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a b s t r a c t

From well-known secant-like methods, we observe that we can construct a new family of
secant-like methods that includes the secant method and Kurchatov’s method.We analyse
the local orders of convergence and the efficiencies of the methods of the family and study
the semilocal convergence for differentiable and nondifferentiable operators. Finally, we
apply our results to conservative problems.
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1. Introduction

In this paper, we present a new uniparametric family of secant-like iterativemethods, that do not use derivatives in their
algorithms, for approximating a solution x∗ of a nonlinear equation F(x) = 0, where F : � ⊆ X → Y is a nonlinear operator
defined on a non-empty open convex domain� of a Banach space X with values in a Banach space Y .

In [1], Hernández and Rubio construct a uniparametric family of secant-like iterativemethods for solving F(x) = 0which
depends on a parameter λ ∈ [0, 1]. The family is reduced to the secant method if λ = 0 and to Newton’s method if λ = 1
and F is differentiable. From a new geometric interpretation, we modify the secant method in this paper and construct a
new uniparametric family of secant-like iterative methods which depends on a parameter λ ≥ 1. The new family is reduced
to the secant method if λ = 1 and to the well-known method of Kurchatov ([2–5]) if λ = 2. Remember that Kurchatov’s
method has R-order of convergence two, as Newton’s method, but without the use of derivatives in its algorithm.

The paper is organized as follows. In Section 2, we construct the new uniparametric family of secant-like iterative
methods. In Section 3, we study the local order of convergence of the new methods. In Section 4, we analyse the
efficiency of the methods. In Section 5, we study the semilocal convergence of the methods in two different situations, for
differentiable operators and for any operators. Finally, in Section 6, we illustrate the above-mentionedwith two applications
to conservative problems.

Throughout the paper, we consider that there exists a first order divided difference [z, w; F ] ∈ L(�, Y ), for all z, w ∈ �,
whereL(�, Y ) denotes the set of bounded linear operators from� into Y . Moreover, we denote B(x, ϱ) = {y ∈ X; ∥y−x∥ ≤

ϱ} and B(x, ϱ) = {y ∈ X; ∥y − x∥ < ϱ}.
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Fig. 1. Geometric interpretation of (1).

2. A new family of secant-like methods

For approximating a solution x∗ of the equation F(x) = 0, Hernández and Rubio consider in [1] the following
uniparametric family of secant-like methods:x−1, x0 given in�, λ ∈ [0, 1],

yn = λxn + (1 − λ)xn−1, n ≥ 0,
xn+1 = xn − [yn, xn; F ]−1 F(xn),

(1)

where [z, w; F ], z, w ∈ �, is a first order divided difference, which is a bounded linear operator such that [6]

[z, w; F ] : � ⊂ X −→ Y and [z, w; F ](z − w) = F(z)− F(w).

Observe that (1) can be considered as a combination of the secant method and Newton’s method, since (1) is reduced to
the secant method if λ = 0 and, provided that F is differentiable, to Newton’s method if λ = 1, since xn = yn and
[yn, xn; F ] = F ′(xn). We can also see in [7,8] that the R-order of convergence ([6]) of (1) is at least 1+

√
5

2 if λ ∈ [0, 1),
the same as that of the secant method. Note that the secant-like methods given by (1) can be considered as a generalization
of the secant method.

To obtain family (1), Hernández and Rubio consider the real case and, from the approximations xn−1 and xn, they
try to accelerate the secant method by improving the approximationxn+1 = xn − [xn−1, xn; F ]

−1F(xn) to the solution
x∗. For this, they fix the approximation xn, choose an intermediate point yn between xn−1 and xn, which is defined as
yn = λxn+(1−λ)xn−1, with λ ∈ [0, 1), and considerxn+1 = xn−[yn, xn; F ]−1 F(xn). From a simple geometric interpretation
of the last, see Fig. 1, it is clear thatxn+1 is a better approximation to x∗ thanxn+1.

In this paper, we present another improvement of the secant method in the real case that consists of fixing the
approximation xn−1 and considering the approximation yn = λxn + (1 − λ)xn−1, with λ ≥ 1, such that yn is closer
to x∗ than xn, so that the correspondingxn+1 = xn − [yn, xn−1; F ]−1 F(xn) is also a better approximation to x∗ thanxn+1 = xn − [xn−1, xn; F ]

−1F(xn). See Fig. 2. So, we extend the previous approximations to Banach spaces and present
the following new uniparametric family of secant-like methods:x−1, x0 given in�, λ ≥ 1,

yn = λxn + (1 − λ)xn−1, n ≥ 0,
xn+1 = xn − [yn, xn−1; F ]−1 F(xn).

(2)

In the next sections, we prove that there exists λ0 ∈ R, λ0 ≥ 2, such that family (2) has R-order of convergence at least 1+
√
5

2
if λ ∈ [1, λ0] and λ ≠ 2, while if λ = 2, we obtain a second R-order iterative method, the well-knownmethod of Kurchatov
([2–5]). Observe that (2) is reduced to the secant method if λ = 1.

3. Local order of convergence

In this section, we study the order of convergence of the family of iterations defined in (2), which is established in the
next theorem. Firstly, we introduce a development of the first order divide difference of an operator which is based on the
ideas presented in [9,10].

If the operator F is differentiable, we have that [−,−; F ] : �×� −→ L(�, Y ) and

[y, x; F ](y − x) = F(y)− F(x) =

 y

x
F ′(z) dz =

 1

0
F ′(x + t(y − x)) dt (y − x),
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Fig. 2. Geometric interpretation of (2).

for all x, y ∈ �, where L(�, Y ) denotes the set of bounded linear operators from � into Y . For F sufficiently differentiable
in� and h = y − x, we obtain:

[y, x; F ] =

 1

0
F ′(x + th) dt =

 1

0


4

j=1

1
(j − 1)!

F (j)(x)(th)j−1
+ w(x, th)


dt

=

4
j=1

1
j!
F (j)(x)hj−1

+

 1

0
w(x, th) dt,

wherew : �×� −→ L(�, Y )with ∥w(x, th)∥ = o

∥th∥3


; i.e.: limth→0

∥w(x,th)∥
∥th∥3

= 0. In consequence, we have

[y, x; F ] = F ′(x∗)


I +

3
k=1

Tk + [F ′(α)]−1W (x, e, ẽ − e)


, (3)

where e = x − x∗, ẽ = y − x∗,

Tk = Ak+1

k
i=0

ek−i ẽi ∈ L(�,�), k = 1, 2, 3,

Ak =
1
k!

[F ′(x∗)]−1F (k)(x∗) ∈ L


�×

k
˘· · · ×�, X


, k = 2, 3, 4,

W (x, e, ẽ − e) =

3
j=0

wj(x∗, e)(ẽ − e)3−j
+

 1

0
w(x, t(ẽ − e)) dt

with W : �×�×� −→ L(�,�) and ∥[F ′(x∗)]−1W (x, e, ẽ − e)∥ = o(∥e∥p
∥ẽ∥q), p + q = 3 and p, q = 0, 1, 2, 3.

Before giving the theorem, we introduce the some notations which are used. We denote wk(x∗, e) when ∥wk(x∗, e)∥ =

o(∥e∥k) andwj,k(x∗, e, ẽ)when ∥wj,k(x∗, e, ẽ)∥ = o(∥e∥j
∥ẽ∥k), j, k ∈ N.

Theorem 1. The family of iterations defined in (2) has R-order of convergence at least 1+
√
5

2 if λ ≠ 2 and at least 2 if λ = 2.
More precisely, if there exists [F ′(x∗)]−1, then

en+1 = (2 − λ)A2en−1en + (λ− 1)A2e2n + w2,1(x∗, en−1, en) if λ ≠ 2. (4)

en+1 = A2e2n + A3e2n−1en + w2,1(x∗, en−1, en) if λ = 2. (5)

Proof. Wedo y = yn and x = zn in (3) to obtain the expression of [yn, zn; F ] in terms of en = xn−x∗. After that, by expanding
in formal power series of en−1 and en and taking into account that [yn, zn; F ]

−1
[yn, zn; F ] = I , we then see that

[yn, zn; F ]−1
=

I − (2 − λ)A2en−1 − λA2en − (λ2 − 3λ+ 3)A3e2n−1 + (2 − λ)2A2

2 e
2
n−1 + w2(x∗, en−1)


[F ′(x∗)]−1.

Observe that the highest local order of convergence for (2) is obtained if we choose λ = 2, since the term (2 − λ)A2en−1
disappears, so that

[yn, zn; F ]−1
=

I − 2A2en − A3e2n−1 + w2(x∗, en−1)


[F ′(x∗)]−1.
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Now, by subtracting the root x∗ to both sides of (2) with λ = 2, we deduce

en+1 = en −

I − 2A2en − A3e2n−1 + w2(x∗, en−1)


[F ′(x∗)]−1F ′(x∗)


en + A2e2n + w2(x∗, en)


and (5). Taking then norms, we have

∥en+1∥ ≤ ∥A2∥∥en∥2
+ ∥A3∥∥en−1∥

2
∥en∥.

Consequently the associated equation is t2 − t −2 = 0 [11,12], whose only real positive root is two. In addition, the R-order
of convergence of family (2) with λ = 2 (Kurchatov’s method) is at least two.

On the other case, family (2) with λ ≠ 2, if we follow as above, deduce (4) and

∥en+1∥ ≤ |2 − λ|∥A2∥∥en−1∥∥en∥ + (λ− 1)∥A2∥∥en∥2.

Therefore the associated equation is now t2−t−1 = 0,whose unique positive root is 1+
√
5

2 . Then, the R-order of convergence

is at least 1+
√
5

2 , the same as that of the secant method. �

Notice that uniparametric family (2) is reduced to the following two well-known methods:

◦ The secant method if λ = 1:
x−1, x0 given in�,
xn+1 = xn − [xn, xn−1; F ]−1 F(xn), n ≥ 0. (6)

◦ Kurchatov’s method if λ = 2:
x0, x−1 given in�,
xn+1 = xn − [2xn − xn−1, xn−1; F ]−1 F(xn), n ≥ 0. (7)

Note that Kurchatov’s method has a geometrical interpretation similar to the secant method in the scalar case (see [2]).

4. Efficiency analysis

Oncewe know the R-order of convergence of methods of family (2), we analyse their efficiency. For this, we consider that
equation F(x) = 0 represents a nonlinear system of dimensionm, namely, F(x1, x2, . . . , xm) = 0, where F : � ⊆ Rm

→ Rm

is a nonlinear function and F ≡ (F1, F2, . . . , Fm) with Fi : � ⊆ Rm
→ R, i = 1, 2, . . . ,m, and count the evaluations of

operators involved and analyse the operational cost needed to apply the methods.
To make the analysis of the efficiency easier, we write (2), (6) and (7) as:

method (2):


x−1, x0 ∈ �, λ ≥ 1,
yn = λxn + (1 − λ)xn−1, n ≥ 0,
[yn, xn−1; F ] bn = −F(xn),
xn+1 = xn + bn,

method (6):

x−1, x0 ∈ �,
[xn, xn−1; F ] cn = −F(xn), n ≥ 0,
xn+1 = xn + cn,

method (7):

x−1, x0 ∈ �,
[2xn − xn−1, xn−1; F ] dn = −F(xn), n ≥ 0,
xn+1 = xn + dn.

After that, we count the number of functions that are required by the two methods per iteration. We observe that method
(6) requires them functions Fj (j = 1, 2, . . . ,m) and them2

− m evaluations of functions included in the divided difference
matrix [u, v; F ] = ([u, v; F ]ij)

m
i,j=1 ∈ L(Rm,Rm), where

[u, v; F ]ij =
1

uj − vj


Fi(u1, . . . , uj−1, uj, vj+1, . . . , vm)− Fi(u1, . . . , uj−1, vj, vj+1, . . . , vm)


, (8)

i, j = 1, 2, . . . ,m, u = (u1, u2, . . . , um)
T and v = (v1, v2, . . . , vm)

T to be evaluated per iteration, that sum a1(m) = m2

evaluations of functions.Methods (2) and (7) requirem evaluations of functionsmore, so that the total number of evaluations
of functions is a0(m) = a2(m) = m2

+ m.
Next, we count the number of products and divisions that are required by the three methods per iteration. We observe

that method (6) requiresm2 divisions to compute [xn, xn−1; F ], m
6 (m− 1)(2m− 1) products and m

2 (m− 1) divisions for the
decomposition LU andm(m − 1) products and m divisions for solving two triangular linear systems, that sum

p1(m) =
m
6
(2m2

+ 3m − 5)+
m
2
(3m + 1) ℓ,
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products, where ℓ ≥ 1 is the ratio between products and quotients. For example, ℓ = 1 if Maple is used. However, for
MPFRwith the processor and the precision used in this work, ℓ = 1.7 approximately. Method (7) requires the same number
of products and divisions as method (6), so that p2(m) = p1(m). Notice that method (2) presents 2m additional products
respect to (6) when we compute yn = λxn + (1 − λ)xn−1, where λ ∉ N. Namely, p0(m) = p1(m)+ 2m.

After that, we define the computational efficiency index of three iterative methods (2), (6) and (7) respectively, by

CEIi(µ,m) = ρ

1
Ci(µ,m)
i , i = 0, 1, 2, (9)

where ρi is the R-order of convergence and Ci(µ,m) the computational cost of the corresponding method. A similar
definition of CEI can be found in [13,14,6].

The computational cost is given by

Ci(µ,m) = ai(m)µ+ pi(m), i = 0, 1, 2, (10)

where ai(m) is the number of scalar functions, pi(m) is the number of products per iteration and µ is the ratio between
products and evaluations of functions that are required to express Ci(µ,m) in terms of products. Notice that the definition
of CEI given in (9) is a generalization of the scalar case to several variables (see [11,12]). In consequence, the costs are
respectively

C0(µ,m) = (m2
+ m) µ+

m
6
(2m2

+ 3m + 7)+
m
2
(3m + 1) ℓ, ρ0 =

1 +
√
5

2
;

C1(µ,m) = m2 µ+
m
6
(2m2

+ 3m − 5)+
m
2
(3m + 1) ℓ, ρ1 =

1 +
√
5

2
;

C2(µ,m) = (m2
+ m) µ+

m
6
(2m2

+ 3m − 5)+
m
2
(3m + 1) ℓ, ρ2 = 2.

The comparison between CEI0 and the other ones is easy since ρ0 = ρ1 and C0 > C1, and then CEI0 < CEI1. In the other
case we have ρ0 < ρ2 and C0 > C2, and, in consequence, CEI0 < CEI2. Moreover, we compare the CEI of (6) and (7) using
the following expression

R12 =
log CEI1
log CEI2

=
log ρ1
log ρ2

C2

C1
,

and we have the following theorem.

Theorem 2. We have CEI2 > CEI1 ∀m ≥ 3 and ∀ℓ ≥ 1, and for m = 2whenµ is sufficiently small depending on ℓ. In all cases
CEI1 > CEI0 and CEI2 > CEI0.

In particular, we have CEI2 > CEI1 form = 2, when ℓ = 1withµ < 18.48023 and if we take ℓ = 2.5, thenµ < 37.8845.
Considering the results of CEI in Theorem 2, for the methods analysed by family (2), Kurchatov’s method (7) is the most
efficient ifm ≥ 3.

5. Semilocal convergence

If we consider, for the first order divided difference, the condition

∥[x, y; F ] − [u, v; F ]∥ ≤ ω(∥x − u∥, ∥y − v∥), x, y, u, v ∈ �, (11)

it is known that the operator F is differentiable ifω(0, 0) = 0, see [6]. In other case, the operator F may be non-differentiable.
So, to analyse the semilocal convergence of (2), we consider two cases: differentiable operators (ω(0, 0) = 0) and any
operators. In the case of differentiable operators we consider the usual Lipschitz-condition. On the other hand, notice that if
the operator F is not differentiable, we shall consider that there exists a first-order divided difference [z, w; F ] ∈ L(X, Y ),
for all z, w ∈ �, with z ≠ w.

5.1. Differentiable operators

In this section we analyse the semilocal convergence of family (2). For this, we use a technique based on proving first a
system of recurrence relations. Firstly, we suppose that there exists a first-order divided difference [x, y; F ] ∈ L(X, Y ), for
all x, y ∈ �, where L(X, Y ) denotes the space of bounded linear operators from X to Y . Secondly, we suppose that

(I) x−1, x0 ∈ �, such that ∥x0 − x−1∥ ≤ α, and y0 = λx0 + (1 − λ)x−1 ∈ �, where λ ≥ 1,
(II) the bounded linear operator L0 = [y0, x−1; F ] is invertible and such that ∥L−1

0 ∥ ≤ β and ∥L−1
0 F(x0)∥ ≤ η,

(III) ∥[x, y; F ] − [u, v; F ]∥ ≤ K(∥x − u∥ + ∥y − v∥), K ≥ 0, x, y, u, v ∈ �.
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Under conditions (I)–(III), we establish a system of recurrence relations in the next. Before, we denote

a−1 =
η

α + η
, b−1 =

Kβα2

α + η

and define the real sequences

an = f (an−1)g(an−1)bn−1, bn = f (an−1)
2an−1bn−1, n ≥ 0, (12)

where

f (t) =
1

1 − t
and g(t) = (2 − λ)+ λf (t)t.

Note that f (t) and g(t) are increasing and f (t) > 1 provided that t ∈ (0, 1).
From conditions (I)–(III), it follows that x1 is well-defined, since the operator L−1

0 exists and

∥x1 − x0∥ = ∥L0−1F(x0)∥ ≤ η = f (a−1)a−1∥x0 − x−1∥, (13)
∥y1 − x0∥ ≤ ∥y1 − x1∥ + ∥x1 − x0∥ ≤ λ∥x1 − x0∥ ≤ λη,

K∥L0−1
∥∥x0 − x−1∥ ≤ Kβα = f (a−1)b−1. (14)

Next, we prove the following recurrence relations for j ∈ N by mathematical induction on j:

(i) there exists Lj−1
=

yj, xj−1; F

−1 and ∥Lj−1
∥ ≤ f (aj−1)∥Lj−1

−1
∥,

(ii) ∥xj+1 − xj∥ ≤ f (aj−1)aj−1∥xj − xj−1∥,

(iii) ∥yj+1 − x0∥ ≤


1 +

j−2
k=0

k
i=0 f (ai)ai


+ λ

j−1
i=0 f (ai)ai


∥x1 − x0∥,

(iv) ∥xj+1 − x0∥ ≤


1 + f (a0)a0 + · · · +

j−1
i=0 f (ai)ai


∥x1 − x0∥,

(v) K∥Lj−1
∥∥xj − xj−1∥ ≤ f (aj−1)bj−1.

Suppose now a0 < 1 and x1 ∈ �. Then from (12), (13) and (14) we have:

∥I − L0−1L1∥ ≤ ∥L0−1
∥∥L0 − L1∥ ≤ K∥L0−1

∥(∥y1 − y0∥ + ∥x0 − x−1∥)

≤ Kβ ((2 − λ)+ λf (a−1)a−1) ∥x0 − x−1∥ ≤ a0 < 1

and, by the Banach lemma, the operator L1−1 exists and ∥L1−1
∥ ≤ f (a0)∥L0−1

∥, so that (i) holds for j = 1.
From Taylor’s series, it follows

F(x1) = (F ′(x0)− L0)(x1 − x0)+

 1

0


F ′(x0 + τ(x1 − x0))− F ′(x0)


(x1 − x0) dτ ,

and taking into account (III) we obtain

∥F(x1)∥ ≤ K ((2 − λ)∥x0 − x−1∥ + ∥x1 − x0∥) ∥x1 − x0∥ ≤ Kg(a−1)∥x0 − x−1∥∥x1 − x0∥.

In addition, since the operator L1−1 exists, x2 is well-defined and

∥x2 − x1∥ ≤ ∥L1−1
∥∥F(x1)∥ ≤ f (a0)∥L0−1

∥∥F(x1)∥ ≤ f (a0)a0∥x1 − x0∥,
∥y2 − x0∥ ≤ λ∥x2 − x1∥ + ∥x1 − x0∥ ≤ (1 + λf (a0)a0) ∥x1 − x0∥,
∥x2 − x0∥ ≤ ∥x2 − x1∥ + ∥x1 − x0∥ ≤ (1 + f (a0)a0) ∥x1 − x0∥,

so that (ii) and (iii) hold for j = 1.
From (14) and (i) for j = 1, we see that

K∥L1−1
∥∥x1 − x0∥ ≤ Kf (a0)∥L0−1

∥∥x1 − x0∥ ≤ f (a0)b0,

so that (iv) holds for j = 1.
If we now suppose that an < 1 and xn ∈ � for all n ∈ N, items (i)–(iv) for j = n + 1 follow similarly to (i)–(iv) for j = 1

and the mathematical induction is complete.
On the other hand, it is not difficult to prove that the real sequences {an} and {bn} defined in (12) are decreasing if

λ ∈ [1, λ0] with λ0 ∈


2,

2α
α − η


, a−1 <

3 −
√
5

2
and b−1 <

a−1(1 − a−1)
2

2(1 − a−1)− λ(1 − 2a−1)
. (15)

Now, we are ready to prove the following semilocal convergence theorem for family (2) when conditions (I)–(III) are
satisfied.
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Theorem 3. Let X and Y be two Banach spaces and let F : � ⊆ X → Y be a nonlinear operator defined on a non-empty
open convex domain �. We suppose that there exists [x, y; F ] ∈ L(X, Y ), for all x, y ∈ �, and conditions (I)–(III) and (15) are
satisfied. If B(x0, R) ⊂ �, where R =

1−a0
1−2a0

λη, then family (2), starting from x−1 and x0, converges to a solution x∗ of F(x) = 0.

Moreover, the solution x∗ and the iterates xn belong to B(x0, R). Furthermore, the solution x∗ is unique in �0 = B(x0, σ ) ∩ �,
where σ =

1
Kβ − λα − R, provided that R < 1

2


1
Kβ − λα


.

Proof. Firstly, since {an} is a decreasing sequence and a0 < 1, then an < 1 for all n ∈ N.
Secondly, for p ∈ N, we have

∥xn+p − xn∥ ≤ ∥xn+p − xn+p−1∥ + ∥xn+p−1 − xn+p−2∥ + · · · + ∥xn+1 − xn∥

≤

n+p−1
j=n

f (aj−1)aj−1∥xj − xj−1∥ ≤ (f (a0)a0)n
p−1
j=0

(f (a0)a0)j

= (f (a0)a0)n
1 − (f (a0)a0)p

1 − f (a0)a0
∥x1 − x0∥,

as f (aj)aj ≤ f (a0)a0, for j = 1, 2, . . . , n + p − 1, then the sequence {xn} defined in (2) is of Cauchy, and consequently {xn}
is convergent and limn xn = x∗

∈ B(x0, R).
Thirdly, if n = 0 in the above, we obtain

∥xp − x0∥ ≤
1 − (f (a0)a0)p

1 − f (a0)a0
∥x1 − x0∥ < R

and xp ∈ B(x0, R) for all p ∈ N.
Fourthly, from

F(xn) = (F ′(xn−1)− Ln−1)(xn − xn−1)+

 1

0


F ′(xn−1 + τ(xn − xn−1))− F ′(xn−1)


(xn − xn−1) dτ

it follows that

∥F(xn)∥ ≤ K ((2 − λ)∥xn−1 − xn−2∥ + ∥xn − xn−1∥) ∥xn − xn−1∥.

Thus, limn→∞ ∥F(xn)∥ = 0 and, since F is continuous at x∗, limn→∞ ∥F(xn)∥ = ∥F(x∗)∥ = 0. Consequently, {xn} converges
to a solution x∗ of F(x) = 0.

Finally, to prove the uniqueness of the solution x∗, we first assume that y∗ is another solution of F(x) = 0 in
�0 = B(x0, σ ) ∩ �. Next, we consider the operator T = [y∗, x∗

; F ], so that if T is invertible, we have x∗
= y∗, since

T (y∗
− x∗) = T (y∗)− T (x∗). Indeed,

∥L−1
0 T − I∥ ≤ ∥L−1

0 ∥∥T − L0∥ ≤ ∥L−1
0 ∥∥[y∗, x∗

; F ] − [y0, x−1; F ]∥

≤ Kβ

∥y∗

− y0∥ + ∥x∗
− x−1∥


< Kβ(σ + λα + R) = 1,

and the operator T−1 exists. �

5.2. Any operators

Note that condition (III) guarantees the differentiability of the operator F (see [6]). If we are interested in obtaining a
valid result for nondifferentiability operators, condition (III) must be relaxed.

Now, we analyse the semilocal convergence of family (2) when it is applied to any operator. For this, we suppose (I), (II)
and
(IIIb) ∥[x, y; F ]−[u, v; F ]∥ ≤ ω(∥x−u∥, ∥y−v∥), x, y, u, v ∈ �, whereω : R+×R+ −→ R+ is a continuous non-decreasing

function in both arguments.

Theorem 4. Let X and Y be two Banach spaces and let F : � ⊆ X → Y be a nonlinear operator defined on a non-empty open
convex domain�. We suppose that there exists [x, y; F ] ∈ L(X, Y ), for all x, y ∈ �, and conditions (I), (II) and (IIIb) are satisfied.
We also suppose that the equation

t

1 −

m
1 − β ω((2λ− 1)t + (λ− 1)α, t + α)


− λη = 0, (16)

where m = max{β ω(η + (λ − 1)α, α), β ω(λη, η)}, has at least one positive root and r denotes the smallest positive root
of (16). If β ω((2λ − 1)r + (λ − 1)α, r + α) < 1, M =

m
1−β ω((2λ−1)r+(λ−1)α,r+α) < 1 and B(x0, r) ⊂ �, then family (2),

starting from x−1 and x0, is well-defined and converges to a unique solution x∗ of F(x) = 0. Moreover, the solution x∗ and the
iterates xn belong to B(x0, r) and x∗ is unique in B(x0, r).
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Proof. Firstly, by mathematical induction, we prove that family (2) is well-defined; namely, iterative method (2) makes
sense if the operator [yn, xn−1; F ] is invertible and the approximation xn+1 ∈ �.

From the convergence conditions, it follows that x1 is well-defined and ∥x1 − x0∥ ≤ η < r . Consequently, x1, y1 ∈

B(x0, r) ⊆ �.
Next, from (IIIb), we have

∥I − L−1
0 L1∥ ≤ ∥L−1

0 ∥∥L0 − L1∥ ≤ βω(λ∥x1 − x0∥ + (λ− 1)∥x0 − x−1∥, ∥x0 − x−1∥)

≤ βω((2λ− 1)r + (λ− 1)α, r + α) < 1,

and then, by Banach’s lemma, the operator L−1
1 exists and

∥L−1
1 ∥ ≤

β

1 − βω((2λ− 1)r + (λ− 1)α, r + α)
.

After that, we observe

F(x1) = F(x0)+ [x1, x0; F ](x1 − x0) = ([x1, x0; F ] − L0) (x1 − x0)

and taking again (IIIb) it follows

∥F(x1)∥ ≤ ∥[x1, x0; F ] − L0∥ ∥x1 − x0∥ ≤ ω(∥x1 − y0∥, ∥x0 − x−1∥)∥x1 − x0∥ ≤ ω(η + (λ− 1)α, α)∥x1 − x0∥.

In addition, the approximation x2 is well-defined and

∥x2 − x1∥ ≤ ∥L−1
1 ∥∥F(x1)∥ ≤ M∥x1 − x0∥ < η,

∥y2 − x0∥ ≤ (1 + λM)∥x1 − x0∥ < r,
∥x2 − x0∥ ≤ ∥x2 − x1∥ + ∥x1 − x0∥ ≤ (1 + M)∥x1 − x0∥ < r,

since r is a positive root of Eq. (16), so that x2 ∈ B(x0, ρ).
If we now suppose that Lj =


yj, xj−1; F


is invertible and xj+1 ∈ B(x0, r) ⊆ �, for all j = 1, 2, . . . , n − 1, then items

◦ the operator L−1
n exists and ∥L−1

n ∥ ≤
β

1−βω((2λ−1)r+(λ−1)α,r+α) ,
◦ ∥xn+1 − xn∥ ≤ M∥xn − xn−1∥ ≤ Mn

∥x1 − x0∥ < η,

follow similarly to the above and the mathematical induction concludes that family (2) is well-defined.
Secondly, we prove that {xn} is a Cauchy sequence. As,

∥xn+p − xn∥ ≤ ∥xn+p − xn+p−1∥ + ∥xn+p−1 − xn+p−2∥ + · · · + ∥xn+1 − xn∥

≤

Mp−1

+ Mp−2
+ · · · + 1


∥xn+1 − xn∥ =

1 − Mp

1 − M
∥xn+1 − xn∥ <

Mn

1 − M
∥x1 − x0∥,

it is clear that {xn} is a Cauchy sequence, so that {xn} is convergent.
Thirdly, if limn = x∗, we see that x∗ is a solution of F(x) = 0. Indeed, as

∥F(xn)∥ ≤ ω(λη, η)∥xn − xn−1∥,

by letting n → ∞, we obtain ∥xn − xn−1∥ → 0, and consequently F(x∗) = 0.
Finally, we see the uniqueness of x∗. For this, we suppose that there exists another solution y∗ of F(x) = 0 in B(x0, r),

and consider the operator T = [y∗, x∗
; F ]. If T is invertible, we have that x∗

= y∗, since T (y∗
− x∗) = T (y∗)− T (x∗). Indeed,

∥L−1
0 T − I∥ ≤ ∥L−1

0 ∥∥T − L0∥ ≤ ∥L−1
0 ∥∥[y∗, x∗

; F ] − [y0, x−1; F ]∥

≤ βω(∥y∗
− y0∥, ∥x∗

− x−1∥) ≤ βω((2λ− 1)r + (λ− 1)α, r + α) < 1,

and the operator T−1 exists. �

Note that ifω(0, 0) = 0, then we can prove that F is differentiable (see [6]). However, if F is nondifferentiable, we obtain
that ω(0, 0) ≠ 0, as we can see in Section 6.3.

6. Application to a special case of conservative problems

It iswell known that energy is dissipated in the action of any real dynamical system, usually through some formof friction.
However, in certain situations this dissipation is so slow that it can be neglected over relatively short periods of time. In such
cases we assume the law of conservation of energy, namely, that the sum of the kinetic energy and the potential energy is
constant. A system of this kind is said to be conservative.

If ϕ and ψ are arbitrary functions with the property that ϕ(0) = 0 and ψ(0) = 0, the general equation

µ
d2x(t)
dt2

+ ψ


dx(t)
dt


+ ϕ(x) = 0, (17)
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can be interpreted as the equation of motion of a mass µ under the action of a restoring force −ϕ(x) and a damping force
−ψ(dx/dt). In general these forces are nonlinear, and Eq. (17) can be regarded as the basic equation of nonlinearmechanics.
In this paper we shall consider the special case of a nonlinear conservative system described by the equation

µ
d2x(t)
dt2

+ ϕ(x(t)) = 0,

in which the damping force is zero and there is consequently no dissipation of energy. Extensive discussions of (17), with
applications to a variety of physical problems, can be found in classical references [15,16].

In this paper, we study the existence of a unique solution for a special case of a nonlinear conservative system described
by the equation

d2x(t)
dt2

+ φ(x(t)) = 0 (18)

with the boundary conditions
x(0) = x(1) = 0. (19)

In order to study the application of (2) for the numerical solution of differential equation problems, we illustrate the
theory for the case of particular second-order ordinary differential Eq. (18) subject to the boundary conditions (19).

It is required to find a solution of problem (18) and (19) in the interval t ∈ [0, 1]. Under suitable restrictions on the
function φ, we will see that a unique solution of (18) and (19) exists. Moreover the method of discretization is used to
project the boundary value problem of second order into a finite-dimensional space. The new family of secant-like methods
are applied to this problem to approximate the solution of the corresponding system of equations.

For this, we consider the operator

[F (x)](t) =
d2x(t)
dt2

+ φ(x(t)), (20)

which is an operator from C (2)[0, 1] into C[0, 1]. Then, solving problem (18) is equivalent to solving the equation F (x) = 0,
where F is defined in (20).

Initially, we transform problem (18) and (19) into a finite dimensional problem. For this, we approximate the second
derivative by a standard numerical formula. Moreover, from now on, we use the infinity norm.

6.1. Setting up a finite difference scheme

For the direct numerical solution of problem (18) and (19), we introduce the points tj = jh, j = 0, 1, . . . ,m + 1, where
h =

1
m+1 and m is an appropriate integer. A scheme is then designed for the determination of numbers xj, it is hoped,

approximate the values x(tj) of the true solution at the points tj. A standard approximation for the second derivative at
these points is

x′′

j ≈
xj−1 − 2xj + xj+1

h2
, j = 1, 2, . . . ,m.

A natural way to obtain such a scheme is to demand that the xj satisfy at each interior mesh point tj the difference equation

xj−1 − 2xj + xj+1 + h2φ(xj) = 0. (21)
Since x0 and xm+1 are determined by the boundary conditions, the unknowns are x1, x2, . . . , xm.

A further discussion is simplified by the use of matrix and vector notation. Introducing the vectors

x =


x1
x2
...
xm

 , vx =


φ(x1)
φ(x2)
...

φ(xm)


and the matrix

A =


−2 1 0 . . . 0
1 −2 1 . . . 0
0 1 −2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −2

 ,
the system of equations, arising from demanding that (21) holds for j = 1, 2, . . . ,m, can be written compactly in the form

F(x) ≡ Ax + h2vx = 0, (22)
which is a function from Rm into Rm.

If the functionφ(x) is not linear in x, we cannot hope to solve system (22) by algebraicmethods. Some iterative procedure
must be resorted to. Next, we analyse (2) for this purpose.
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6.2. A differentiable case

In this section we consider a particular case of (18). The steady temperature distribution is known in a homogeneous
rod of length 1 in which, as a consequence of a chemical reaction or some such heat-producing process, heat is generated
at a rate φ(x(t)) per unit time per unit length, φ(x(t)) being a given function of the excess temperature x of the rod over
the temperature of the surroundings. If the ends of the rod, t = 0 and t = 1, are kept at given temperatures, we are to
solve the boundary value problem given by (18) and (19), measured along the axis of the rod. For an example we choose an
exponential law φ(x(t)) = exp(x(t)) for the heat generation.

Taking into account that the solution of (18) and (19) with φ(x(t)) = exp(x(t)) is of the form

x(t) =

 1

0
G(t, ξ) exp(x(ξ)) dξ,

where G(t, ξ) is the Green function in [0, 1], we can locate the solution x∗(t) in some domain. So, we have

∥x∗(t)∥ −
1
8
exp(∥x∗(t)∥) ≤ 0,

so that ∥x∗(t)∥ ∈ [0, ϱ1] ∪ [ϱ2,+∞], where ϱ1 = 0.1444 and ϱ2 = 3.2616 are the two positive real roots of the scalar
equation 8t − exp(t) = 0.

By Theorem 3, we could only guarantee the semilocal convergence to a solution x∗(t) such that ∥x∗(t)∥ ∈ [0, ϱ1]. For
this, we can consider the domain

� = {x(t) ∈ C2
[0, 1] ; ∥x(t)∥ ≤ ln 6, t ∈ [0, 1]},

since ϱ1 < ln 6 < ϱ2.
In view of what the domain� is for Eq. (18), we then consider (22) with F : � ⊂ Rm

→ Rm and� = {(x1, x2, . . . , xm) ∈ Rm
; |xi| ≤ ln 6, fori = 1, 2, . . . ,m}.

6.2.1. Approximating the solution
According to Section 6.1, vx = (exp(x1), exp(x2), . . . , exp(xm))t ifφ(x(t)) = exp(x(t)). Consequently, the first derivative

of the function F defined in (22) is given by

F ′(x) = A + h2diag(v′

x),

where v′
x = (exp(x1), exp(x2), . . . , exp(xm)). Moreover,

F ′(x)− F ′(y) = −h2diag(z),

where y = (y1, y2, . . . , ym)t and z = (exp(x1)− exp(y1), exp(x2)− exp(y2), . . . , exp(xm)− exp(ym)). In addition,

∥F ′(x)− F ′(y)∥ ≤ h2 max
1≤i≤m

|exp(ci)| ∥x − y∥,

where c = (c1, c2, . . . , cm)t ∈ �, so that

∥F ′(x)− F ′(y)∥ ≤ 6h2
∥x − y∥. (23)

Considering (see [6])

[x, y; F ] =

 1

0
F ′ (τx + (1 − τ)y) dτ ,

taking into account 1

0
∥τ(x − u)+ (1 − τ)(y − v)∥dτ ≤

1
2
(∥x − u∥ + ∥y − v∥) ,

and (23), we have

∥[x, y; F ] − [u, v; F ]∥ ≤

 1

0
∥F ′ (τx + (1 − τ)y)− F ′ (τu + (1 − τ)v) ∥ dτ

≤ 6h2
 1

0
(τ∥x − u∥ + (1 − τ)∥y − v∥) dτ

= 3h2 (∥x − u∥ + ∥y − v∥) .

From the preceding result we have K = 3h2. If we take m = 19, then h =
1
20 and K =

3
400 = 0.0075. Discretizing the

parabolas given by x−1(t) =
5
2 t(1 − t) and x0(t) =

1
2 t(1 − t) in 21 points in the interval [0, 1], we have α = 0.5.
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Table 1
Numerical solution x∗ of (22) with φ(x) = exp(x).

i x∗

i i x∗

i

1 2.62125617742571819416e-02 11 1.39136149148458656192e-01
2 4.98587257172283280025e-02 12 1.34824278757197113339e-01
3 7.08770831869588552737e-02 13 1.27651569159449126900e-01
4 8.92118174747010710997e-02 14 1.17638466907795998138e-01
5 1.04813271226358889813e-01 15 1.04813271226358889813e-01
6 1.17638466907795998138e-01 16 8.92118174747010710997e-02
7 1.27651569159449126900e-01 17 7.08770831869588552737e-02
8 1.34824278757197113339e-01 18 4.98587257172283280025e-02
9 1.39136149148458656192e-01 19 2.62125617742571819416e-02

10 1.40574818132414702110e-01

Table 2
Numerical results for nonlinear system (22) with φ(x) = exp(x).

Method I ∆ρi CEI TF q Time (ms)

(6) 15 3.6E-6 1.000015431 64805.1 3926 9625
(7) 10 1.1E-3 1.000021231 47101.4 2682 6567

We then consider the secant method (λ = 1) and Kurchatov’s method (λ = 2). For λ = 1, we have β = 42, η = 0.22.
In this case y0 = x0 ∈ �. The conditions (15) are accomplished and we get R = 0.3132. For λ = 2, we obtain β = 44,
η = 0.232. We have now y0 = 2x0 − x−1 ∈ �. The conditions (15) are also accomplished and, in this case, R = 0.5664. In
both cases the conditions of Theorem 3 are accomplished with σ = 2.3633 for λ = 1 and σ = 1.4639 for λ = 2, so that the
secant method and Kurchatov’s method converge to the solution x∗

= (x∗

1, x
∗

2, . . . , x
∗

19)
T given in Table 1. Note that 4096

significative figures are used in the computations.

6.2.2. Numerical considerations
The numerical computationswere performed onMPFR library of C++multi-precision arithmetics [17,18]with 4096 digits

ofmantissa. All programswere compiled by g++(4.2.1) for i686-apple-darwin1with libgmp (v.4.2.4) and libmpfr
(v.2.4.0) libraries in a processor Intel R⃝ Xeon E5620, 2.4 GHz (64-bit machine). Within each example the starting point
is the same for all methods tested. The classical stopping criteria ∥eI+1∥ = ∥xI+1 − α∥ < ε and ∥eI∥ > ε, with ε = 10−ν ,
where ν = 4096, is replaced by ∥ẽI+1∥ = ∥xI+1 − α̃I+1∥ < 10−η and ∥ẽI∥ > 10−η , where η =


ν(2ρ − 1)/ρ2


and α̃n is

obtained by the δ2-Aitken procedure, that is

ẽn =



δx(r)n−1

2
δ2x(r)n−2


r=1÷m

(24)

where δxn−1 = xn − xn−1. Note that this criterion is independent of the knowledge of the root (see [19,20]).
In order to compare easily the efficiency of the iterative methods we introduce a new measure, called time factor (TF ),

defined as

TF = 1/ log(CEI).

Table 2 shows the results obtained for iterative methods (6) and (7). In each row we can read the necessary iteration
number I , the error of the local order of convergence ∆ρi, the computational efficiency index CEI , the time factor TF , the
estimation q of the corrected decimal number of last iterated xI and the time necessary to achieve the I iteration. That is, we
compute q =


ρ2/(2ρ − 1)η⋆


, where η⋆ = − log10 ∥ẽI∥.

In this case the concrete values of parameters for methods (6) and (7) are (m, µ) = (19, 77) since the evaluation of
exponential function is equivalent to 76 products. Note that in Table 2 we have CEI2 > CEI1 as Theorem 2 asserts and the
execution time of method (6) is greater than the execution time of method (7).

In the computations we substitute the computational order of convergence (COC) [21] by an extrapolation (ECLOC)
denoted by ρ̃ and defined as follows ([19])

ρ̃ =
ln ∥ẽI∥

ln ∥ẽI−1∥
,

where ẽI is given in (24). If ρ = ρ̃ ± ∆ρ̃, where ρ is the local order of convergence and ∆ρ̃ is the error of ECLOC , then we
get∆ρ̃ < 10−3. This fact means that in all computations of ECLOC we obtain at least 3 significant digits and this results is a
good check of the local convergence orders of the family of iterative methods presented in this paper.
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Table 3
Numerical solution x∗ of (22) with φ(x) =

1
3 x

2
+ |x| + 1.

i x∗

i i x∗

i

1 2.61571297987090693801e-02 11 1.38759070015023621721e-01
2 4.97482966100552773252e-02 12 1.34462697508586908805e-01
3 7.07130302690300120457e-02 13 1.27315101410860990497e-01
4 8.89968144084573144406e-02 14 1.17335709947068538197e-01
5 1.04551506151051095720e-01 15 1.04551506151051095720e-01
6 1.17335709947068538197e-01 16 8.89968144084573144406e-02
7 1.27315101410860990497e-01 17 7.07130302690300120457e-02
8 1.34462697508586908805e-01 18 4.97482966100552773252e-02
9 1.38759070015023621721e-01 19 2.61571297987090693801e-02
10 1.40192499780163247060e-01

Table 4
Numerical results for nonlinear system (22) with φ(x) =

1
3 x(t)

2
+ |x(t)| + 1.

Method I ρi CEI TF q Time (ms)

(6) 14 1.61803518875 1.000101883 9815.7 2809 334
(7) 10 2.00000000007 1.000144606 6915.8 2339 247

6.3. A non-differentiable case

In this section, we consider a nondifferentiable operator of type (22), so that Theorem 4 is illustrated. Observe that
ω(0, 0) ≠ 0 is obtained from condition (IIIb).

Setting φ(x(t)) =
1
3x(t)

2
+ |x(t)| + 1 in (18), we obtain (22) with vx = (v1, v2, . . . , vm)

t and vi =
1
3x

2
i + |xi| + 1 for

i = 1, 2, . . . ,m.

6.3.1. Approximating the solution
Taking the definition of divided difference operator (8) we have

[x, y; F ] = A + h2diag(z),

where z = (z1, z2, . . . , zm) and zi =
xi+yi
3 +

|xi|−|yi|
xi−yi

, for i = 1, 2, . . . ,m.
In consequence,

∥[x, y; F ] − [u, v; F ]∥ ≤
h2

3
(∥x − u∥ + ∥y − v∥)+ 2h2,

so that we consider ω(s, t) = h2
 s+t

3 + 2

for condition (IIIb) in Theorem 4.

If we take m = 19, then h =
1
20 and ω(s, t) =

1
400

 s+t
3 + 2


. Furthermore, if we discretize the parabolas given by

x−1(t) =
3
2 t(1− t) and x0(t) =

1
2 t(1− t), we have α = 0.25. We then consider the secant method (λ = 1) and Kurchatov’s

method (λ = 2). For λ = 1, we have β = 44.642, η = 0.235, and for λ = 2, we obtain β = 45.904, η = 0.242. In both cases
the conditions of Theorem 4 are accomplished and the solution with these initial approximations is unique, see Table 3. For
λ = 1 we get r = 0.3483, while for λ = 2 we have r = 0.8237.

6.3.2. Numerical considerations
Table 4 shows the results obtained for iterative methods (6) and (7). Observe that the columns of Table 4 are the

necessary iteration number I , ECLOC , an approximation of the CEI , say CEI = ρ1/C , and a new time factor defined byTF = 1/ log(CEI).
In this case the concrete values of parameters for methods (6) and (7) are (m, µ) = (19, 3.7). Note that not only from a

theoretical point of view Theorem 2 is accomplished, but the practical results (execution time) does also.
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