RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Tomo L (2001), pp. 213-216

ON THE DERIVABILITY OF LIPSCHITZ FUNCTIONS

J. M. ALDAZ¹

We show that given any Borel measure on \mathbb{R} , every Lipschitz function is μ -a.e. differentiable with respect to μ .

1. Introduction.

One of the earliest applications of measure theory to the differentiation of functions is Lebesgue's result to the effect that any real valued measurable function of bounded variation on \mathbb{R} , is differentiable almost everywhere (with respect to Lebesgue measure). In particular, this is the case for Lipschitz functions. On the other hand, given any set $E \subset \mathbb{R}$ of measure zero, there exists a Lipschitz function $f: \mathbb{R} \to \mathbb{R}$ such that E is contained in the set of points where f is not differentiable (more precisely, Z. Zahorski proved in [4], Theorems 3 and 4, that A is the set of points of nondifferentiability of a Lipschitz function iff $A \subset \mathbb{R}$ is a $G_{\delta\sigma}$ set of Lebesgue measure zero). The situation however is markedly different in the plane; while Lipschitz functions are differentiable a.e. in \mathbb{R}^n by Rademacher's Theorem, D. Preiss has shown (cf. [2]) that there exists a measure zero G_{δ} subset B of the plane such that every Lipschitz function has a point of differentiability on B.

Here we shall study the situation in the one dimensional case, but replacing the derivative df/dx of f with respect to Lebesgue measure, with the derivative $df/d\mu$ of f with respect to an arbitrary Borel measure μ on

¹ 1991 Mathematics Subject Classification. 26A24.

 \mathbb{R} . Due to the fact that \mathbb{R} is an ordered topological space, the general case can be reduced to the same type of argument used for Lebesgue measure; hence, if f is Lipschitz then $df/d\mu$ exists μ -a.e.. In the other direction, it is not true that if $\mu(E) = 0$, then one can find a Lipschitz function f such that on E the derivative $df/d\mu$ does not exist. In fact, given any countable set $E \subset \mathbb{R}$, there is a locally finite, continuous Borel measure μ (so $\mu(E) = 0$) such that for every Lipschitz function $f : \mathbb{R} \to \mathbb{R}$, $df/d\mu \equiv 0$ on E.

2. Definitions and results.

Let μ be a Borel measure on \mathbb{R} , and let D be either \mathbb{R} or [a, b]. A Borel function $f: D \to \mathbb{R}$ is differentiable at $x \in D$ with respect to μ if both limits

$$\lim_{h \downarrow 0} \frac{f(x+h) - f(x)}{\mu([x, x+h])} \text{ and } \lim_{h \downarrow 0} \frac{f(x) - f(x-h)}{\mu([x-h, x])}$$

exist and are equal. When x = a or x = b only the corresponding onesided limit is considered. By the usual conventions, if $\mu([x, x + h]) = \infty$ then $(f(x + h) - f(x))/\mu([x, x + h]) = 0$, while if $\mu([x, x + h]) = 0$, $(f(x + h) - f(x))/\mu([x, x + h])$ is undefined, and similarly for the left limits. A Borel measure on $X \subset \mathbb{R}$ is *continuous* if for every point $x \in X$, $\mu(\{x\}) = 0$. The outer measure generated by μ is denoted by μ^* .

The following version of Vitali's lemma is due to de Guzmán (cf.[1]). By an interval, we always mean a nondegenerate interval.

LEMMA 2.1 (Vitali's covering lemma for finite measures). Let μ be a finite Borel measure on [a, b], let $E \subset [a, b]$, and let \mathscr{V} be a Vitali covering of E by closed intervals. Then for every $\epsilon > 0$ there exists a finite disjoint collection I_1, \ldots, I_n of intervals from \mathscr{V} such that $\mu^*(E \setminus \bigcup_{i=1}^{n} I_i) < \epsilon$.

THEOREM 2.2. Let $f : D \to \mathbb{R}$ be continuous and monotone, where D is either \mathbb{R} or interval [a, b]. Then for every Borel measure μ on D, $df/d\mu$ exists μ -a.e..

Proof: Since a countable union of measure zero sets has measure zero, it suffices to consider the case D := [a, b]. Set $U := \bigcup \{I \subset D : I \text{ is an interval with } \mu(I) < \infty\}$, and $B := \{x \in D : \text{ there is a relatively open } \}$

interval $J \subset D$ with $x \in J$ and $\mu(J) < \infty$. Note first that if $y \subset U^c$, then for every h > 0 we have

$$\mu([y-h, y]) = \mu([y, y+h]) = \infty,$$

so on U^c every real valued Borel function g satisfies $dg/d\mu \equiv 0$. We claim that $U \setminus B$ is countable. Write $U \setminus B = L \cup R$, where $L := \{y \in U \setminus B :$ there exists an $h_y > 0$ with $\mu([y - h_y, y]) < \infty$, and $R := \{y \in U \setminus B :$ there exists an $h_y > 0$ with $\mu([y, y + h_y]) < \infty$. If x, y are different points in L (resp. in R), then $[x - h_x, x] \cap [y - h_y, y] = \emptyset$ (resp. $[x, x + h_x] \cap [y, y + h_y] = \emptyset$). Hence both L and R are countable. Now if $x \in L \cup R$ is such that $\mu(\{x\}) > 0$, then by the continuity of $f, \frac{df}{d\mu}(x) = 0$, while $\mu((L \cup R) \setminus \{x \in L \cup R : \mu(\{x\}) > 0\}) = 0$. Hence all is left to do is to show that $df/d\mu$ exists μ -a.e. on B. Since μ is locally finite on B, it is enough to consider the case where μ is a finite measure on an interval I. Set $C := \{J \subset I : J \text{ is an interval with } \mu(J) = 0\}$ and $A := \cup C$. We claim that $\mu(A) = 0$. Write $A' := \bigcup \{ \text{ int } J : J \in C \}$, where int J denotes the interior of J. Then there is a countable subcollection of open intervals {int J_n } such that $A' = \bigcup_n$ int J_n . Hence $\mu(A') = 0$. Suppose next that $x, y \in A \setminus A'$ are left endpoints of different intervals form C, say J_x and J_{y} respectively. Then int $J_{x} \cap$ int $J_{y} = \emptyset$. Using an analogous argument for points in $A \setminus A'$ which are right endpoints of intervals from C, we conclude that $A \setminus A'$ is countable, thereby proving the claim.

By the definition of A, for every $x \in I \setminus A$ and every h > 0, $\mu([x-h, x]) > 0$ and $\mu([x, x+h]) > 0$. Assume f is increasing. Now the fact that $df/d\mu$ exists μ -a.e. on $I \setminus A$, and hence on I, is proven following the same steps as in the case of Lebesgue measure (cf. for instance [3], Thm. 2, pp. 96-98), but using Lemma 2.1 rather than the usual Vitali's covering lemma, and recalling that on the set $\{x \in I : \mu(\{x\}) > 0\}$ the derivative $df/d\mu$ exists (since it is identically zero).

In terms of measures, the preceding result tells us that if v is a continuous, locally finite measure, then $dv/d\mu$ exists μ -a.e., for any such v can be obtained from a continuous increasing function f by setting v((x, y]) := f(y) - f(x), and then applying Caratheodory's outer measure procedure.

Since a Lipschitz function on [a, b] is a continuous function of bounded

215

variation, it can be expressed as the difference of two monotone continuous functions. So we obtain the following corollary.

COROLLARY 2.3. Let $f : D \to \mathbb{R}$ be Lipschitz if D = [a, b], or locally Lipschitz if $D = \mathbb{R}$. Then for every Borel measure μ on D, $df/d\mu$ exists μ -a.e..

EXAMPLE 2.4. Let I be an interval and let $E \subset I$ be countable. Then there exists a locally finite, continuous Borel measure μ on I, such that for every Lipschitz function $f: I \to \mathbb{R}, df/d\mu \equiv on E$.

Proof: Set g(0) = 0 and $g(x) = 1/\sqrt{|x|}$ on $\mathbb{R} \setminus \{0\}$. Let $\{x_n\}_{n=1}^{\infty}$ be a countable subset of the interval *I*, and write $g_n(x) := 2^{-n}g(x - x_n)\chi_I(x)$. Clearly $w := \sum_{1}^{\infty} g_n \in L^1_{loc}(I)$ (and if *I* is bounded, $w \in L^1(I)$), so the

measure μ defined by $\mu(B) := \int w(x)dx$ for every Borel set $B \subset I$, is absolutely continuous and locally finite. Let $f: I \to \mathbb{R}$ be Lipschitz. Then for every $n \ge 1$,

$$\left|\lim_{h\downarrow 0}\frac{f(x_n+h)-f(x_n)}{\mu([x_n,x_n+h])}\right| \leq \lim_{h\downarrow 0}\frac{h\mathrm{Lip}(f)}{\int_{x_n}^{x_n+h}g_n} = 0.$$

Likewise, the left limits are also zero at each x_n .

REFERENCES

- [1] de Guzmán M., A general form of the Vitali theorem, Colloq. Math. 34 (1975/76), no. 1, 69-72.
- [2] Preiss D., Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal., 91 (1990), 312-345.
- [3] Royden H.L., Real Analysis, Second Edition, Macmillan (1968).
- [4] Zahorski Z., Sur l'ensemble des points de non-derivabilité d'une fonction continue, Bull. Soc. Math. France, 74 (1946), 147-178.

Pervenuto il 7 gennaio 1999.

Departamento de Matemáticas y Computación, Universidad de La Rioja E-mail adress: aldaz@dmc.unirioja.es