et al. [7] present and apply a new version of the 

gravitational search algorithm based on opposition-based learning (OBGSA). In this same line of research, 

Yepes et al. [8] present an approach to a methodology using a hybrid multistart optimization strategic 

method based on a variable neighborhood search threshold acceptance strategy (VNS-MTAR) algorithm. 

Another study examines a different reinforced concrete component subject to bending stress: high 

performance concrete for simply supported beams is designed using the same VNS algorithm [9]. And lastly, 

Paya-Zaforteza et al. implement a SA algorithm [10] to examine combinations of compression and stress 

components (columns and beams) according to Spanish building code. All these studies demonstrate the 

complexity involved in creating building designs that cut down on costs and emissions. 

In the case of concrete slabs, how to reduce costs through better design has been studied extensively. An 

example of such a study can be found in the research of Merta and Kravanja [11] who include labor costs in 

overall manufacturing costs. Another study conducted by Tabatabai and Mosalam [12] demonstrates how 

two programs, designed for two separate tasks, can be integrated in an environment for performance-based 

reinforcement design that guarantees cost-effectiveness through optimization and structural safety through 

satisfying serviceability conditions. Kaveh et al. also conduct various studies focused on optimizing costs in 



 
 

 
 

the design of one-way reinforced concrete slabs. For example, their first study uses a harmony search 

algorithm and also conducts a parametric study examining the effects of beam span and loading [13]. In a 

later study, the authors include the materials used and the construction cost of the structure in the objective 

function. In this case, optimization is carried out by the improved harmony search (IHS) algorithm and the 

results are compared to those of the charged system search (CSS) [14]. These same authors, in another later 

study, compare and evaluate the capacities of several metaheuristic algorithms for optimizing the costs of a 

concrete slab [15]. En 2016 Kaveh y Ghafari, han analizado una estructura hibrida de acero y hormigón, en 

este caso la optimización de la función coste total is performed by enhanced colliding body optimization 

(ECBO) [16]. Similarly, Ahmadi-Nedushan and Varaee [17] evaluate the performance of different algorithms 

and demonstrate that particle swarm optimization (PSO) is a promising method for design optimization of 

structural elements. Other studies point out the need to incorporate additional parameters into design 

criteria. For example, Liébana et al. [18] analyze CO2 emissions generated by different construction 

techniques, Del Coz et al. [19] incorporate thermal behavior in their proposal, and Fraile-García et al. [20] 

consider life cycle assessment (LCA) in the design of reinforced concrete structures. 

In recent years, various decision support systems (DSS) have been developed that use machine learning 

models to support structural design and maintenance. For example, some research has investigated how to 

improve the prediction of shear resistance performance in large span beams using support vector machines 

(SVM) [21] or artificial neural networks (ANN) [22]. Other studies optimize the design of beams without 

stirrups through evolutionary polynomial regression [23] or gene expression programming (GEP) [24], with 

the objective of adapting those formulas included in the regulations. Other variables studied in relation to 

concrete are as follows: compressive strength through ANN [25][26], compressive strength of high 

performance concrete with adaptive network-based fuzzy inference system (ANFIS) [27], and tensile strength 

with GEP [28], creep with ANN [29], and abrasive wear with various models based on ANN, fuzzy logic model 

with genetic algorithm and general lineal models (GLM) [30]. In all of these studies, the models are tested 

with experimental testing data and demonstrate satisfactory results. Other authors, on the other hand, utilize 

models to determine risk factors and corrective measures for infrastructure. For example, Cheng and Hoang 

[31] estimate the risk score for bridge maintenance with the evolutionary fuzzy least squares SVM. Okasha 

and Frangopol also [32] develop an advanced model for life-cycle performance prediction and service-life 

estimation of bridges. Similarly, because reinforced concrete structures are subject to corrosion, tools have 

been proposed to support decision-makers in planning maintenance interventions with the fuzzy time-

dependent method [33] or through ANN whose weights are optimized with an imperialist competitive 

algorithm (ICA) [34]. 

As more parameters are incorporated into structural design, the decision-making process becomes more 

complex. Thus, Yepes et al. [35] optimizes bridge design based on economic, structural security and 

environmental sustainability objectives. Castilho and Lima [36] utilize genetic algorithms (GA) to minimize 



 
 

 
 

the costs of continuous one-way slabs in which the concrete characteristics and joist spacing are varied. 

Hailong Zhao et al. [37] incorporate a greater number of design variables and construction factors and employ 

metamodels applied to the structural design of metal trusses to effectively reduce the computational time 

necessary. Gharehbaghi and Khatibinia [38] utilize metamodels trained with real data to optimize seismic 

design. Another study illustrates the effectiveness of using metamodels to design concrete barriers [39]. 

All the above-mentioned studies are based on machine learning methods, or evolutionary and bio-inspired 

methods of optimization. Within this field, research conducted in recent years with deep learning (DL) has 

advanced the design of support systems for the decision-making process. This type of technique, many of 

which having evolved from ANN, aim to model information with various levels of abstraction by using 

different non-linear interconnected layers. Among the diverse DL techniques, architectures corresponding to 

“deep neural networks” (DNN) are those techniques most used in supervised modeling. In this case, DNN are 

artificial neural networks (ANN) formed by multiple layers of neural networks with a high number of non-

linear neurons per layer. Thus, DNN are often comprised of by three, four or more layers, with thousands of 

neurons in each one. These types of networks are very flexible which allows them to handle complex 

problems, but their downside is the risk of overfitting through training, and therefore losing their capacity to 

adequately explain the problem. To avoid this problem, current DNN training algorithms incorporate a range 

of mechanisms to reduce the risk of overfitting models. 

Keeping in mind the current tendency to implement building information modeling (BIM) systems for 

structures, agile tools are necessary to make decisions during the design phase. Given this situation, 

combining structural analysis tools with search and optimization algorithms is considered a promising option 

[40].  

This study proposes a methodology to develop metamodels based on deep-learning methods capable of 

working with multiple combinations of one-way slab design options to predict in real time: rigidity, deflection, 

cost per square meter, embedded energy and CO2 emissions. These metamodels combined with other types 

of methods such as Pareto-optimal solutions or graphic tools can be included in decision support systems 

(DSS) to design and optimize one-way slabs. Such DSS can be useful for selecting the optimal design of slabs 

from a multi-objective point of view that takes into consideration technical, economic and sustainability 

criteria. 

2. METHODOLOGY 

2.1. Decision Support System based on Deep Learning Techniques 



 
 

 
 

The decision support system (DSS) is based on a metamodel developed with deep learning (DL) techniques 

to optimize the structural design of one-way slabs in terms of economic, technique and sustainability criteria. 

The DSS incorporates a DL-metamodel (MetaDL) that is capable of quickly extracting thousands of 

construction solutions from stipulations indicated by the designer. Likewise, the DSS has search algorithms 

based on Pareto-optimals that limit the number of final solutions so that the designer is able to analyze them. 

To facilitate analysis of these solutions, the DSS includes graphic tools such as dendrograms and scatterplots 

that assist designers in choosing the most adequate solution for their proposals. 

2.2 Construction of the MetaDL 

The process of creating the MetaDL is illustrated in Figure 1. First, a heuristic algorithm based on current 

construction methodology and international regulations creates a database of thousands of construction 

solutions. This database includes millions of hypothetical designs covering the entire range of possible 

solutions. Then, five DNN models are trained and validated in order to obtain a precise metamodel capable 

of assimilating and synthesizing the implicit knowledge contained in the universe of solutions presented. 

Thus, the final objective is to achieve a sufficiently precise metamodel that can substitute the heuristic 

algorithm and be utilized during the decision-making phase. The primary advantage of MetaDL, in 

comparison to the heuristic algorithm, is that it allows designers to compare, in real time, thousands of 

different construction solutions for a specific design case. Among these solutions, selecting the Pareto-

optimal solutions considerably reduces the number of final solutions so that the designer may visually analyze 

them. Hence, incorporating MetaDL into the DSS allows designers to choose the best solutions, in terms of 

construction and sustainability, from thousands of possibilities. 



 
 

 
 

 
Figure 1 Building stages for MetaDL for a DSS in the design of one-way slabs. 

2.3 Heuristic Method for Calculating One-way Slabs  

To implement the design proposals for one-way slabs and not place any limits on the possible solutions’ 

geometry, hollow blocks made of expanded polystyrene are utilized. Therefore, the slab’s geometry can be 

modified by adjusting the blocks’ dimensions, meaning that the design is flexible since the rib width and 

compression layer can be modified while maintaining the same total thickness. 

The algorithm to calculate and design the one-way slabs is realized for a T-shaped section (Figure 2). The T-

shaped design is affected by four parameters: Effective flange width is taken as half the distance between 

ribs, inter-axis (i), in-situ rib width (n), compression layer (c), and height of the hollow block (h). Therefore, 

each design solution for a slab section is referred to by the following term: i-n-c-h. In addition to these four 



 
 

 
 

variables that define the slab section, four input variables corresponding to spans and typical building loads 

are incorporated: use, pavement, and partitioning. To sum up, eight input parameters are considered for 

each design: inter-axis (i), rib (n), compression layer (c), height of hollow block (h), span, live load, pavement 

load, and partition load. 

   

Figure 2. Design parameters for one-way slabs. 

The calculations are performed for each solution, and the output variables obtained are cost, deflection, the 

ratio of deflection compared to the maximum acceptable deflection, CO2 emissions, and embodied energy 

per square meter of each solution (i-n-c-h). 

The upper section of Figure 1 describes the heuristic algorithm used to calculate each construction solution. 

This algorithm has two distinct parts: the structural analysis of the solution and the evaluation of economic 

and environmental costs.  

Now, let us outline the structural analysis process. First, the variables "i-n-c-h" are defined, which correspond 

to the geometry of the T-section, and then by referencing the density of the materials (reinforced concrete 

2.5 kN/m3 and expanded polystyrene 0.15 kN/m3), the weight of the slab can be calculated. Then, once the 

loads (use, pavement, partition) and span are determined, the stresses for each specific case are obtained. 

In this case, current regulations require that for simple supports (null moment) a negative moment of 25% 

of the span which it supports is considered. By implementing the formula included in the regulations [41] , 

que incorpora las directrices de la norma europea EN 1992-1-1 para proyectos de estructuras de hormigón, 

regarding the T-sections' dimensioning, the necessary reinforcements are established. Once the exact 

reinforcements necessary for adequate strength are defined, the deflection can be verified. Se ha establecido 

el límite superior para armadura de refuerzo de 20x(n-2r) mm2 respetando un recubrimiento de 30 mm 

(figura 2). For this study, a history of loads based on common construction practices in Spain was established. 

To this end, four types of loads were established according to the purpose of the different loads: self weight, 

partition, floor covering, and live load. In reinforced concrete structures, the values for active and total 

deflection in structural components must be monitored given that the deflection of these components 

affects those elements considered non-structural. The deflection which takes place after the application of 



 
 

 
 

finishes or fixing of partitions should not exceed span/400 to avoid damage to fixtures and fittings. This 

deflection consists of two types of deflections: instantaneous and time-dependent, as indicated in Figure 3. 

 

Figure 3. Evolution of deflection for history of loads. 

The damage-deflection of a structural element in reference to a damageable non-structural element, is the 

deflection value obtained in the first element due to the construction of the second. Total long-term 

deflection is the sum of damage-deflection plus the deflection of the structural element occurring up until 

the damageable element is constructed.  

In this study, the damageable elements are the partitions and the floor coverings, and the structural element 

is the slab. To calculate the equivalent inertia ( ) of the slab in question, the Branson formula [41] is 

implemented:  

𝐼𝐼𝑒𝑒 = �
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𝑀𝑀𝑎𝑎
�
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� · 𝐼𝐼𝑓𝑓 ≤ 𝐼𝐼𝑏𝑏 (1) 

In which: 

𝑀𝑀𝑎𝑎: Maximum bending moment applied to the section until the instant when the deflection is calculated. 

𝑀𝑀𝑓𝑓: Nominal cracking moment of the section. 

𝐼𝐼𝑏𝑏: Moment of inertia of the gross section. 

𝐼𝐼𝑓𝑓: Moment of inertia of the simply bent cracked section. 

This inertia value models the presence of cracking when the materials are subject to loads; and instant 

deflection is obtained by means of the material strength formulas. To calculate the different deflections, a 



 
 

 
 

simplified calculation that is included in the regulations is utilized, using the factor ξ , a coefficient that 

depends on the load time and the takes the following values according to the time (Figure 4). 

 

Figure 4. Coefficient ξ to calculate time-dependent deflection. 

To calculate the deflection of instant tf for the age of the load tc, the value to be considered is: 

𝜉𝜉 = 𝜉𝜉�𝑡𝑡𝑓𝑓� − 𝜉𝜉(𝑡𝑡𝑐𝑐) (2) 

The values of maximum acceptable deflection are implemented as relative values: L/400 for damage-

deflection and L/250 for total deflection, L represents the centimeters of span. The definition of the 

reinforcements obtained for strength is used as a basis the first time the deflection is checked. A cycle comes 

into play wherein if the section’s features must be improved because they do not comply with the deflection 

limits, a gradual calculation is conducted with 1% increases in the reinforcement sections. Estos incrementos 

de la armadura permiten reducir la fisuración y de esta forma incrementar la inercia equivalente, al aplicar 

la fórmula de Branson, para una misma sección de hormigón. This cycle to redefine reinforcements has two 

established limits: deflection cannot fall below the maximum admissible values nor can it reach a quantity of 

steel that would be impossible to incorporate into the section. Therefore, each iteration of the cycle must 

check the viability of the reinforcement. 

Obtaining the definitive reinforcements for each solution provides us with information regarding the 

quantities of materials required for each solution. These quantities are all based on a square meter of the 

solution, but in different quantities depending on the material in question. Thus, the measurement for 

reinforced steel is kg/m2; for concrete, m3/m2; and for expanded polystyrene, m3/m2. In addition, the ratio of 

deflection is also recorded (maximum deflection/acceptable deflection). Cases wherein this ratio is greater 

than the unit are deemed invalid as they surpass the admissible amount of deflection.  

The second part of the algorithm implements the economic and environmental costs of the corresponding 

solution. In order to do so, the following databases are referenced: Ecoinvent [42], Bedec [43], CYPE [44]), 



 
 

 
 

and on a sector level, some Environmental Product Declarations for steel [45], concrete [46] and expanded 

polystyrene [47]. Table 1 was created based on these databases. 

Amount /Material Cost (€) Emissions CO2 (kg) Embodied Energy (MJ) 
Kg / Steel Rebar 1.0 3.16 55.0 
m3 / Concrete (HA-25-B-20-IIa) 93.0 235.8 2424.0 
m3 / Expanded Polystyrene δ=0.15kN/m3 45.0 44.8 1325.0 

Table 1 Economic and environmental cost per unit. 

Information provided by the figures for material usage allows us to obtain the economic and environmental 

costs of each solution studied herein. 

2.4. Generating the Results Database  

This algorithm is used to generate a database of solutions. From the original problem’s eight parameters, the 

density of the cases studied is increased in the i-n-c-h parameters by varying the loads and span with less 

intensity. Table 2 includes detailed information. Maximum and minimum values are deliberately increased 

to improve the training of the model in regards to the limits of possible solutions.  

Parameter Minimum Maximum Increases 
Inter-axis (i) 50 cm 100 cm 5 cm 
Rib cast-in-place (n) 10 cm 26 cm 2 cm 
Compression-Layer (c) 4 cm 8 cm 1 cm 
High hollow block (h) 10 cm 40 cm 3 cm 
Span one-way slab 350 cm 650 cm 50 cm 
Live Loads 0 kN/m2 4 kN/m2 2 kN/m2 
Load of Pavement 0 kN/m2 2 kN/m2 1 kN/m2 
Load of Partitions 0 kN/m2 2 kN/m2 1 kN/m2 

Table 2. Input Parameters. Ranges and increments. 

Utilizing the heuristic algorithm with a combination of input parameters found in Table 2, the following 

outputs are obtained: economic cost in €/m2, energy necessary to obtain the solution in MJ/m2, CO2 

emissions in kg/m2, deflection rate (maximum ratio of estimated deflections to maximum admissible 

deflection) and the estimated damage-deflection in centimeters. Therefore, a grid is generated of all the 

possible combinations based on the input parameters listed in Table 2 and according to the ranges and 

intervals assigned to each one. The results correspond to the total possible combinations of: 11 intera-xis, 9 

ribs, 5 compression layers, 11 high hollow blocks, 7 spans, 3 live loads, 3 loads of floor covering and 3 loads 

of partition. That is, 11x9x5x11x7x3x3x3=1029105 construction solutions. 

2.5. Training and Validating the Metamodel based on Deep Learning techniques  

2.5.1. Deep Learning 

Once the database is developed, five DNN are trained, one for each output. To avoid overfitting during the 

training process and to obtain models that are good at generalizing the problem to be explained, DNN 



 
 

 
 

algorithms nowadays incorporate various regularizing parameters. For example, penalties of type L1 (Lasso) 

or L2 (Ridge) modify the loss function based on the model's complexity. Other techniques to limit overfitting 

use “drop-out” parameters to reduce the number of connections in the neural networks in inputs as well as 

in the hidden layers. These techniques are especially useful when working with high dimensional or noisy 

databases, because they reduce anomalous or unnecessary dependencies. Furthermore, with other types of 

parameters one can randomly select a sub-space of characteristics (random-subspaces method) in each 

iteration, or reduce the number of samples with the aim of minimizing the final variance error (similar to 

approaches such as bagging). Thus, the training process focuses on adjusting various parameters, some of 

which serve to minimize the objective function and others, to avoid over-fitting through intrinsic processes 

similar to sub-sampling, feature selection, regularization, etc. 

 

Figure 5 Example of DNN to estimate the cost per square meter of slab wherein a drop-out process is realized in each training 

iteration to disconnect connections between neurons with the objective of avoiding overfitting the model. 

2.5.2. Creation of the Metamodel 

The metamodel consists of five DNN models. Each DNN is capable of predicting one of the output variables, 

based on eight input variables. La Figura 5 muestra la topología de DNN utilizada para predecir el coste. 

Para los cinco casos, la estructura de la DNN es similar y está basada en un feed-forward neural network 

con una capa de entrada, 3 capas ocultas y una de salida que corresponde a la variable dependiente. Para 

cada modelo, lo único que varía es nh1, nh2, y nh3 que definen respectivamente el número de neuronas de 

las capas ocultas 1, 2 y 3. 

Para la definición de esta topología, inicialmente se realizaron diversas pruebas para prefijar el número de 

capas, el tipo de función de activación de las neuronas, la ratio de aprendizaje (learning_rate) y el 

porcentaje de conexiones de cada capa que son desactivadas en cada training stage (drop_out), y que sirve 



 
 

 
 

para prevenir el sobreentrenamiento de la DNN (overfitting). Para conseguir unos tiempos de 

entrenamiento aceptables, los mejores errores preliminares de validación se obtuvieron al fijar el número 

de capas a 3, el drop_out de todas las capas a 0.5, el learning_rate a 0.005; y usando funciones de activación 

del tipo “relu” y parada temprana (early_stopping) de 10 epochs. Finalmente, el proceso de ajuste fino de 

los modelos DNN se basó en la selección del número más adecuado de neuronas de cada una de las capas 

ocultas y del ajuste del momentum, tal y como se explica en el punto 3.2 

The process of training the DNN begins by dividing the database into two parts. 70% of the cases are selected 

at random from the database for training and validation. The other 30% is reserved for the testing stage. The 

database is utilized exclusively to verify the generalization capacity of each of one the selected models. 

To facilitate training the DNN model, a z-score normalization is realized on each of the variables from the 

database through the following expression: 

𝐴𝐴𝑖𝑖′ =
𝐴𝐴𝑖𝑖 − 𝐴̅𝐴
𝜎𝜎𝐴𝐴

 (3) 

where  is the mean of the variable  and  is the standard deviation. 

The validation process is carried out by a k-fold cross validation (CV) which consists of dividing the dataset 

into k subsets. In each iteration, k-1 subsets are used for training the model and a partial error is obtained 

with the subset not selected. The procedure is repeated k times selecting a different validation subset in each 

iteration. The final cross-validation error is calculated with the arithmetic mean of the k partial sample errors. 

In this study, k is equal to 5 and the root mean square error (RMSE) is used as the validation error, where: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (4) 

𝑦𝑦𝑖𝑖  and 𝑦𝑦�𝑖𝑖  are respectively, the actual and the predicted output of the 𝑖𝑖 solution and 𝑛𝑛, the number of samples 

in each validation subset. 

A random search is conducted for the best DNN model wherein the following parameters are modified: the 

number of neurons in each hidden layer (nh1, nh2 y nh3), and then momentum, learning_rate and drop_out of 

each of the hidden layers. Moreover, early_stopping is used to avoid overtraining. 

2.6 Applying the MetaDL to obtain the best design solutions 

Once the MetaDL is trained and validated, designers can use it in practical cases to select construction 

solutions from the range of designs they deem appropriate and by establishing the live loads beforehand.  



 
 

 
 

From among these solutions, the DSS obtains the optimal Pareto solutions: this sub-group of the total 

solutions represents the best solutions because the other solutions do not improve one objective without 

adversely affecting another objective.  Utilizing the Pareto-optimal solutions considerably reduces the 

number of solutions to be examined in multi-criteria problems. And finally, the DSS incorporates graphic tools 

such as dendrograms and scatterplots that help to select the solution that best suits the problem’s conditions. 

3. CASE STUDY. RESULTS AND DISCUSSION 

3.1 Description of Case Study 

To compare and contrast the suitability of the model proposed, the aforementioned methodology is applied 

in a mono-criteria and multi-criteria optimization of two different buildings. The objective is to demonstrate 

the viability of the methodology in common structural design processes. 

Given that the ultimate goal is to determine the optimum design for a slab section (i-n-c-h), the geometric 

parameters and buildings loads must be established. The geometric parameters depend on the building’s 

architectural design, wherein the span between columns varies. In this study, two buildings are examined 

that simulate two realistic situations: building Y with a span of 420 cm and building Z with a span of 580 cm. 

El caso de estudio, se realiza para forjados aislados de un único vano, aportando resultados para diferentes 

valores de las solicitaciones. In both cases, the roof spans increased considering a 30% slope, which results 

in 440 and 606 cm respectively. The loads considered for each floor, in addition to self-weight, depend on 

their designated use. The most common uses are: parking garages, commercial use, dwellings, storage rooms 

and roofs. In the proposed models, these loads are divided into three concepts: use loads vary between 4 

and 1 kN/m2 and are established according to the use of the slab, pavement loads are between 0 and 1 kN/m2 

and correspond to the weight of the roof materials placed on top of the slab, and the partition load ranges 

between 0 and 2 kN/m2. Figure 6 shows the geometry and loads considered for each building. 



 
 

 
 

        

Figure 6. Case study.  
Designers usually decide on a single slab design as the structural solution for a building. Thus, a typical slab 

design was selected for both buildings (Y and Z) with the following i-n-c-h code: 72-12-5-25. Table 3 shows to 

results obtained for each building and each floor. 

 Building Y Building Z 
 €/m2 MJ/m2 kgCO2/m2 Ratio of 

deflection €/m2 MJ/m2 kgCO2/m2 Ratio of 
deflection 

R 19.55 588.91 36.16 0.10 20.26 628.18 38.41 0.97 
SR 19.95 611.03 37.43 0.38 25.89 937.80 56.20 1.00 
D 19.72 598.15 36.69 0.23 24.22 845.86 50.91 1.00 

CU 20.40 635.59 38.84 0.76 29.27 1123.75 66.88 1.00 
G 19.76 600.73 36.83 0.21 23.53 808.13 48.75 1.00 

R: Roof, SR: Storage room, D: Dwellings, CU: Commercial use, G: Garages. 

Table 3. Economic and environmental analysis and ratio of deflection for structural solution 72-12-5-25. 

3.2 Creating the MetaDL 

The MetaDL obtained consists of five DNN models that precisely predict each of the five output variables 

described above.  The topology of each DNN model was established in three hidden layers, setting drop_out 

at 0.5, and the learning_rate at 0.005. The search process for the best model was conducted by selecting the 

number of neurons for the first two layers as 256, 512, or 1024; whereas for the third hidden level, the size 

was reduced to a selection among the following values:  8, 16, 32, 64 or 128.  The momentum was established 

within a range of 0.5 and .095 at random. 

All experiments were realized with the statistical software R and the MXNet Deep Learning package. The 

server was a Z230 HP-Workstation with a Tesla K40 GPU Card. 



 
 

 
 

Table 4 shows the parameters for the best DNN model obtained for each output variable, where nh1, nh2 and 

nh3 correspond respectively to the number of neurons in hidden layers 1, 2, and 3. The dropout for the three 

layers was set at 0.5. The last two columns show the learning_rate and the momentum. 

Model DNN nh1 nh2 nh3 Dropout1 Dropout2 Dropout3 Learning Rate Momentum 

Cost (€/m2) 256 1024 16 0.5 0.5 0.5 0.005 0.726322 

Energy (MJ/m2 ) 1024 1024 16 0.5 0.5 0.5 0.005 0.698062 

CO2 (kgCO2/m2) 512 1024 16 0.5 0.5 0.5 0.005 0.567881 

Rigidity 512 1024 16 0.5 0.5 0.5 0.005 0.567881 

Deflection (cm) 512 512 8 0.5 0.5 0.5 0.005 0.768566 

Table 4. Parameters of the best models obtained for each output variable. 

100 models were trained for each output and that which had the least 5-fold CV RMSE (RMSECV) was selected. 

Table 5 shows the results obtained for each of the DNN models. The second and third columns show the 

range for each of the output variables. The fourth column lists the RMSECV which corresponds to the RMSE 

obtained through 5-fold CV with the training database, and the fifth column is the RMSETST obtained with the 

testing database. The last column shows the time in minutes used to create each model. 

As one can observe, there is a clear equivalence between the crossed validation error and the error obtained 

with the testing database, which was not used during the process of training and selecting the best models. 

None of the RMSETST surpass the maximum value of the output by more than 0.5%, which indicates that the 

models generalize correctly. 

Model Min Max RMSECV RMSETST time (min) 

Cost (€/m2) 9.366287 80.725180 0.100791 0.084571 1560 

Energy (MJ/m2 ) 275.383600 3964.099000 4.650524 4.106709 1403 

Emissions (kgCO2/m2) 17.970540 239.924000 0.258570 0.244703 3250 

Rigidity 0.006684 9.204027 0.007447 0.005897 4606 

Deflection (cm) 0.005849 14.956540 0.010896 0.009559 1671 

Table 5. Results obtained for each model. 

3.3 Searching for Optimum Solutions for each Output 

The MetaDL, which is obtained as described in the above section, is then utilized to search for optimum 

outputs for the geometry and loads of each type of slab used in the case study. The process of searching for 

optimum solutions begins by defining the slab parameters (i-n-c-h) to then obtaining an infinite number of 

possible solutions by defining the ranges for each of the parameters and varying the values centimeter by 

centimeter. Thus, in the practical case, the inter-axis varied between 60 and 90 cm, the rib between 10 and 

18 cm, the compression layer between 5 and 8 cm, and expanded polystyrene between 15 and 40 cm. The 

combination of these parameters produced 40,176 possible designs for each floor. Table 6 includes the i-n-

c-h design that offered the best mono-criteria solutions according to minimum cost, minimum embodied 

energy and minimum CO2 emissions per floor. 



 
 

 
 

  €/m2 i-n-c-h Energy 
MJ/m2 i-n-c-h Emissions 

kgCO2/m2 i-n-c-h 

R 
Y 14.57 61-11-5-15 446.73 82-15-5-15 28.72 84-10-5-18 
Z 20.02 61-13-5-23 630.09 74-14-5-24 37.15 90-10-5-29 

SR 
Y 17.37 61-16-5-17 550.16 80-16-5-19 33.55 90-10-5-24 
Z 24.28 70-17-5-28 769.54 60-12-5-30 43.81 90-10-5-36 

D 
Y 16.30 62-18-5-15 515.36 84-18-5-17 31.75 90-10-5-22 
Z 22.78 66-16-5-26 718.92 67-13-5-28 41.64 90-10-5-34 

CU 
Y 19.32 63-16-5-20 613.81 66-13-5-22 36.56 90-10-5-27 
Z 27.04 90-10-5-31 858.97 74-15-5-34 48.68 90-10-5-40 

G 
Y 16.25 67-16-5-16 515.78 89-16-5-18 31.70 90-10-5-22 
Z 22.61 66-15-5-26 718.07 71-13-5-28 41.44 90-10-5-33 

R: Roof, SR: Storage room, D: Dwellings, CU: Commercial use, G: Garages. 

Table 6. Optimum slab design in terms of cost, embodied energy and emissions for buildings Y and Z. 

In order to comply with regulations, those solutions wherein the ratio of deflection was greater than 1 were 

discarded, that is, those cases that presented deflection levels greater than the admissible level. Similarly, 

using lighteners such as expanded polystyrene requires compression layers of at least 5 centimeters. Thus, 

the results shown in Table 6 correspond to the minimums obtained after eliminating those cases that did not 

comply with the above-mentioned restrictions. 

The different solutions shown in Table 6 are the individual optimum solutions per floor according to the three 

parameters analyzed. Es habitual construir los edificios empleando un único tipo de forjado unidireccional. 

Table 7 shows the average values per square meter obtained for both buildings according to an unique design 

and compares them to the values obtained with the methodology utilizing the optimization criteria. En la 

primera fila de la tabla se muestran los resultados promedio obtenidos para el diseño 72-12-5-25. En el 

resto de las filas se identifican en negrita los resultados óptimos según el criterio de diseño: costs, energy 

or emissions. Para las soluciones obtenidas se aporta el resultado promedio en el resto de indicadores. 

 Building Y Building Z 
Design Criteria €/m2 MJ/m2 kgCO2/m2 €/m2 MJ/m2 kgCO2/m2 

72-12-5-25 19.88 606.88 37.19 24.64 868.75 52.23 
Cost 16.76 535.65 35.67 23.34 758.73 46.94 
Energy 16.90 528.37 34.18 23.48 739.12 45.46 
Emissions 17.85 547.67 32.46 24.51 759.53 42.54 

Table 7. Global data for buildings according to optimization strategy.  

The results of each optimization strategy, as compared to the use of a single slab design, show that cost 

optimization for building Y achieved a 15.67% reduction, whereas in building Z costs decreased 5.25%. At the 

same time, embodied energy decreased 11.74% for building Y and 12.66% for building Z. On the other hand, 

CO2 emissions decreased in both buildings: 4.08% in building Y and 10.12% in building Z. Optimizing costs was 

clearly significant for building Y, though CO2 emissions did not improve substantially; meanwhile the results 

for building Z were just the opposite. Both buildings achieved similar improvements for embodied energy. 



 
 

 
 

The results obtained for embodied energy optimization improved 12.94% for building Y and 14.92% for 

building Z. CO2 emissions decreased substantially for both buildings (8.10% in Y and 12.96% in Z). Economic 

savings were greater for building Y, at 14.98%, than for building Z, at 4.68%. 

In terms of CO2 emissions, the optimization strategy improved by 18.55% for building Z and 12.73% for 

building Y. However, regarding cost, building Z improved by just 0.51%, whereas building Y by 10.20%. And 

finally, each building obtained similar reductions in embodied energy values: 9.76% in building Y and 12.57% 

in building Z. 

It should be noted that the solutions examined herein represent extreme cases; in practice, designers can 

impose different conditions on the design, forcing or limiting the slab’s parametric values according to their 

necessities. 

3.4 Multi-objective Selection by analyzing Pareto-optimal Solutions 

The previous section outlined the examples based on one design criteria. This section describes the 

methodology for multi-objective selection based on cost, embodied energy and CO2 emissions. 

To facilitate a multi-objective analysis, a search for the Pareto-optimal solutions is realized, which limits the 

number of solutions to a manageable amount for designers. For example, Table 8 lists the Pareto-optimal 

solutions for the CU floor of building Y. Also, Figure 7 shows with red points the Pareto front for the same 

floor. In this case, the optimal Pareto values are derived from those cases of rigidity less than or equal to 1 

and considering three objective output variables (Cost €/m2, Energy MJ/m2 y Emissions kgCO2/m2). 

i.n.c.h 
Use 

(kN/m2) 
Pavement 
(kN/m2) 

Partition 
(kN/m2) 

Span 
(cm) 

Cost 
€/m2 

Energy 
MJ/m2 

Emissions 
kgCO2/m2 

Ratio 
Deflect

ion 

Deflection 
(cm) 

60-15-5-20 4 1 2 420 19.34 621.56 40.69 0.98 1.04 

63-16-5-20 4 1 2 420 19.32 620.27 40.85 0.97 1.02 

62-14-5-21 4 1 2 420 19.35 616.48 39.75 0.96 0.99 

63-14-5-21 4 1 2 420 19.34 617.91 39.60 0.98 1.01 

61-12-5-22 4 1 2 420 19.43 615.29 38.82 0.98 1.01 

62-12-5-22 4 1 2 420 19.42 618.35 38.85 1.00 1.03 

66-13-5-22 4 1 2 420 19.42 613.81 38.82 0.99 1.01 

64-11-5-23 4 1 2 420 19.57 619.58 38.31 0.99 1.02 

68-12-5-23 4 1 2 420 19.59 615.91 38.30 0.97 1.00 

69-12-5-23 4 1 2 420 19.58 616.53 38.25 0.98 1.02 

70-12-5-23 4 1 2 420 19.57 619.22 38.32 0.99 1.04 

74-13-5-23 4 1 2 420 19.62 615.32 38.29 0.98 1.01 

75-13-5-23 4 1 2 420 19.60 615.97 38.23 0.99 1.02 

64-10-5-24 4 1 2 420 19.81 620.97 37.77 0.97 1.00 

65-10-5-24 4 1 2 420 19.79 621.72 37.76 0.99 1.02 

77-12-5-24 4 1 2 420 19.76 620.06 37.78 0.98 1.02 



 
 

 
 

78-12-5-24 4 1 2 420 19.74 621.11 37.78 0.99 1.03 

79-12-5-24 4 1 2 420 19.73 622.85 37.83 1.00 1.04 

83-13-5-24 4 1 2 420 19.76 619.40 37.86 0.97 1.01 

84-13-5-24 4 1 2 420 19.75 619.99 37.79 0.99 1.02 

86-12-5-25 4 1 2 420 20.00 622.58 37.30 0.98 1.02 

87-12-5-25 4 1 2 420 19.98 622.97 37.26 0.99 1.03 

80-10-5-26 4 1 2 420 20.24 627.30 36.87 0.99 1.03 

81-10-5-26 4 1 2 420 20.23 628.14 36.84 0.99 1.04 

88-11-5-26 4 1 2 420 20.22 626.79 36.91 0.98 1.03 

89-11-5-26 4 1 2 420 20.22 627.62 36.91 0.99 1.04 

88-10-5-27 4 1 2 420 20.45 630.84 36.64 0.98 1.02 

89-10-5-27 4 1 2 420 20.44 630.89 36.57 0.99 1.03 

90-10-5-27 4 1 2 420 20.45 631.87 36.56 0.99 1.04 

Table 8. Pareto-optimal solutions for the CU floor in building Y. 

  
Number of 

initial 
solutions 

Number of 
Pareto-
optimal 

solutions 

R 
Y 28892 22 
Z 20691 15 

SR 
Y 28761 32 
Z 25144 56 

D 
Y 27861 32 
Z 24652 42 

CU 
Y 25588 29 
Z 19351 107 

G 
Y 27786 27 
Z 24559 28 

Table 9. Number of valid solutions and Pareto-optimal solutions for each floor of buildings Y and Z. 



 
 

 
 

 

Figure 7. Pareto front (red points) for the CU floor of building Y. 

Table 9 shows the number of Pareto-optimal solutions obtained for each floor and building as compared to 

the number of possible design solutions. As one can observe, the number of solutions decreases enormously; 

thus the number of final solutions is quite manageable. Based on these solutions, the DSS presents a 

dendrogram for each floor and building like the one in Figure 7 where the solutions are shown according to 

their degree of proximity for the CU floor of building Y. This diagram shows the Euclidean distances (height) 

among the three normalized dimensions (cost, energy and CO2) of the solutions in a hierarchal format. 

Logically, neighboring solutions can have similar designs, which is easy to perceive in this type of graph. 



 
 

 
 

 

Figure 7. Dendrogram of Pareto-optimal solutions obtained for the CU floor of building Y. 

Then, designers can, by referring to the range of solutions (Pareto border) and their criteria, select those 

solutions that offer the best qualities. For example, continuing with the example of the CU floor design in 

building Y, the designer can eliminate the solutions with costs greater than +0.15 € over the minimum cost, 

thereby further reducing the number of final solutions. Figure 8 shows an example of how to use scatter-

plots for these cases. The lower triangular region shows scatterplots with pairwise comparisons of the best 

solutions. A histogram of the values of each variable is displayed diagonally. And finally, in the upper 

triangular area, the existing correlation between said variables is represented. For example, 0.91 corresponds 

to the correlation between cost and CO2 emissions, and the graph in the lower left-hand corner represents 

the design solutions selected where axis x and y correspond to cost and CO2 emissions respectively. Thus, 

with this tool, designers can select the solution that best adapts to their needs in terms of costs, energy and 

CO2 emissions. 



 
 

 
 

 

Figure 8. Scatterplot of the most economic solutions for the CU floor of building Y. 

According to this methodology, the solution that generates the least impact (embodied energy and CO2 

emissions) is selected for each floor and building. Table 10 shows the results obtained for the slab design of 

each floor in the buildings. 

  Cost €/m2 Energy 
MJ/m2 

Emissions 
kgCO2/m2 i-n-c-h 

R 
Y 14.60 447.10 29.66 76-14-5-15 
Z 20.14 630.90 39.07 75-14-5-24 

SR 
Y 17.48 551.07 35.45 76-15-5-19 
Z 24.40 769.59 47.09 71-14-5-30 

D 
Y 16.41 515.75 33.77 85-18-5-17 
Z 22.89 719.52 44.44 72-14-5-28 

CU 
Y 19.42 613.81 38.82 66-13-5-22 
Z 27.17 859.68 52.23 85-17-5-34 

G 
Y 16.39 517.68 33.63 88-18-5-17 
Z 22.74 718.07 43.89 71-13-5-28 

R: Roof, SR: Storage room, D: Dwellings, CU: Commercial use, G: Garages. 



 
 

 
 

Table 10. Optimal slab design in terms of cost, embodied energy and emissions for buildings Y and Z. 

And lastly Table 11 lists the average values for each of the buildings proposed according to the same design 

(72-12-5-25) and according to the designs developed with the multi-criteria analysis. 

 Building Y Building Z 
Optimization Method €/m2 MJ/m2 kgCO2/m2 €/m2 MJ/m2 kgCO2/m2 

72-12-5-25 19.88 606.88 37.19 24.64 868.75 52.23 
Cost+Energy+Emissions 16.86 529.08 34.27 23.47 739.55 45.38 

Table 11. Global data for buildings according to multi-criteria optimization 

Hence, a cost reduction of 15.18% is obtained for building Y and there is 12.82% decrease in embodied energy 

and 7.86% in CO2 emissions as compared to the initial design. In the case of building Z, the cost reduction 

was less (4.75%), though better results are obtained for embodied energy and CO2 emissions, which 

decreased 14.87% and 13.11% respectively. 

If the multi-criteria solutions are compared to the mono-criteria solutions, the differences are not very 

significant. Thus, for building Y, the final multi-criteria cost entails a 0.10 €/m2 increase over the optimal 

mono-criteria solution, which had a slight increase in embodied energy (0.13%) compared to the global 

minimum and a 5.58% increase in CO2 emissions over the minimum possible emissions. Likewise, the multi-

criteria solution for building Z entails just 0.13 €/m2 increase in cost, a 0.06% increase in embodied energy, 

and an increase in CO2 emissions of 6.68% as compared to the optimal solution. Clearly, the proposed 

methodology provides solutions that offer significant reductions in embodied energy and CO2 emissions, at 

a cost similar to the lowest cost solutions. 

4. CONCLUSIONS 

This article presents a methodology to develop and apply metamodels based on DL techniques that are 

capable of condensing the implicit knowledge contained in databases comprised of by millions of 

construction solutions for one-way slabs. The ultimate objective was to analyze the viability of this type of 

technique in DSS tools that facilitate the optimization of one-way slabs from a multi-criteria perspective. 

This study illustrates this methodology with an example of two buildings of different characteristics. The 

process began with a heuristic algorithm that calculated over a million construction solutions for one-way 

slabs representing the universe of existing solutions. Based on this database, a Meta-DL was created 

consisting of five DNN capable of predicting deflection, rigidity, cost, embodied energy and CO2 emissions 

with a high degree of precision for the design of slabs and the loads to which they are subject. In all cases, 

the DL algorithms were capable of obtaining models with a prediction error of 0.5% using the testing 

database, thereby demonstrating the strong capacity of these techniques for generalization. 



 
 

 
 

Once the Meta-DL was created, thousands of solutions for the slabs for each floor were created according to 

the pre-established loads; and those solutions which did not comply with the deflection and rigidity criteria 

were eliminated. Then, with the remaining solutions, a mono-criteria selection was realized for the optimal 

slab design for each floor, which in some cases exhibited a significant decrease in cost, embodied energy and 

CO2 emissions as compared to the traditional method of using one design for all the slabs in an entire building. 

For example, in building Y, costs decreased by 15.67%. Similarly, in building Z, although the maximum cost 

reduction was relatively small, at 5.25%, embodied energy and CO2 emissions decreased substantially, at 

14.92% and 18.55% respectively. 

Finally, by using the Pareto-optimal solutions and graphic tools, one can determine the most adequate 

solutions from a multi-objective standpoint: achieving significant reductions in embodied energy and CO2 

emissions, without incurring significant cost increases as compared to monocriteria solutions. 

These results clearly demonstrate the excellent potential for incorporating DL-based metamodels into 

structural design support tools. 
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