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Abstract

The high impact of irrigation in crop quality and yield in grapevine makes the development of

plant water status monitoring systems an essential issue in the context of sustainable viticul-

ture. This study presents an on-the-go approach for the estimation of vineyard water status

using thermal imaging and machine learning. The experiments were conducted during

seven different weeks from July to September in season 2016. A thermal camera was

embedded on an all-terrain vehicle moving at 5 km/h to take on-the-go thermal images of

the vineyard canopy at 1.2 m of distance and 1.0 m from the ground. The two sides of the

canopy were measured for the development of side-specific and global models. Stem water

potential was acquired and used as reference method. Additionally, reference temperatures

Tdry and Twet were determined for the calculation of two thermal indices: the crop water

stress index (CWSI) and the Jones index (Ig). Prediction models were built with and without

considering the reference temperatures as input of the training algorithms. When using the

reference temperatures, the best models casted determination coefficients R2 of 0.61 and

0.58 for cross validation and prediction (RMSE values of 0.190 MPa and 0.204 MPa),

respectively. Nevertheless, when the reference temperatures were not considered in the

training of the models, their performance statistics responded in the same way, returning R2

values up to 0.62 and 0.65 for cross validation and prediction (RMSE values of 0.190 MPa

and 0.184 MPa), respectively. The outcomes provided by the machine learning algorithms

support the use of thermal imaging for fast, reliable estimation of a vineyard water status,

even suppressing the necessity of supervised acquisition of reference temperatures. The

new developed on-the-go method can be very useful in the grape and wine industry for

assessing and mapping vineyard water status.

Introduction

Water utilization has become a critical issue in sustainable agriculture, and because of reasons

such as water scarcity and climate change, its management is increasingly required to be more

accurate. In viticulture, irrigation has a direct impact on vine yield and grape quality, so the

implementation of precision watering systems could be considered as useful tools for the
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precise application of water regimes based on water status reports of the vineyard plot [1]. Sev-

eral authors have studied different physiological parameters for the monitoring of the plant

water status [2–4], and the direct measurement of the plant has been widely put into action for

the measurement of the water status, instead of moisture measurements of the soil [5]. A key

factor in the precise water management in vineyards may lie on the development of reliable

tools for assessing the vine water status and its spatial variation directly in the field. This goal is

virtually unreachable by the classical measurement devices due to their labor demanding,

time-consuming nature and necessity of expert and trained personnel.

Infrared thermography is a technique based on the relationship between leaf stomatal clo-

sure or aperture and its surface temperature [6]. When leaf transpires, water is lost through

stomata and leaf temperature decreases. However, if transpiration stops, leaf temperature

increases as no heat dissipation is ocurring. Likewise, the temperature of the canopy has been

correlated with specific plant physiological parameters, such as the stomatal conductance (gs)

[5, 7–9]. Technological advances in thermal imaging have delivered new opportunities in the

acquisition of plant thermal responses to water status variations [8, 10–12]. In this fashion,

thermal cameras are very prone to be used as portable devices for the estimation of plant water

status and to help in the set up of irrigation schedules [10, 13, 14]. Still, further advancement

based on canopy temperature has led to the development of thermal indices, such as the crop

water stress index (CWSI) [15] and the conductance index (Ig) [6], that—by previously taking

reference temperatures—seek for the diminishing of environmental variations that could affect

the canopy temperature. As a result, several studies exploring semi-supervised irrigation

scheduling system based on thermal information have been recently published [16–18]. Never-

theless, in the majority of the cases, the computation of thermal indices relies on mandatory

acquisitions of edge temperatures, typically Twet and Tdry for minimal and maximal tempera-

tures, respectively, with the need of inducing extreme temperatures using adapted leaves or

special devices [9]. This hinders the development of fully automated thermal methods for the

estimation of plant water status. Hence, the overcome of the measurement of reference tem-

peratures would stand for a substantial improvement in this matter in order to automate this

technology in industrial applications.

In-field, non-invasive assessment of grapevine water status and its variability within the

vineyard would be a valuable tool in precision viticulture. Correlation analyses between ther-

mal indices and physiological parameters such as gs and stem water potential Cstem have been

carried out in the field using non-destructive portable sensors in commercial vineyards bring-

ing compelling correlation levels [19, 20]. The main advantages these methods brought were

the easy implementation and processing and immediate response. Nonetheless, it is needed for

the device to be constantly managed by active human resources and it is only possible to make

measurements on individual specific spots, factors that would make it difficult to expand the

measurements for the fast monitoring of a whole vineyard. This main pitfall has been partially

resolved by aerial thermal imaging [21–24], that successfully covered large extensions of vine-

yard. However, in the majority of cases the aerial point of view comes with a reduced spatial

resolution in the measurements that shrink several meters of the canopy into a few number of

pixels, losing a definite amount of information. This brings the opportunity of developing

thermal systems for the grapevine water status estimation capable of gathering detailed canopy

information—from a close lateral point of view—and to cover large areas for the monitoring

of a vineyard variability—using stop-and-go and on-the-go approaches, as already attempted

by other works [25, 26]. Moreover, the removal of constant human supervision would allow

the possibility of mounting automatic acquisition systems in on-work agricultural vehicles.

The demonstrated high level of performance machine learning has provided in a vast num-

ber of problems from very different nature presents it as one of the most important algorithm-
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provider research field. Regardless the area, if the problem can be properly modeled into an

adequate input, machine learning algorithms could be very suitable for the discovering of

underlying rules and latent connections between the provided information, for the categoriza-

tion into specific identities (classification) or the estimation of real numbers (regression) [27,

28]. In recent years, several viticulture-related problems have been addressed using data min-

ing and machine learning approaches [29–33]. Rotation forests [34] are prediction algorithms

based on ensemble learning methods that can perform classification or regression tasks

depending on the tree-based algorithm provided. Rotation forests build several trees after

making use of principal component analysis to the randomly split input attributes.

The goal of this study was to develop a new on-the-go system involving thermal imaging

and machine learning to assess the vineyard water status. Specifically, the objective was not

only to analyze and find high levels of correlations between thermal information and physio-

logical water status parameters, but to provide full trained, robust prediction models. These

are fed with a huge amount of data from a wide period of time that covered an entire cam-

paign, and are capable to return reliable estimations for the characterization of a whole vine-

yard plot and to be used in the irrigation decision making process.

Materials and methods

Experimental layout

The experiment was performed throughout seven weeks from early-July to early-September,

2016, in a 5 ha commercial vineyard of Tempranillo variety (Vitis vinifera L.) under permission

of its owner. The vineyard plot was situated in Tudelilla, La Rioja, Spain (Lat. 42˚ 18’ 18.26”,

Long. -2˚ 7’ 14.15”, Alt. 515 m). Grapevines, planted in 2002, were grafted on rootstock R-110

and trained to a vertically shoot-positioned (VSP) trellis system, having a North-South row

orientation at 2.60 × 1.20 meters inter and intra row distances. To induce an extensive level of

variability in the sample units and to obtain better trained prediction models, three different

water regimes were deployed in a randomized complete block design [35] with four blocks

(Fig 1). The three water treatments were:

• T0, full irrigation: two parallel water pipelines providing 6 L/h.

• T1, moderate irrigation: one water pipeline providing 3 L/h.

• T2, no irrigation: the plants were not irrigated during the whole experiment.

Irrigation was scheduled to be applied two hours per day, five days a week.

Each treatment involved four replications, therefore 12 different combinations of treatment

and replication were present in the vineyard and located in three different parallel, equally-dis-

tanced vine rows. For each replication, comprising 25 plants (around 25 m of length), only the

15 middle ones were the ones in which the measurements were taken. The first and last groups

of five plants were discarded to avoid edge effect (Fig 2A).

Acquisition of thermal images

On-the-go thermal measurements were acquired using a thermal camera (FLIR A35, FLIR1

Systems, Inc., Bilerica, MA, USA) that was mounted in the front part of an all-terrain vehicle

at a height from the floor of 1 m (Fig 2B) and connected to an industrial computer. The indi-

vidual in this manuscript has given written informed consent (as outlined in PLOS consent

form) to publish these case details. The camera was focused to the left at a distance from the

canopy of approximately 1.2 m and with 48˚ × 39˚ horizontal and vertical field of views (FOV,
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Fig 2A), respectively. This distance and FOVs provided images covering canopy scenes of 1.07

m horizontally and 0.85 m vertically, approximately. Acquisition of the thermal images, at 60

frames per seconds (FPS), was performed in both east and west sides of the canopy at an aver-

age speed of 5 km/h at solar noon (between 14:00 and 15:00 hours, local time).

Thermal images processing

At a recording framerate of 60 FPS, a treatment replication’s length of 25 m and an average

speed of 5 km/h, the number of thermal frames captured per each replication was approximately

Fig 1. Experimental layout and water treatment replications. Each one of the four horizontal blocks comprised the

three different water regimes applied. T0: full irrigation treatment. T1: moderate irrigation treatment. T2: no irrigation

treatment.

https://doi.org/10.1371/journal.pone.0192037.g001
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1080. In order to reduce the amount of redundant information, not every frame from the

recordings was used in the processing of the images—only those frames having no overlapping

were thus used for the calculation of different thermal statistics. If a treatment block of 25 m

length is covered by 1080 frames, and each frame displayed approximately a horizontal length

of 1.07 m, one out of 46 consecutive frames would have no overlapping. Thus, each treatment

replication consisted of roughly 23 frames, and only the 14 middle ones were used since they

comprised the 15 middle plants of the replication (the plants in which the water status measure-

ments were taken).

To support the thermal images segmentation and develop different canopy temperature

indices, Twet and Tdry reference temperatures were acquired using an evaposensor (Skye

Instruments, Llandrindod Wells, UK) having two artificial leaves: a dry one (dry reference)

and another one covered with a black cotton wick and receiving continuous water absorption

for the wet reference [36]. Reference temperatures were acquired once per each measurement

day.

To remove the influence of the sky, soil and fruiting zone in the top and bottom part of the

thermal images respectively, the middle section of the thermal images was selected, named as

area of interest, and used for the calculation of the different statistics and thermal indices

(Fig 3). The area of interest had a size of 320 × 135 pixels, from a total image resolution of

320 × 256 pixels.

The average temperature (Tcanopy), the median and the standard deviation were the statis-

tics extracted from the thermal frames. Additionally, two thermal indices, the crop water stress

index (CWSI) and the conductance index (Ig) were calculated, using the reference tempera-

tures, as follows, according to [37] and [6], respectively:

CWSI ¼
Tcanopy � Twet

Tdry � Twet
ð1Þ

Ig ¼
Tdry � Tcanopy

Tcanopy � Twet
ð2Þ

Fig 2. Detail from a treatment replication and thermal system (A) and picture of the actual on-the-go system (B). The thermal camera was

connected to an industrial computer and controlled by the driver.

https://doi.org/10.1371/journal.pone.0192037.g002
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FLIR ResearchIR 4.40 (FLIR1 Systems, Inc., Billerica, MA, USA) and MATLAB 8.5.0 (The

MathWorks Inc., Natick, MA, USA) were used for the processing of the thermal images.

Measurement of grapevine water status

Plant water status measurements were also performed at solar noon (between 14:00 and 15:00

hours, local time) simultaneously to thermal image acquisition. During the whole campaign,

the air temperature, relative humidity (for vapor pressure deficit (VPD) calculation [38]) and

incoming solar irradiance were additionally recorded in the same hours from a weather station

located in the vineyard. The reference method used for the measurement of the plant water

status was the midday stem water potential Cstem. As shown in Fig 2A, a random vine was

selected from each group of five plants (of the 15 middle ones in each replication) and its

Cstem was measured upon a leaf taken from the central part of the canopy. A Scholander pres-

sure bomb (Model 600, PMS, Instruments Co., Albany, NY, USA) was used for the stem water

potential determination [39]. The selected leaves were covered with aluminum foil bags to

drive them into dark adaptation one hour before the measurements.

With 12 different replications and three selected plants per block, a total of 36 measure-

ments of the plant water status were performed per day. Therefore, since the study was

Fig 3. Canopy thermal image taken on-the-go at 5 km/h. The middle section between the green bars was defined as the area of interest. Total image

resolution was 320 × 256 pixels, while the area of interest had a size of 320 × 135 pixels. The temperature values are expressed in degrees Celsius.

https://doi.org/10.1371/journal.pone.0192037.g003
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conducted across seven different weeks, and one day per week, a total of 252 water status mea-

surements were used for the training of the prediction models.

Machine learning algorithms and model development

Two different approaches were attempted for the extraction of the statistics that trained the

prediction models: the use of Tdry and Twet reference values for segmentation of the area of

interest (the removal of all temperatures outside the Twet and Tdry range) and calculation of

thermal indices; and the extraction of the same statistics without segmentation and avoiding

the calculation of the thermal indices.

A combination of rotation forests and decision trees (reduced error pruning tree, Weka’s

REPTree implementation [40]) was used for the development of the regression models. Two

kind of models were built:

• Using Tdry and Twet reference temperatures and thermal indices, with the following input

attributes: air temperature, average canopy temperature, median of the canopy temperature,

standard deviation of the canopy temperature, CWSI and Ig.

• Avoiding the use of reference temperatures and thermal indices, with the following input

attributes: air temperature, average canopy temperature, median of the canopy temperature

and standard deviation of the canopy temperature.

In both cases, the Cstem was used as the plant water status reference value to predict.

Side-specific models for east and west sides of the canopy were individually built, each one

including 252 samples. Additionally, a global dataset comprising samples from both east and

west sides of the canopy was also generated. This global set was intended to be as similarly rep-

resented as those datasets from east and west side, therefore 126 samples from the east dataset

and the same amount from the west dataset were picked to build a global set with 252 samples.

This selection was pseudorandomly performed, taking the same amount of samples per canopy

side, water regime and measurement day, in order to build a model from a well-represented

input data.

In order to provide a complete set of performance statistics, calibration, 10-fold cross-vali-

dation and external prediction were carried out. The datasets were not completely used for the

training of the regression models, but they were split in a 80-20 ratio, labeling the two origi-

nated subsets as train (80% of the original dataset) and test (the remaining 20%) sets. This divi-

sion was not totally random. Samples representing the whole range of the stem water potential

values obtained were extracted to the test set, also taking the same number of samples per mea-

surement day. The calibration and cross validation were performed using the train set, while

the prediction was achieved by training the model with the train set and predicting the test set.

Results

Vineyard status overview

A wide range of stem water potential values was covered throughout the whole experiment,

obtaining Cstem values at midday of the 252 samples from -2.05 MPa—meaning high level of

water stress—to -0.40 MPa—no stress. The mean and standard deviation Cstem values of -1.23

MPa and 0.298 MPa confirmed a high level of variability desirable for the development of rep-

resentative plant water status prediction models.

Table 1 shows an overview by days in terms of VPD, incoming solar irradiance, canopy

temperatures recorded by thermal imaging and Cstem values.

Vineyard water status assessment using on-the-go thermal imaging and machine learning
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VPD values ranged from 1.11 kPa (July 13th) to 3.43 kPa (August 23rd) while irradiance

values were found to be above 800 W/m2 for most of the measuring dates, with the exception

of the 13th and 20th of July, and the 8th of September. The values observed in the last date can

be explained by the generalized meteorological behavior in the end of the season, as a decrease

of irradiance and temperatures is prone to be found. Canopy temperatures were generally dis-

tinguishable between treatments, presenting slightly higher values in the west side. Addition-

ally, the water status values presented an increasing trend throughout the summer as a

consequence of season progress and water treatments’ effectiveness.

Statistically significant differences between the temperatures of the irrigation treatments

were not found for either east or west sides in the first three days, while they were present in

the last two ones. In July 28th, the east side of the canopy casted significant differences, while

the west side did not, but the opposite occurred in August 11th. In the case of Cstem, all the

dates presented statistically significant differences between the most extreme irrigation treat-

ments (T0 and T2) while for the last two dates all three treatments were significantly different.

Vineyard water status prediction models using Tdry and Twet reference

temperatures

The performance statistics of the prediction models trained with thermal indices are summa-

rized in Table 2 for east and west models, and additionally for the global model trained with

samples from both sides of the canopy.

For the models built with the thermal information from the east side of the canopy, deter-

mination coefficients R2 of 0.83 and 0.61 were obtained for calibration and cross validation,

casting RMSE values of 0.139 MPa and 0.190 MPa, respectively (Table 2). The performance of

Table 1. Mean values according to measurement days for vapor pressure deficit (VPD), incoming solar irradiance, canopy temperatures (by canopy side and irriga-

tion treatment) and stem water potential (Cstem) determined at solar noon, between 14:00 and 15:00. N = 12 per irrigation treatment for the statistical tests of canopy

temperatures and Cstem (MPa).

Jul, 6 Jul, 13 Jul, 20 Jul, 28 Aug, 11 Aug, 23 Sep, 8

VPD (kPa) 2.71 1.11 2.49 3.22 1.77 3.43 1.28

Irradiance (W/m2) 890.95 631.82 348.61 895.11 841.89 827.01 291.30

East temp. (˚C) T0 20.7 15.6 24.6 23.5 A 17.2 25.4 A 19.4 A

T1 22.2 16.3 25.1 24.9 B 16.8 27.1 B 19.6 A

T2 22.1 16.4 24.8 23.2 A 16.7 27.9 B 20.5 B

n.s. n.s. n.s. �� n.s. ��� ���

West temp. (˚C) T0 22.5 16.0 24.7 25.2 16.8 A 26.8 A 20.4 A

T1 23.8 16.9 25.2 27.0 17.4 B 28.5 B 20.5 A

T2 22.6 16.1 25.4 25.5 18.0 C 29.1 B 21.1 B

n.s. n.s. n.s. n.s. ��� ��� ��

Cstem (MPa) T0 -0.97 A -1.04 A -1.00 A -1.18 A -1.19 A -1.13 A -0.56 A

T1 -1.15 B -1.28 B -1.25 B -1.26 AB -1.47 B -1.41 B -0.96 B

T2 -1.14 B -1.22 B -1.31 B -1.31 B -1.52 B -1.65 C -1.76 C

��� ��� ��� �� ��� ��� ���

Jul: July. Aug: August. Sep: September.

Dissimilar capital case letters within columns represent statistically different means among east and west temperatures and Cstem, using Tukey’s range test at a

significance level p = 0.05.

n.s.: not significant (p� 0.05);

��: p < 0.01;

���: p < 0.001.

https://doi.org/10.1371/journal.pone.0192037.t001
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the prediction stage did not lied far from that of the cross validation, producing a R2 value of

0.57 and a RMSE of 0.206 MPa.

The results given by the west side models remained fairly similar, with a calibration R2 of

0.81 (RMSE of 0.148 MPa) and a cross validation R2 of 0.57 (RMSE of 0.202 MPa), being the

latter slightly lower than that from the east side models. The prediction result was 0.58 for the

determination coefficient with a root mean square error of 0.204 MPa (Table 2).

The performance achieved by the global models was lower in all the stages: calibration,

cross validation and prediction, although in this last case the determination coefficient was

closer to the ones from east and west models, as opposed to calibration and cross validation.

Nevertheless, the RMSE values of cross validation and prediction remained very similar: 0.237

and 0.233 MPa respectively.

The regression plots for the cross validation and prediction results for east and west models

are displayed in Fig 4. In Fig 4A, a high distribution along the measured Cstem values was

achieved, and few samples fell outside the 95% prediction bands. The regression plot of the

cross validation from the west side (Fig 4C) followed the same trend as well, having a good dis-

tribution throughout the whole water potential range. Additionally, the higher spreading level

of the samples from the 1:1 line in Fig 4C drove the increased RMSE value of the west side

model presented in Table 2.

The prediction plots for both east and west sides (Fig 4) displayed a virtually identical

behavior, in terms of determination coefficient and root mean square errors. In Fig 4B, all the

samples but one were located within the 95% prediction bands, and a wide coverage through-

out the Cstem range was scored (values from -2.1 to -0.4 MPa). Regarding the prediction plot

considering the west side of the canopy, two samples lied outside the prediction bands, but a

very similar fit around the regression line was achieved by the samples, casting a coincident R2

value (Table 2).

A statistical t-test analysis of the slopes showed no significant differences between the equa-

tions of each side for both cross validation (p = 0.47) and prediction (p = 0.86).

Vineyard water status prediction models without Tdry and Twet reference

temperatures

Table 3 shows the statistics obtained by the stem water potential models that were trained

without the reference temperatures.

The determination coefficients R2 obtained for the calibration process were above the 0.80

mark (0.83 for east and 0.81 for west), with RMSEs of 0.136 and 0.142 MPa, respectively. R2

values around 0.60 were achieved in the cross validation, with very similar RMSE values

around 0.190 MPa for both canopy sides. The prediction results were slightly better than those

Table 2. Performance statistics for the stem water potential (Cstem) prediction models using Tdry and Twet reference temperatures.

N = 200 N = 50

Calibration Cross validation Prediction

Canopy side R2 RMSE R2 RMSE R2 RMSE

East 0.83 0.139 0.61 0.190 0.57 0.206

West 0.81 0.148 0.57 0.202 0.58 0.204

Global 0.73 0.182 0.39 0.237 0.52 0.233

A 10-fold cross validation was used.

N: number of samples. RMSE: root mean square error (MPa). East: dataset having all the samples from the east side of the canopy. West: dataset having all the samples

from the west side of the canopy. Global: dataset having non-repeated samples from both east and west sides of the canopy.

https://doi.org/10.1371/journal.pone.0192037.t002

Vineyard water status assessment using on-the-go thermal imaging and machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0192037 February 1, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0192037.t002
https://doi.org/10.1371/journal.pone.0192037


Fig 4. Regression plots for the water status prediction models with Tdry and Twet reference temperatures. Plots from east (A, B) and

west (C, D) sides of the canopy and from the global model trained with data from both sides (E, F); and for cross validation (A, C, E) and

prediction (B, D, F). The dashed lines are the prediction confidence bands at 95%. The dotted lines represent the 1:1 line with slope 1.

https://doi.org/10.1371/journal.pone.0192037.g004
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of cross validation, in terms of R2 and RMSE: 0.60, 0.191 MPa (east side) and 0.65, 0.184 MPa

(west side, Table 3). The performance statistics obtained from the global models were lower

than those from the site-specific datasets.

Comparing these outcomes with those from the models trained with the reference tempera-

tures, the statistics were very similar in the calibration and cross validation, but the models

without Tdry and Twet brought better R2 and RMSE values in the prediction. In the calibration,

both kind of models achieved the same R2 values (and almost identical RMSEs), while in the

cross validation the best statistics came from the west side models, being the opposite in the

models with reference temperatures (Table 2). Still, these values followed the same overall

trend.

The regression plots for the cross validation and prediction models trained without Tdry

and Twet reference temperatures (for east, west and both sides) are grouped in Fig 5.

The cross validation outcomes covered a high Cstem range, with samples along the whole

range (Fig 5A and 5C) and similar distribution around the 1:1 line. This resulted in similar

RMSE values (Table 3). Additionally, the R2 values were nor far from each other, driven by the

almost identical trend from the regression lines (as no significant differences were found

between the slopes of both sides’ equations, for both cross validation—p = 0.93—and predic-

tion—p = 0.89).

In Fig 5B and 5D, displaying the regression plots for the prediction results, higher determi-

nation coefficients can be found comparing to those from the prediction outcomes of the mod-

els trained with the reference temperatures (Fig 4B and 4D). Nevertheless, contrary to the

latter, in this case the best results came from the west side of the canopy instead of the east

side, with a higher fit to the regression line (meaning a higher R2 value) and a lower RMSE

value (meaning a lower average distance of the samples from the 1:1 line).

Discussion

The results presented in this study highlight the actual prospect of obtaining on-the-go, fast

assessment of a vineyard’s water status directly on the field using proximal thermal imaging

and machine learning algorithms. On-the-go assessment has a big advantages vs. other devel-

oped techniques for plant water status assessment or direct measurement of plant-based refer-

ence parameters [4], that are slower, manually controlled and with a lower capability of

automatically characterizing a whole vineyard plot. It has also been proven that machine learn-

ing models, trained with data from seven days along a whole campaign, were capable of yield-

ing plant water status prediction without the need of taking previous reference temperatures.

This would allow a fastest, direct usage of this solution for in-field scenarios. The outcomes

obtained using the models trained with reference temperatures demonstrated that canopy

Table 3. Performance statistics for the stem water potential (Cstem) prediction models without the use of Tdry and Twet reference temperatures.

N = 200 N = 50

Calibration Cross validation Prediction

Canopy side R2 RMSE R2 RMSE R2 RMSE

East 0.83 0.136 0.59 0.195 0.60 0.191

West 0.81 0.142 0.62 0.190 0.65 0.184

Global 0.75 0.170 0.45 0.224 0.56 0.216

A 10-fold cross validation was used.

N: number of samples. RMSE: root mean square error (MPa). East: dataset having all the samples from the east side of the canopy. West: dataset having all the samples

from the west side of the canopy. Global: dataset having non-repeated samples from both east and west sides of the canopy.

https://doi.org/10.1371/journal.pone.0192037.t003
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Fig 5. Regression plots for the water status prediction models without thermal indices. Plots from east (A, B) and west (C, D) sides of

the canopy and from the global model trained with data from both sides (E, F); and for cross validation (A, C, E) and prediction (B, D, F).

The dashed lines are the prediction confidence bands at 95%. The dotted lines represent the 1:1 line with slope 1.

https://doi.org/10.1371/journal.pone.0192037.g005
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temperatures, along with Tdry and Twet and weather parameters (such as the air temperature),

would be very suitable for the useful prediction of the vineyard water status. Furthermore, the

fact that similar results in cross validation (and even better outcomes in prediction) were

achieved by the models trained without reference temperatures, brought high robustness into

the models. This could allow to affirm that their implementation in industry and commercial

environments is greatly feasible, also removing the necessity of the reference temperature mea-

surement phase—and the calculation of thermal indices.

The relation between environmental status and canopy thermal response was clearly dis-

played throughout the whole experiment. Incoming solar irradiance casted high values most

of the days, positively correlating with the high temperatures of the canopy in both sides. Nev-

ertheless, two specific dates did not follow this trend, as in July 20th the canopy temperatures

were particularly high for the relatively low irradiance received, and in August 11th the tem-

peratures stayed very low regardless of the high amount of solar irradiance captured. This

behavior seemed to be in contradiction with the expected response, but it is clearly explained

by the VPD factor. As previously observed by other authors [11, 22, 41–43], VPD has a strong

relationship with stomatal conductance and canopy temperature. In the case of July 20th, in

spite of the low irradiance value, the increase of leaf temperature was mainly driven by the

increase of VPD. Likewise, when the VPD, hence the evaporative demand increases, so does

the actual rate of water vapor exchange through the leaf stomata. In this situation, the plant

regulates this water loss by closing their stomata, leading to leaf temperature increase. On

the other hand, in August 11th the low VPD value may not have led to stomata closure, hence

leaf evapotranspiration was not impaired, and let the plants to cool down their leaf surface.

Reported in other works [11, 41, 44], it exists a general correlation between VPD and water sta-

tus, as higher VPD values limit the plants’ capability of a proper transpiration, although in the

case of the present study the plant water status is mainly steered by the applied water regimes

rather than the VPD. All these physiological behaviors confirm the usefulness of measuring

the canopy temperature to assess the water status of a vineyard.

A good effectiveness was accomplished in canopy side-specific models. The vineyard plot

in which the experiment was conducted had a North-South row orientation, so—at measure-

ment time (between 14:00 and 15:00, local time)—the east side was shaded but with a whole

morning of direct sunlight accumulated, while the west side started an afternoon of illumina-

tion from the sun. The row orientation does have a direct impact upon the canopy temperature

and, thus, upon the plant response and acclimation [45]. Therefore, the development of two

distinct models for each side of the canopy was a necessary step to allow the machine learning

algorithms to adapt their rule extraction ability to the specific canopy thermal information that

was present in each face. The fact that the global model provided poorer results could be

explained by an assumed confused information given to the algorithms, as the plant thermal

response would be very different for each side of the canopy. Still, the side-specific models

were able to successfully develop adequate prediction rules for the two datasets and to cast sim-

ilar performance statistics, demonstrating the possibility of a fairly acceptable water status esti-

mation of a vineyard if the thermal measurements are taken from the same side of the canopy.

In a real scenario, the development and implementation of two canopy side-specific models

could be totally feasible and their application would only depend on the side of the input data.

The use of machine learning approaches for the grapevine water status estimation proved

to be effective. It is visible the high suitability of machine learning algorithms for the solution

of specific problems—grapevine water status prediction—but from very different kinds of

input—spectral information and thermal imaging. In the case of the latter, the variables used

(thermal and weather data) were selected in order to provide a decent amount of information

from a thermal image. Although small differences would be present between two of the
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attributes used, mean and median of the canopy temperature, they could be sufficient for the

algorithms to extract informative rules from them. Moreover, the use of principal component

analysis by rotation forests would deal with potential cases of collinearity. Additionally, a desir-

able behavior was obtained from the machine learning models. The fact that considerably

similar results were casted by cross validation and prediction increases the reliability of the

techniques in their appraisal ability.

The relationship between leaf temperature—taken directly in the field—and water status of

different kind of crops has been widely studied in diverse research works. For example, air-

borne thermal imaging has been used for the mapping of cotton water status (represented by

the leaf water potential Cleaf) [17], and the same authors attempted the estimation of water sta-

tus of the same kind of crop using ground-based thermal images [16], obtaining good results.

Although the models presented in the present study returned lower performance statistics

than those from [16, 17], the prediction capability of the machine learning algorithms was

greatly supported by the high amount of data and its wide variability. The input samples

employed in the training of the models (from very different phenological stages) were able to

develop a whole prediction model capable of making Cstem predictions in different moments

within a wide time period. In grapevine, as in the present work, CWSI along with air tempera-

ture were used for the mapping of the water status (Cleaf) of a Pinot noir vineyard [21]. The

same authors also studied the effect of different phenological stages in the evolution of the

CWSI in grapevines [22]. In [46], the vineyard water status variability was monitored using

aerial thermal and multispectral imagery. These studies, providing R2 values from 0.50 to 0.73,

along with the results presented in the current research work, confirm the strong correlation

of the canopy temperature with the grapevine water status, being possible to find underlying

rules for the appraisal of an important reference value, such as water potential. The results

reported by other authors from aerial thermal imaging of grapevines, as in [23, 24] or [46] also

opened the possibility of estimate water status using thermal information from a lateral view,

that would allow to gather a richer amount of information than that from zenith point of view.

Some comparable works based on lateral thermal imaging but in static and manual approaches

can be found in the literature. In [19] and [20], the authors used thermal imaging laterally

acquired in a commercial vineyard to correlate the thermal indices CWSI and Ig with different

plant water status reference parameters, with R2 values up to 0.78 and 0.70. The results from

the on-the-go estimation of the grapevine water status represent an improvement not only

regarding the possibility of quickly assessing and mapping a whole vineyard plot (instead of

taking isolated thermal measurements), but also presenting a robust model trained with a col-

lection of a high number of samples from different dates, and additionally removing the neces-

sity of acquiring reference temperatures, using only the data provided by the canopy and air

temperature.

The main pitfalls of other developed techniques plant water status assessment, such as the

necessity of supervised measurement or the hard adaptation for the characterization of a

whole vineyard plot makes on-the-go approaches a very suitable candidate for grapevine mon-

itoring. The on-the-go proposal detailed in this work opens a large number of new opportuni-

ties in the implementation of this technological solution for the estimation of grapevine water

status. Contrary to the developments that can be found in other related works, as in [19, 47,

48] or [49], involving manual and static measurements, the acquisition of thermal images

from a moving vehicle expands—in the context of precision viticulture—the possibility of

monitoring a whole vineyard plot in a faster and automated way. The delineation, for example,

of different zones with homogeneous irrigation regimes could be feasible, and it could save

higher amounts of water and money. Other plant water status estimation studies carried out

with thermal imaging made use of information from aerial sources ([16, 17, 20–24]). Still, the
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acquisition of canopy side-aimed data that covers a larger area may assure a higher robustness

in the given prediction. Additionally, the temporal flexibility of the approach from the present

work arises as an advantage vs. airborne solutions, due to the fact that aerial acquisitions are

very subjected to meteorological conditions and legal requirements. An on-the-go implemen-

tation of the proposal in the present work would be easily deployed directly in the field. A ther-

mal system could be installed in an agricultural vehicle (e.g. a tractor conducting different

viticulture operations), making constant measurements and giving real-time information to

the driver or the manager. This possibility of covering large areas of a vineyard also makes

available, jointly to an attached global positioning system, the creation of thermal-based maps

of the plot that could provide detailed information about the water status of the monitored

zones, making it an useful tool for irrigation scheduling in the decision-making process.

Conclusion

The present work introduced a new methodology for the on-the-go assessment of vineyard

water status using thermography and machine learning algorithms. The results obtained open

a way for the implementation of a vineyard water status appraisal system available to be set up

in a moving vehicle, given the fact that the use of data from a whole campaign for the training

of the models brought stronger reliability. Also, good prediction results has been achieved

without the need of reference temperatures, thus removing the requirement of the supervised

acquisition of these values. This advantage could clear new paths in sustainable viticulture,

making possible the deployment of solutions that could characterize in an automatic and con-

tinuous way a whole vineyard for a more accurate application of irrigation in viticulture, that

is a very needed requirement in the current context of climate change and water scarcity.
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scheduling based on airborne thermal imagery and water potential thresholds. Australian Journal of

Grape and Wine Research. 2016; 22(2):307–315. https://doi.org/10.1111/ajgw.12173
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