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Introduction

A gyrostat G is a mechanical system made of a rigid body P called the platform and other
bodies R called the rotors, connected to the platform and in such a way that the motion of
the rotors does not modify the distribution of mass of the gyrostat G. Due to this double
spinning, the gyrostat on the one hand and the rotors on the other, the gyrostat is also
known with the name of dual-spin body.

Such a model was employed by Volterra [1] to study the rotation of the earth. Ever
since, the problem has attracted the attention of physicists, and a number of theoretical
results have been obtained (see the textbook of Leimanis [2] and references therein). More
recently, aerospace engineers used the gyrostat model for controlling the attitude dynamics
of spacecrafts and for stabilizing their rotations. See, for instance, [3]—[6] and also references
contained in [4]. In the last years, the gyrostat problem has regained interest and some papers
[7]—[9] appeared in the literature, mainly dealing with qualitative aspects of the motion,
such as bifurcations, splitting of separatrices, etc.. For the unperturbed problem (gyrostat in
free motion), most of the papers above mentioned use canonical formalism, either in Euler or
in Serret-Andoyer variables. However, in the free motion, the angular momentum vector is
an integral, and thus, it is possible to represent the phase flow on a sphere (as it was pointed
out by Hubert {10]), in a way very similar to the Euler-Poinsot case of the rigid body {11].

In a different context, Elipe and Lanchares [12]—[15] studied the bifurcations of several
parametric quadratic Hamiltonians on the unit sphere. The classification of the two param-
eters case was established in [16] and this work was generalized by Frauendiener [17] for all
possible parameters.

In this communication, we show that the gyrostat in free motion may be formulated
as a multi parametric quadratic Hamiltonian on the unit sphere. To each case (depending
on the moments of inertia and the rotors that act simultaneously) corresponds one case of
the parametric quadratic Hamiltonian. Hence a real physical problem is identified with a
theoretical one.
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Rotation of a Gyrostat: the basics

Let us asswne that the gyrostat has a fixed point O, that we will identify with the ceuter of
mass of the gvrostat and centered on it there are two orthonormal reference frames:

e &. the space frame (0818383, fixed in the space.
e 3. the hody frame Obbyby. fixed in the platform.

Since by definition the motion of the rotors does not alter the distribution of mass of the
gyrostat. there is a constant inertia tensor associated to G and we may assume that the body
frame is precisely the frame of principal axes of inertia of the gyrostat.
The attitude of B in S results in three rotations by means of the Euler angles (¢, 1), ).
Following the steps described in [11. pp. 603 606], we overlay a symplectic structure in
such o wav that the coujugate moments (@. 9. W) of the Euler angles are the projections of
the total angular vector G onto the non orthonormal basis s, 1. by, that is. that

O =G sy O=G- I V=G -bs.

where the node vector Uis defined as 1= s coso 4+ sy sine. Hence. by inversion. there
results
b~ Weos . Ch Y cos ) ]
g = | ————— sl +Ocos. gy = | costy — Osine. gy =
si sin v
, U —@cosdy . , , U — deosdf ,
Gy =0Qcoso+ | ———— |sing. Gy =0Osino— | ———— Jcoso. Gy = b,
sin ¥ sin v

for the components in the body frame {g,) and in the space frae (G;).
[t is just a matter of computiug partial derivatives to check that the Poisson brackets
satistv the identities

(o cge) = —gse g gsi = g0 gy gi) = —go.
((7‘| . (1‘3) = (7’;1‘. ((1‘-_)1 ('"31.;‘ == Cr'l. ((I'{ (7‘[) = (12)

i)

Now. we proceed to compute the kinetic energy ot the gyvrostat. Let @ = r1b) + auby + r3by
be the position vector of a particle P of the gvrostat with mass dm; its absolute velocity is
de/dt = v+ w x @, where v = b, + .ixby + i3by. If the particle belongs to the platform
(recall that it is a rigid body). then v = 0. Taking into account that G = PUR. the kinetic
energy of the gvrostat is obtained by computing the volume quadrature

Ly u
T:7~-/(U+w <x) dm
2Jg
I . : Ly,
= */((4)%1))'(/1/! +ow - / (x = v)dm—i-j/ vidm {2)
2Jg IR 2R
]

= 5—w-llw+w-f+’17,;4
where [T is the diagonal tensor of inertia of the gyrostat G, while f = fiby + foby + f3by is
the angular moment of the rotors and Ty is the kinetic energy of the rotors in their relative

MotIon.
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The Hamiltonian is the Legendre transformation with respect to the velocities of the
Lagrangian function. Let us call the abbreviation g = (¢, 8, ¢)) to denote the set of Eulerian
angles; the kinetic energy of the gyrostat (2) is made of the addition of a pure quadratic
term (iw - [w) in the velocities g, plus a linear part (w - f) in the velocities g (for f does
not depend on the Euler angles), plus a function of the time (T»(¢)). By virtue of Euler’s
theorem for homogeneous functions, the Hamiltonian is simply

'H=%w-ﬁw, (3)

Rather than expressing H in terms of the canonical coordinates and moments, we will express
it in terms of the total angular moment.

The independent variable ¢t does not appear explicitly on the Hamiltonian (3), hence the
kinetic energy of the gyrostat G considered as a rigid body (3) is preserved along the motion,
whereas the total energy T is not.

In an analogous way, we find that the angular momentum vector of the gyrostat in the
body frame is
G= /(m x (v+wxx))dm
G
= / (& x (wx m))dm+/ (xx (v+wxz))dm
P R

:/g(wx (wxa:))dm—k‘/R(a:xv)dm
=lw+ f.

Let us denote by a; the inverse or the principal moment of inertia [;, that is a; = 1/1;.
Assume moreover that 0 < a; < ag < az. With these conventions, there is a diagonal tensor
A, such that the angular velocity is w = A(G — f). The Hamiltonian (3) in these notations
is

H=1(G~f) AG- ) (

=N
~—

From here on, we shall assume that the rotor moment is constant (f; = constant, i =
1,2,3). Hence, expanding the expression (4), and after dropping the constant terms (3 a; f2),
we find the following expression for the Hamiltonian

1 ; ,
H= §(a19f + @25 + a3g3) — (@191 f1 + azgafa + asgafa). (5)
The Poisson structure (1) gives rise to the equations of the motion

g1 = (915 H) = (a3 ~ a2)g2gs + a2 fag93 — az f392,
g2 = (925 H) = (a1 ~ a3)g193 + az fag1 — a1 f193, (6)

g3 = (935 H) = (a2 ~ a1)g192 + a1 f192 — az fogn.

From this system, one can easily check that the norm of the angular momentum vector G
is an integral
IG|I? = ¢? + 92 + g3 = G* = constant; (7
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the history of the rotation of G in the body frame is represented as a curve on the S? sphere
of constant radius G

[u sunt. the equations (6) admit rwo integrals. the kinetic energy (5) and the noru of
the total angular momentum (7}, theretore it ix integrable. The phase space of (6) mayv he
regarded as a follation of invariant manifolds

SHG) = gy googut g+ g3+ gh = G

By using the angular mowmentuu G oinstead of the angular velocity w, the geometric model
depicting the votatious of G is a sphere with constant radius. Most importantly. unlike
Poiusot’s cllipsoids. the underlying model is independent of the ellipsoid of inertia. More
details about rhe derivation of the above fornmlas may be found in [9].

The triaxial gyrostat

The Hamiltondan of the gyrostat (5). when expressed in terms of the componeuts ¢, of the
angular momentun, belongs to a general class of Hamiltonian systems. the one of the tvpe
B ¥ . I l o o
H~=T,+7,. with T,:= 5 }_4 A8 and Ty = Z B3 &,
[ A

I R SR ]
The muknowns & have the Poisson structure (1)

(:IT‘E/)T: >_‘ ik {A-

where ¢, stauds for the Levi-Clvita syimbol.

The class depends on 9 parameters, but it is possible to reduce it to 6 standard classes
[17] ¢ this is done by rotations in the phase space (gy.go.gs). Let us see that there is an
cquivalence among this class of Hamiltonians and the set of gyrostats.

If ovrostat is triaxial, the three moments of inertia arve different and. thus, the three
cigenvalues of the guadratic form A ave different: we will suppose without loss of generality
ay < ay < ay. By means of the equivalence transforations (see [17]), that is to say. time
scaling or adding a constant to the Hamiltonian, it is possible to shift one ot the eigenvalues
to 0 and to scale one of the two remaining to 1. without changing the simplectic structure
of the vartables g;.

The number of essential parameters depends on the veetor A - F and. more precisely. on
the non zero components of f. since the matrix A is diagonal. Let us analyvze the different
possibilitios of the gyrostat depending on the munber of spinning rotors (i.e. depending on
fl
ONE SPINNING ROTOR
If only one of the rotors is spinning about one of the principal axes of inertin. it was estal-

lished in [9] that the Hamiltonian (5) reduces to one of the generic biparametric Hamiltonians

H o=t :“21’1'“) + (Qu. (8)

I
2
The phase tlow and bifurcation lines in the parawetric plane Q) hiave been determined by
the anthors in [14].
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Although this Hamiltonian (8) does not depend on the axis where the spinning rotor is
located, the parameter P is restricted to belong to different intervals according with the axis
of rotation. Furthermore, to cover the whole parametric plane (P, @), the three cases (each
one with the spin about either b; or by or by) must be accounted. Indeed, let us consider a
gyrostat with one spinning rotor about the biggest axis of inertia b,.

H= %(“19% + axgs + azg3) — a1 fig1.
The additive transformation

as . -
'C=H——2£(gf+g§+g§) (9)

yields to

K= 3(a - az)g; + s(ag — az)gi — a1 figs,

and by means of the scaling transformation H = K/(a; — as) we get
H= %uQ + %sz + Qu.

where now P = (a3 — a2)/(a1 — a2). Q@ = —ay fi/{ay — az2) and (g1, g9, g3) — (w.w. v). Since
a; < az < ay. the parameter P € (—o0,0) and the variables (u. v, w) satisfy the simplectic
relations

{wv} =w, {viw}=u, {wu}=rv (10)

The other two cases are reduced to (8) in analogous way, but the parameter P belongs
to the intervals listed in Table 1.

axis P Pe Q variables
_ as — as —a
biggest (1) S (—oc0) —L (5 g g — (ww)
a; — Qs a; — dog
, g — a —@a3 ja
smallest (b3) =2 2 0,1) 3fa {91, 92, 93) — (w, v, u)
az —a az — a4
— (L —_ 5 ,1
intermediate (by) S (1,¢) Zale (91,92, 93) — (v.u. w)
a9 — Q3 ay — ag

Table 1: Reduction of the case of one spinning rotor to the generic Hamiltonian
H= 31"+ 1P? + Qu.

It is worth to notice that an additive transformation. different from (9). yields to Hamil-
tonian (8). but the simplectic structure (10) changes its sign. Besides, the interval where the
parameter I is located is interchanged in the cases of rotations about the smallest and the
biggest axes of inertia, but this due to the fact that a /2 rotation about the intermediate
axis of inertia interchanges these axes.

TwO SPINNING ROTORS

In the case of two axial spinning rotors the Hamiltonian (5) reduces to the generic one

H=4u’+1iPv* + Qu+ Ru. (11)
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The phase flow and bifurcation surfaces in the parametrie space PQR  have been studied
in detail by Lanchares et al. [15].

As in the preceding case. the three possible selections of two spinning rotors (b, b,. b by
or byby) reduce to the generic Hamiltonian (11). but, depending on the case selected. the
paratneter I belongs to different intervals. Moreover, to cover the whole parameter space
((P.Q.R) = R, the three cases are needed. As a matter of fact. the region to which the
paranieter /7 belongs. is originated by the additive and scaling transformations necessary to
climinate the non essential parameters,

Let us consider. for instance. two spinning rotors about. the biggest and the intermediate
axes of nertia (fy = ). The Hamiltonian is now

. I 2 oo PR . .
H = slangy + avgy + aygyl - m frgr — asfags.

The additive transformation H—{gi4g3+g3 ) a4/ 2. and the scaling transformation H/ (1, —ay)
vield to the reduced form (11). where the parameters are 2 = (a; — az)/{ay — ay). () =
—ayfo/lay—ay). R = —ay fi/(as—ay) and {g1. g2, 1) — (v, ww). In this case the parameter
P belongs to the open interval {1.o¢) and the simplectic structure of the variables (v, eo10)
verifies (10).

In Table 2 we sumimarize the reductions ol the three cases of two spiuning rotors. Notice
that the reduction is not unique and other equivalence transformations yield to the generic
Hamiltonian {11). Indeed, a different scale transformation (H/{a; — ay)). in the case of
fo = 0, leads to a Hamiltonian with 7 € {0.1) and the variables (u.eow) satistying the
simplectic structure (10). but the sign. This can be overcome either considering the tine
going in the reverse sense, or performing a rotation of 7/2 about the ¢y axis.

Ctase P P e @) R variables
o — (- S alf T T )

fi=10 R (0.1} EL el (g1-gv. g3) S
(p — Iy ) o~y ) ’
Iy — (1o ) —ay f )

=0 B2y ‘ Jo ) — ()
oy = U ay = ay o (ly
o — —y fy iy [ )

fi=1 =L (0.1} e E)f)— (1 g0, g3) ~— (w0, u)
(3 — (g — () (ry — 1y

Table 2: Reduction of the case of two spinuning rotors to the generie Hamiltonian

H = _—1)1/‘) + %[)1’2 + (21[ + Re.

THREF SPINNING ROTORS

[n this case. the problem is equivalent 1o the parametric quadratic Hamiltonians, where the
number of essential parameters is waximun. that is

2

H="Lu2 4 Lpe" « Qu+ Ro+ Sw. (12)
This Hamiltonian, to our knowledge, s vet to be analyzed.

By means of two equivalence trausformations. an additive plus a scaling one. it is casy
to obtain the Hamiltonian (12). As in the other cases above considered. the choice of the
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transformations limits the parameter P to range one of the three open intervals (—oc. (),
(0,1) or (1,00).

The axially symmetric gyrostat

In this section, we suppose now that the gyrostat is axially symmetric, that is to say. two of
the principal moments of inertia are equal. Let us assume, for instance, that ¢; = as < a3. In
this case the number of essential parameters is, at most. two. Indeed, no essential parameters
are found in the quadratic part; an additive transformation shifts to 0 the two common
eigenvalues corresponding to the two equal moments of inertia; a scaling transformation
puts to 1 the remaining eigenvalue.

Let us apply to Hamiltonian (5) the additive transformation

ay, . - .
H - g(gf +95+93)

and the scaling transformation H /(a3 — a;); this yields

: aifi azfo asfs
H =495 — g~ g2 — s

=z 1
2 a3 — ay a3 — a4y az — aj

Taking into account that any vector perpendicular to the axis of symmetry is itself principal
axis of inertia. a rotation about the axis of symmetry bs and angle a = arctan(—ayfy/a, f1)
about the syminetry axis reduces Hamiltonian to

H = ju’ + Pu+ Qu, (13)
that is, with only two essential parameters P and () defined by where

P—_ asfs and Q= asfo

(sin o ~— cos av).
az — a1 az — a

The phase flow and bifurcation lines of this Hamiltonian (13) were obtained by the authors
in [13]. The axially symmetrical gyrostat with only one spinning rotor, its bifurcations and
the integration of the trajectories in terms of elliptic functions have been studied in detail
in [18}.

The different cases for an axially symmetrical gyrostat are summarized in in Table 3
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