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Abstract

The aim of this work is to describe the computer simulation of the laminar flow through a nozzle in a rubber extrusion process by the
finite volume method (FVM). The liquid rubber is a highly compliant material, whose behavior is not described by the Newtonian con-
stitutive relations, and whose underlying physics is not yet completely understood. The processing and transport of such fluids are central
problems in the polymer, plastics and automotive industries. Non-Newtonian behavior manifests itself in a number of different ways.
This fluid exhibits a shear rate dependent viscosity, with ‘shear thinning’, that is, decreasing viscosity with increasing shear rate, being
the most prevalent behavior. We have taken the power-law model in order to simulate this rubber extrusion process, which has the form
l ¼ KI ðn�1Þ=2

2 , where l, I2, n and K are termed the dynamic viscosity, the second invariant of the rate of deformation tensor, the power-law
index and the consistency, respectively. These last two parameters were obtained from experimental tests and used in a computer sim-
ulation. In this work we have modeled two types of rubbers and different inlet pressures, for a type of nozzle, in order to calculate the
outlet velocity distribution of the rubber jet in this extrusion process. Finally we have compared the numerical and experimental results,
so that this model is consistent with the experimental evidence.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Materials encountered in industry invariably fall outside
the classical extremes of the Newtonian viscous fluid and
Hookean elastic solid. When such materials can be classi-
fied as fluids, the adjective ‘non-Newtonian’ is usually
employed [1]. This paper presents the numerical study by
the finite volume method (FVM) [2] of non-Newtonian
fluid in a rubber extrusion process and its experimental
validation.
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To be more precise, we define a non-Newtonian fluid [3]
to be one whose behavior cannot be predicted on the basis
of the Navier–Stokes equations. Such fluids may or may
not posses a memory of past deformation. In the case of
rubber the memory effects are not significant, that is to
say, is an ‘inelastic fluid’ [4,5]. Basically, inelastic fluids
can be viewed as generalizations of the Newtonian fluid.

The viscosity function for such materials depends on the
rate of deformation of the fluid and thus allows ‘shear thin-
ning’ effects to be modeled [6].

In development and use, non-Newtonian fluids often
encounter complex geometries [1]: lubricants have to oper-
ate in gears and bearings; molten polymers meet complex
geometries with and without free-surface complications in
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injection molding and similar processes and, finally, in this
work a liquid rubber has to be ‘squeezed’ through a con-
traction at the exit of a nozzle.

2. Power-law fluid

2.1. Constitutive equation

The form of the constitutive equation for a generalized
Newtonian fluid was given as [5,6]:

rij ¼ �Pdij þ 2lðDijÞDij; ð1Þ

where rij are the components of the total stress tensor, P is
the pressure, dij is the Kronecker delta, and Dij are the com-
ponents of the rate of deformation tensor. Since the viscos-
ity l for non-Newtonian fluids depends on Dij, that is, of its
invariants, defined by [7,8]

I1 ¼ trðDÞ; I2 ¼
1

2
trðD2Þ; I3 ¼

1

3
trðD3Þ; ð2Þ

where tr denotes the trace. There is theoretical and experi-
mental evidence to suggest that the viscosity depends only
on I2 as l = l(Dij) = l(I2).

The rubber in liquid state shows a non-Newtonian
behavior. In this work, we have modeled this behavior
according to power-law model, which has the form [1,3–6]

l ¼ KI ðn�1Þ=2
2 ; ð3Þ

where n and K are parameters termed the power-law index
and consistency, respectively. The liquid rubber in the extru-
sion process has an index n < 1. This fluid is termed shear

thinning or pseudoplastic [3]. The admissible range of shear
rate for this liquid rubber ranges from 10 to 100 s�1.

2.2. Experimental parameters

From different test carried out by the BTR Sealing Sys-
tems (Germany) on the real liquid rubbers, we have
Fig. 1. Experimental data, potential fitting (y) and correlation coefficient
(r2).
obtained the power-law parameters fitting the experimental
data to a curve of potential kind (see Fig. 1).
3. Mathematical model

The finite volume formulation [2] of non-Newtonian
flows follows very closely the formulation developed for
Newtonian flow problems [9,10]. Therefore, in the present
work only a brief overview of the general formulation will
be given, with more attention focused on those aspects that
are unique to the non-Newtonian problem.

To simulate the extrusion process, we have used the
finite volume method (FVM) [2]. The finite volume method
(FVM) is one of the most versatile discretization tech-
niques used in computational fluid dynamics (CFD). Based
on the control volume formulation of analytical fluid
dynamics, the first step in the FVM is to divide the domain
into a number of control volumes (see Fig. 2) where the
variable of interest is located at the centroid of the control
volume. The next step is to integrate the differential form of
the governing equations over each control volume [11].
Interpolation profiles are then assumed in order to describe
the variation of the concerned variable between cell cent-
roids. The resulting equation is called the discretized equa-
tion. In this manner, this equation expresses the
conservation principle for the variable inside the control
volume [12].

The most important feature of the FVM is that the
resulting solution satisfies the conservation of quantities
such as mass, momentum and energy. This is exactly satis-
fied for any control volume as well as for the whole compu-
tational domain and for any number of control volumes.
Even a coarse grid solution exhibits exact integral balances.

The approach used in the ANSYS-CFX code is the
FVM. The governing equations are solved on discrete con-
Fig. 2. Detail of the volume finite mesh.



Fig. 3. Velocity vector diagram in the nozzle’s outlet.
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trol volumes. This integral approach yields a method that is
inherently conservative [2,12]

o

ot

ZZZ
QdV þ

ZZ
F dA ¼ 0; ð4Þ

where Q is the vector of conserved variables, F is the vector
of fluxes, V is the cell volume, and A the cell surface area
[2]. This set of equations is virtually identical to those used
in Newtonian problems except for the dependence of the
viscous diffusion term on the velocity, i.e., the rate of defor-
mation [5] (because of viscosity’s dependence on the rate of
deformation tensor), and possibly the temperature.

4. Results and conclusions

The finite volume method along with data from real
tests carried out in a rubber extrusion process is used for
comparison purposes. The findings of this study suggest
that it may be possible to devise a practical procedure for
establishing a quality model by using a combined experi-
mental/computational approach.

From the experimental measurements it is observed that
the velocity in the nozzle’s outlet ranges from 0.17 to
0.33 m/s and from 0.1 to 0.44 m/s for the numerical results.
This speed variation across this section requires geometry
modifications by opening angles on rubber channels where
the speed is low, in order to improve its speed.

The variation of the velocity field is similar in both
methods. There is a good agreement between FVM numer-
ical results and experimental test (see Fig. 3).

In this work we have used a tetrahedral unstructured
mesh with refining around the nozzle’s outlet surfaces,
the element sizes used vary from 0.0005 m in the near field
to 0.001 m for the far field. Our solver can be run so as to
preserve time accuracy or as a pseudo-unsteady formula-
tion to enhance convergence to steady state. It uses
dynamic memory allocation, since the problem size is only
limited by the amount of memory available on the
machine.

Finite volume procedures are at present very widely used
in engineering analysis, and we can expect this use to
increase significantly in the years to come. The FVM
[2,11–13] is a robust and cheap method for the discretiza-
tion of conservation laws. By robust, we mean a numerical
scheme which behaves well even for particularly difficult
equations: non-linear systems of hyperbolic equations, like
in this case.

We have fitted the experimental data obtained from
BTR Sealing Systems Company to a curve of potential
kind. The liquid rubber exhibited a strongly non-Newto-
nian behavior, showing a substantial decrease in viscosity
with increasing shear. Therefore, in this work we have
modeled the rubber extrusion process by means of a
power-law model, which can be used to improve the solid
rubber quality obtained in this industrial process.

The above analysis contribute to a comprehensive
understanding of the non-Newtonian flow behavior and
of the so called ‘gross’ shear thinning effect of amorphous
polymers such as liquid rubbers.

Finally, in future works we shall also apply this tech-
nique to the non-isothermal fluid problem.
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