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Abstract 
 

BACKGROUND: Grapevine flower number per inflorescence provides valuable information that 
can be used for assessing yield. Considerable research has been conducted at developing a 
technological tool, based on image analysis and predictive modelling. However, it has never 
been evaluated the behaviour of variety-independent predictive models and yield prediction 
capabilities on a wide set of varieties. 

RESULTS: Inflorescence images from 11 grapevine Vitis vinifera L. varieties were acquired 
under field conditions. The flower number per inflorescence and the flower number visible in 
the images were calculated manually, and automatically using an image analysis algorithm.  
These datasets were used to calibrate and evaluate the behaviour of two linear (single-variable 
and multivariable) and a non-linear variety-independent model. As a result, the integrated tool 
composed of the image analysis algorithm and the non-linear approach showed the highest 
performance and robustness (RPD=8.32, RMSE=37.1). The yield estimation capabilities of the 
flower number in conjunction with fruit set rate (R2=0.79) and average berry weight (R2=0.91) 
were also tested. 

CONCLUSION:  This study proves the accuracy of flower number per inflorescence estimation 
using image analysis algorithm and a non-linear model that is generally applicable to different 
grapevine varieties. This provides a fast, non-invasive and reliable tool for estimation of yield 
at harvest. 

Keywords: fruit set rate; yield prediction; computer vision; flowering; multi variety linear 
models; non-linear models;  
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Introduction 
The number of flowers per inflorescence is a relevant agronomical parameter, necessary to 
estimate the fruit set rate (number of flowers that become berries), that allows to perform 
early fruit yield estimation1 and quality assessment2. However, practically speaking, the 
calculation of the flower number per inflorescence has been troublesome due to strong 
operational limitations, as it has been traditionally assessed manually3. Consequently, several 
methods for simplifying the flower counting procedure have been proposed4-7. Poni et al.4 
used inflorescence images to manually count the number of the visible flowers on photo 
prints, when recent publications5-7 relied on image analysis algorithms for automatizing the 
process. Nevertheless, these solutions only provide partial information, since an inflorescence 
is a 3-dimensional structure in which not all the flowers will be visible in an image due to 
occlusions from other flowers or inflorescence structure. Therefore, in order to provide an 
estimation of the total flower number in inflorescence images, besides being able to count 
visible flowers, a predictive model is also mandatory. Such a model, taking as input the 
information extracted from images, has to be able to predict the total amount in the 
inflorescences. To this respect, investigations developed in previous studies have shown 
promising results. However, certain key aspects still remain inconclusive and require further 
investigation.  

Previous developments in predictive models have been carried out on a limited number of 
varieties (4 in the best case5). It is well known that inflorescences from different varieties may 
have distinctive structural features, what argues for the need of additional investigation 
considering a wider set of varieties to confirm that the concept is generalizable. On the other 
hand, and with the previous limitation, several modelling approaches have been explored in 
the literature. Poni et al.4 were the first considering the use of linear variety-dependant 
models. This approach was also used by Diago et al.6, who additionally proposed the use of a 
unique, global, variety-independent linear model for all varieties due to the outstanding and 
obvious applicative advantages it provides. Comparing both strategies, they found poorer 
performance for the variety-independent global solution, although this outcome was latter 
contradicted by a revision carried out by Aquino et al.7. Moreover, these authors also tested 
the performance of a non-linear variety-independent model enriched with certain features 
extracted from images. The obtained results were promising, but conclusions limited because 
of the reduced dataset used. This was acknowledged by the authors, who stated that further 
research was necessary before accepting the increased complexity derived from the use of a 
non-linear model. In addition, all the reviewed investigations are motivated within the frame 
of the development of an integrated tool composed of an image analysis algorithm and a 
predictive model for the non-invasive and in-field estimation of the flower number per 
inflorescence. However, despite these two ‘logical’ blocks have been separately evaluated as 
reviewed before, their combination, as an integral solution, remains untested and, therefore, 
its suitability potentially unknown. Additionally, the capability to estimate the yield using the 
number of flowers per inflorescence in conjunction with other indicators like fruit set has not 
been evaluated. The absence of an easy-to-use and non-invasive tool for grapevine flower 
estimation has prevented from performing extensive studies on this topic. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
This paper provides a multi-focal and wide study, considering 11 grapevine varieties, on the 
non-invasive and in-field estimation of the number of flowers per inflorescence. To this end, 
non-linear and linear variety-independent models were developed, tested and compared in 
terms of accuracy, reliability and generalization potential. Moreover, their behaviour was also 
assessed and discussed when they performed jointly with an evolved version for stability 
improvement of the image analysis algorithm presented by Diago et al.6. Yield estimation’s 
performance from the number of flowers alone and in conjunction with the berry set rate and 
berry weight was appraised. This evaluation scheme allowed to test an integrated tool for 
flower number estimation for the first time on a wide set of grapevine varieties.  

Material and methods 

Image acquisition  
Inflorescence images from 11 varieties of Vitis vinifera L. (Viognier, Verdejo, Touriga Nacional, 
Tempranillo, Syrah, Riesling, Pinot Noir, Grenache, Cabernet Sauvignon, Albariño and Airen) 
were acquired in a commercial nursery vineyard located in Falces (Navarra, Spain) on the 21st 
of May 2014. The images were taken at flowering. A characterization of its colour, 
inflorescence size and the phenological stage at the time of imaging using the BBCH scale 
described by Lorenz et al.7 is showed in Table 1.  

For each variety, 12 inflorescence images were taken placing a black cardboard behind the 
inflorescence for background homogenization. For image capture, a Nikon D5300 digital reflex 
camera (Nikon corp., Tokyo, Japan) equipped with a Sigma 50 mm F2.8 macro (Sigma corp., 
Kanagawa, Japan) was used. RGB images were saved at a resolution of 24 Mpx (6000x4000 
pixels), 8 bits per channel and with uncontrolled illumination. No tripod was used. The distance 
between the camera and the inflorescence was not fixed, but within the range of 30-50 cm. 
The flowers from these inflorescences were manually detached from the rachis and counted. 
In order to obtain data for the yield estimation, another dataset consisting on 87 inflorescence 
images from 7 varieties (Viognier, Verdejo, Tempranillo, Syrah, Riesling, Cabernet Sauvignon 
and Airen) were obtained capturing the images in the same way as previously described. These 
inflorescences were not cut from the vine, allowing its fully development until harvest, when 
the clusters were picked, and berries manually destemmed, counted and weighted. 

Image analysis algorithm for flower detection 
The algorithm for flower detection in the inflorescence images was implemented in Matlab 
(Matlab R2010b, Mathworks, Natick, MA, USA) for processing batches of images in a fully 
automated way. This was an evolved version for stability improvement of the algorithm 
described in Diago et al.6  

As a pre-processing step, all the images were downscaled to a 9Mpx resolution for 
computational workload optimization and noise reduction. Additionally, in order to decouple 
illumination and colour information in the images, they were converted into the CIELAB colour 
space (CIE 1976 L*a*b*)8,9.  

The first step consisted on the ROI (region of interest) extraction, which was performed by 
binarization on the b* channel of the CIELAB colour space for separating the inflorescence 
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from the background. The binarization threshold was set using the Otsu’s10 method, which 
enables its calculation in an automated, reliable and illumination-independent way. For that, 
Otsu’s method assumes that the image contains 2 types of pixels corresponding to different 
classes (foreground and background) and that the intensity of these pixels distributes in a bi-
modal histogram. Consequently, the threshold value is calculated as the one providing the 
optimum separation of the 2 classes.  

The second step involved the detection of flower candidates, and it was based on finding the 
local maximum of illumination in every flower. This maximum is generated by the light 
reflection on the surface of the “quasi spherical” shape of the flower, which generates a 
maximum intensity where reflection takes place. These reflection spots were identified using a 
morphological transformation called h-maxima11, as described in Diago et al6, and considered 
as flower candidates. 

The third step consisted on false positive removal by discarding those flower candidates 
generated by reflection spots not caused by flowers. Indeed, the higher intensity spots are 
usually associated to flowers, but some of them may originate from reflection points in the 
background or rachis. Therefore, for false positive filtering, three criteria using the following 
descriptors were sequentially applied:  

• Size: the reflection produced by flowers was expected to have a similar size. This 
descriptor quantifies the size of the flower candidates in terms of number of pixels. 

• Distance: this descriptor was formulated by taking the assumption that flowers form 
clusters in the inflorescence, and that the distance between flowers within a same 
cluster is similar. Also assuming that a cluster is composed by, at least, five flowers, the 
distances between any flower within a cluster and its five closest neighbours must be 
short and similar. Hence, the distance descriptor was calculated for every flower 
candidate as the fifth closest distance between the one under evaluation and the 
remaining candidates. 

• Shape: the bright spots produced by flowers described a circular pattern. This 
descriptor evaluates the circularity of the flower candidates by means of the quotient 
between the minor and major axis. 

Once the descriptors were calculated for a given image, the filtering procedure relied on 
processing their histograms of values. Concretely, a threshold for every histogram was set and 
all the flower candidates with descriptor values that set over the threshold were discarded. For 
deciding a threshold value, the histograms were assumed to describe normal distributions. 
With this assumption, the thresholds were calculated as twice the standard deviation of the 
distributions. In the original work, Diago et al.6 found this point by implementing a process 
consisting on finding the first local minimum after the global maximum of the smoothed 
histogram by means of Savitzky-Golay filtering12. The new approach implemented in this study 
improved the stability in threshold calculation, as the first local minimum placed after the 
global maximum in the histogram not always corresponded to the end of the flower data 
cluster, but sometimes to discontinuities in the histogram related to a discrete dataset. 
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Model generation  
Three different variety-independent models involving linear and non-linear approaches were 
considered. The studied models are described as follows:  

• Single variable linear model: a unique linear model, valid for all varieties, was built using as 
input information the number of flowers visible in an image. For its generation, 55 images 
from all varieties were selected, processed and results used to obtain the best-fitted linear 
function. The remaining 77 images were saved for external validation of the model. 
 

• Multivariable linear model: the linear model previously defined only used the number of 
flowers visible in the image as input for predictions. However, there might be other 
inherent and distinctive structural features in the inflorescence influencing the total flower 
number. From their study and characterisation, a set of five mathematical descriptors was 
generated: 
 

1. Number of flowers visible in the image. 
2. ROI area: It was calculated as the number of pixels in the image belonging to the 

ROI. 
3. Flower radius estimation: It was determined as the average of the minimum 

distances among flowers (this was assumed as equivalent to the flower diameter 
estimation) divided by two. 

4. Flower density: It was defined as the number of flowers divided by the ROI area. 
5. Flower area: It was calculated as the area occupied by a flower in logarithm to 

base 10 scale. The flower area was estimated by assuming the flower to be circular 
in shape, and using the previous radius estimation. 

The model was generated using 55 images and evaluated with the remaining 77 images. 

 
• Non-linear model: The five descriptors previously described were used to characterize a 

non-linear model obtained with a multilayer feed-forward backpropagation neural 
network. Therefore, the neural network had five input neurons fed by the above defined 
descriptors, one hidden layer with two neurons and one output; the transfer function was 
set to linear. The neural network was trained using data from the same set of 55 images 
used for obtaining the linear model, and externally validated as described below using data 
from the remaining 77 images. 

Performance analysis 
A three-step evaluation scheme was designed to study: (a) the accuracy of the image analysis 
algorithm, (b) the behaviour of the developed models and (c) their combined performance.  

Details concerning the aims and structure of each of these three sections are described below. 

Evaluation of the image analysis algorithm for flower detection 
The new version for improved stability of the image analysis algorithm was evaluated on the 
set of 132 images whose inflorescences were cut and manually destemmed. For that, the 
images were analysed with the algorithm and the results compared to reference values. These 
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reference values were obtained by manually labelling flowers on the 132 images making use of 
a custom application developed in Matlab 2010 (Figure 1). The set composed of these 
manually segmented images used as reference is referred to as gold standard set hereafter. 
Then, the algorithm outputs and the gold standard references were compared, with the help 
of the same ad-hoc Matlab-based software, for calculating true positives, false positives and 
false negatives following the definitions below: 

• True positive (TP): It is an automatically detected flower corresponding to an actual 
flower in the gold standard set. 

• False positive (FP): It is an automatically detected flower not corresponding to an 
actual flower in the gold standard set. A redundant TP was also considered as FP. 

• False negative (FN): It is an actual flower, labelled in the gold standard set, which was 
not found by the image analysis algorithm. 

Finally, the Recall (RC) and Precision (PR) metrics were used for evaluating the quality of each 
analysed image as follows:  

ܥܴ = ܶܲܶܲ +  (1) ܰܨ

 

where Recall provides the percentage of actual flowers detected; 

ܴܲ = ܶܲܶܲ +  (2) ܲܨ

where Precision indicates the percentage of flowers correctly assessed. 

Evaluation of the predictive potential of the estimation models 
The goal of this evaluation was to strictly assess the theoretical, hence maximum, estimation 
potential of the developed linear and non-linear models. To be able to confidently make solid 
conclusions in this sense, the accuracy of the data supplied as input to the estimation models 
had to be guaranteed. Under this precept, the outputs produced by the image analysis 
algorithm were not suitable for this evaluation, as they may introduce external errors that can 
distort and impoverish the results of the study. As an alternative, the gold standard set 
previously described and obtained by manually labelling flowers on the 132 images was used 
as input for model building (as described in the Model Generation section) and for external 
validation. Indeed, following this procedure, higher certainty was achieved on the data 
correctness. 

On the other hand, estimation results produced by the models had to be compared to 
reference data. With this goal, all the photographed inflorescences were individually collected, 
destemmed, flowers manually counted and results were annotated. Thus, the actual flower 
number values per inflorescence were compared to the outcomes yielded by the models.  

The quality of the estimations produced by the models was assessed using the determination 
coefficient (R2), the root-mean-square error (RMSE) and the ratio of performance to deviation 
(RPD). Mathematically RMSE is described as follows 
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ܧܵܯܴ = ඨ∑ ෡݈ܨ) ௜௩ − ௜௩)ଶ௡௜ୀଵ݈ܨ ݊  (3) 

where ܨ෡݈ ௜௩ and ݈ܨ௜௩ are the predicted and actual flower number values for the ith image in the 
validation set, respectively. Additionally, RPD is defined as 

ܦܴܲ =  (4) ܧܵܯ௧ܴߪ

 

being ߪ௧  the standard deviation of the actual flower number values in the training set. 

RMSE offers an absolute value of the prediction error for a certain model. However, since 
RMSE does not take into account the sparsity and the range of values of the distribution, it 
might not be completely descriptive on its own. Therefore, RPD was also introduced13 to 
complement the information provided by the RMSE, as it calibrates the obtained RMSE to the 
standard deviation of the values in the training set. According to the literature, a model with a 
RPD value between 2 and 2.5 indicates that coarse quantitative predictions are possible, a 
value between 2.5 and 3 corresponds to good prediction accuracy; values equal or greater 
than 3 indicate excellent prediction accuracy14. 

Evaluation of the performance of an integrated tool for grapevine flower 
estimation 
The performance of an integrated tool, composed of the image analysis algorithm and the 
estimation models described here, for the fully automated, non-invasive and in-field 
estimation of the flower number per grapevine inflorescence was assessed. For analysing the 
performance of the linear and non-linear models when interacting with the image analysis 
algorithm, a version of the integrated tool was created for each model. Then, the two versions 
including the two different models were evaluated and compared as described in the previous 
section; this is, in terms of R2, RMSE and RPD. 
 

Evaluation of the predictive capability of flower number data for yield 
estimation 
The possibility to predict the yield from the flower number has a great application and impact 
because of its early stage estimation. To test its potential accuracy, the number of flowers 
estimated using the non-linear model and the image analysis algorithm was used to estimate 
the number of flowers of the second set of 87 inflorescence images. The inflorescences were 
photographed without cutting them from the vine and allowing their fully development until 
harvest, when they were collected.  

The number of flowers and berries are related by the Fruit set rate. This rate is known to vary 
from one variety to another and also depends on the weather conditions at berry set and the 
carbohydrate availability of each plant. To allow a proper berry number per cluster estimation, 
Fruit set rate was calculated separately for every variety under study (Viognier, Verdejo, 
Tempranillo, Syrah, Riesling, Cabernet Sauvignon and Airen). It was determined as the total 
number of berries in the clusters of that variety (obtained by manual destemming the berries 
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from the cluster) divided by the total number of flowers in the inflorescences (estimated with 
the image analysis algorithm and the non-linear model): 

ݐ݅ݑݎܨ ݐ݁ݏ ௩݁ݐܽݎ = ∑ ∑௜௩௡௜ୀଵ݊ܤ ෡݈ܨ ௜௩௡௜ୀଵ  (5) 

 

where ݊ܤ௜௩ is the actual berry number for the ith cluster in the set. 

This calculation allowed to obtain a fruit set rate for every variety under study. This value was 
used to obtain the Estimated cluster berry number as follows: ݀݁ݐܽ݉݅ݐݏܧ	ݎ݁ݐݏݑ݈ܿ ݕݎݎܾ݁ ௜௩ݎܾ݁݉ݑ݊ = ෡݈ܨ ௜௩ ∗ ݐ݅ݑݎܨ ݐ݁ݏ  ௩ (6)݁ݐܽݎ
 

Similarly for yield estimation, Average berry weight was calculated as the weight of the berries 
in the clusters divided by the number of berries in the clusters of that variety obtained by 
manual destemming: 

݁݃ܽݎ݁ݒܣ ݕݎݎܾ݁ ௩ݐℎ݃݅݁ݓ = ∑ ∑௜௩௡௜ୀଵݓܤ ௜௩௡௜ୀଵ݊ܤ  (7) 

 

where ݓܤ௜௩ is the total weight of the berries in the ith cluster in the set. 

 

From this it is possible to obtain the Estimated yield as follows: ݀݁ݐܽ݉݅ݐݏܧ	݈݀݁݅ݕ௜௩ = ෡݈ܨ ௜௩ ∗ ݐ݅ݑݎܨ ݐ݁ݏ ௩݁ݐܽݎ ∗ ݁݃ܽݎ݁ݒܣ ݕݎݎܾ݁  ௩ (8)ݐℎ݃݅݁ݓ
 

Results and discussion 

Performance evaluation of the image analysis algorithm for flower 
detection  
Table 2 shows the obtained average and standard deviation values of Recall (ܴܥതതതത and ߪோ஼ , 
respectively) and Precision (ܴܲതതതത and ߪ௉ோ, respectively), detailed per variety and considering all 
images as a whole. As it can be observed, the produced results can be considered satisfactory 
and consistent among varieties attending to the measured averages and standard deviations. 
The ܴܥതതതത values were all over 0.80 (except for Airen with ܴܥതതതത=0.79) and in conjunction with ܴܲതതതത 
values higher that 0.75 validates the general applicability of the image analysis algorithm in 
flower detection. With this premise, more accurate results for certain varieties can also be 
observed when carefully comparing partial outcomes (for example, checking differences 
between Airen and Grenache in Table 2). This effect can be attributed to dissimilarities in 
structure and phenological stage of the inflorescences among varieties at the time of image 
acquisition. Indeed, these differences were present since all the images were taken the same 
day, and the varieties for this study were carefully selected to significantly differ in terms of 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
dimensions of the inflorescence, size of the flowers, colour or phenological development as it 
can be observed in Figure 2.  

The measured results even outperformed for recall and provided similar precision results to 
those reported by Diago et al.6 with the original algorithm’s version, tested on three varieties 
and 15 images. These differences cannot be attributed to the modifications applied to the new 
implementation, since they were aimed at improving stability in the calculation of the required 
thresholds for the filtering criteria as previously described. However, the results of this wide 
and exhaustive study outstandingly increased the confidence in the general and successful 
applicability of the methodology. 

Figure 3-(A) shows an original RGB image of an inflorescence of cv. Airen taken in the vineyard, 
and image (B) represents the flower detection result, with the identified flowers being 
signalled with red dots. This inflorescence image had 530 flowers (manually assessed), and the 
image analysis algorithm correctly identified 412 of them, producing 31 FPs. With these 
figures, the obtained Precision and Recall values were 0.93 and 0.78, respectively. 

 

Evaluation of the predictive potential of the estimation models 
As it was previously discussed, linear and non-linear models were generated and tested in this 
study using gold standard data created by manually segmenting flowers on the images. 
Concretely, from the gold standard set of 132 manually-labelled images, 55 of them were kept 
for model training. Data from these images, along with their corresponding actual flower 
number manually and destructively counted, were used as input for model calibration. The 
remaining 77 samples were used for model external validation. 

The relationship between the actual flower number per inflorescence and the predictions 
yielded by the linear and non-linear models can be graphically analysed in Figure 4. Moreover, 
Table 3 includes the obtained results in terms of the defined metrics and detailed per 
grapevine variety. Attending to all metrics, it can be confirmed great performance for all of the 
approaches, with overall results virtually equivalent. In fact, attending to the RPD value given 
by the models, their performance can be qualified as excellent as stated in the literature (RPD 
> 3); this qualification was consistent for all varieties. Focusing on partial results per variety, 
equivalent results and slightly better for one approach can be found, but there was not any 
recognizable pattern justifying this behaviour.  

The coefficient of determination (ܴଶ) values measured for both the linear and non-linear 
models developed in this work were comparable to those obtained by Aquino et al.7. This fact 
confirms the appropriate general behaviour of the models for flower estimation outlined in 
that work. However, when attending to the RMSE, which accurately measures the magnitude 
of the predictive mistake, the differences outstandingly increased, being figures measured by 
Aquino et al.7 considerably worse than those obtained in this study (38.0 vs 84 of RMSE for the 
lineal model; 38.4 vs 58 for the non-linear model), meaning that the deviation from the 
prediction in Aquino et al.7 doubles the obtained in this study, that is, in any case an excellent 
prediction due to its RPD values of 8.12 and 8.04 respectively. This discovery, which indicates 
higher predictive potential than that found by Aquino et al.7, may be explained by the reduced 
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datasets used by those authors for training and testing (they were composed of 28 and 20 
samples, respectively). In fact, this issue was discussed by the authors as: ‘in the authors’ 
opinion, this line needs further research before arriving at definitive conclusions. In effect, 
suitability of the developed feature space needs to be verified on a wider range of varieties’.  

 

On the other hand, the analogous performance showed by the three models in this study 
suggests no benefits in using more descriptors in the linear model or the non-linear approach. 
This outcome reveals that the existent relationship between the flower number visible on 
images and the actual flower number per inflorescence is predominantly linear and with little 
influence of other variables associated to variability between cultivars, thus not existing a 
strong varietal dependence. This shows some discrepancy with the findings of Diago et al.6, 
who stated that a variety-independent estimation linear model would not be accurate enough 
(experiments were carried out on three grapevines varieties). This outcome is remarkable from 
a practical point of view, since it avoids the requirement of using individually tuned models per 
variety. Indeed, variety-dependant models lead to a lack of usability for in-field appplications15 
when compared to global models. 

Performance evaluation of an integrated autonomous tool for flower 
estimation 
The evaluation of an integrated tool, composed of the image analysis algorithm and one of the 
developed models, aimed at estimating the flower number per grapevine inflorescence in the 
field in an automated and non-invasive way was attempted.  

Figure 5 illustrates the relationship found between the predicted and actual flower number per 
inflorescence when using the integrated tool. Additionally, Table 4 specifies the measured 
results in terms of R2, RMSE and RPD, detailed per grapevine variety. Attending to the results 
of the single variable linear model, in spite of being satisfactory, a remarkable performance 
degradation can be identified with respect to their theoretical potential measured in the 
previous section. This outcome was expected, as this model only used the number of flowers 
visible on the images as predictive information, and the image analysis algorithm error making 
in detection is higher than that of a human observer. This can be corroborated by the results of 
the multivariable linear model. The predictions of this model are not only based on the 
number of flowers visible on the image, but are also influenced by four additional descriptors, 
which make the model more robust against mistakes introduced by the image analysis 
algorithm. The inclusion of these descriptors improved the results of the single variable linear 
model, leading to a reduction in the RMSE values from 59.9 to 46.7 as shown in Table 2. 
However, the performance provided by the non-linear model virtually matched to its 
theoretical maximum. This can be driven by mistakes introduced by the image analysis 
algorithm, which are not linearly related to the descriptors. Indeed, when an increase of 
performance was obtained by the multivariable linear model (in comparison with the single 
variable linear model), the non-linear one was the only one capable to correct the errors of the 
image analysis algorithm.  

The results obtained in this study clarify uncertainties contemplated by Aquino et al.7. 
Concretely, these authors considered that, in spite of being promising, the suitability of the 
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non-linear approach should be guaranteed with a wider study including more varieties. 
Additionally, they stated that the gained accuracy had to be assessed to decide whether it 
justified the utilisation of the non-linear approach, for being a more complex implementation 
than the linear one.  A mixed solution like the multivariable linear model that used the 
descriptors of the non-linear model was not tested previously to this publication. The 
performed analysis indicates that, in absence of external errors, the linear and non-linear 
approaches provide a similar performance. However, in practice, when interacting with the 
image analysis algorithm, the non-linear solution offered a more robust and accurate 
behaviour than the linear ones, even when the same descriptors were used as inputs. In any 
case, the simplicity and ease of computation of the multivariable linear model can offer an 
advantage in some applications where the computation time is a priority. Therefore, the 
prediction capabilities shown in the present work on a wide range of varieties by the 
integrated solution composed of the image analysis algorithm and the non-linear model, 
indicate that, in practice, this is the optimum combination for most of the use cases.  

Evaluation of the predictive capability of flower number for yield 
estimation 
As a preliminary analysis, the relationship between the number of flowers and the final crop 
yield was studied. To this end, the image analysis algorithm and the non-linear model were 
used to provide an estimation of the flower number per inflorescence. Figure 6-(A) shows that 
a poor relationship existed between these two variables (R2=0.49). This can be expected 
because of the differences among varieties in the fruit set rate, which is the number of flowers 
that became berries.  

The berry set rate was used to overcome the differences in the fertility between grapevine 
varieties. This is shown in Figure 6-(B), with a good coefficient of determination (R2=0.79). This 
relationship is crucial, because it points out that a yield prediction can be done as sooner as at 
the flowering stage, months before harvest. To that end, it is compulsory to have an a priori 
knowledge of the berry set rate. This factor can be obtained from historical records and may 
be modified by external factors related to meteorological or viticultural practices. Further 
research is needed to stablish a protocol to obtain the berry set rate and its precision for 
different varieties and sites. The use of the tool presented in this publication in conjunction 
with others that will allow to obtain the grape berry number in a similar way that VitisFlower 
app does will allow to conduct the needed investigations. 

Increased precision in yield prediction can be attained if the average berry weight is known, as 
shown in Figure 6-(C), obtaining a strong correlation (R2=0.91), that allows an accurate 
prediction of the final crop yield from the number of flowers and two additional factors (the 
berry set rate and average berry weight), that could be obtained from historical records and 
adjusted over the season to account for meteorological variations. 

Conclusions 
This paper presents a deep study on the estimation of the flower number per inflorescence in 
several grapevine varieties by means of a non-invasive, automated and in-field applicable 
solution. The measured theoretical potential of variety-independent models indicated that, 
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with a unique model, the actual flower number per inflorescence can be accurately estimated 
from features extracted from images. This definitely discards the need of individual models per 
variety, what supposes outstanding applicative advantages. On the other hand, when testing 
an integrated tool comprising the image analysis algorithm and the three studied models, 
results indicated that the performance of the non-linear approach remained close to its 
theoretical maximum. For the case of the linear approaches, in spite of providing good results, 
remarkable performance declining was detected. These findings, supported by a wide study 
comprising eleven varieties, definitely indicated that grapevine flower estimation in the 
defined circumstances can be accurately achieved, additionally arguing for the exploitation of 
the non-linear solution. The potential capability for final yield prediction from flower number 
estimation was also evaluated. The number of flowers per inflorescence alone was found to 
provide insufficient information for yield estimation, but procures promising results when 
combined with fruit set rate and especially when the average berry weight is known. The 
computation of the berry set rate requires the assessment of the number of flowers in a not 
destructive way, so the use of the presented algorithms offers an important advance to this 
end. The integrated solution can be implemented in a smart device application, such as the 
existing vitisFlower (that is available for Android based devices through android applications 
market), to provide the grape industry with a fast, non-invasive, reliable and inexpensive tool 
to automatically estimate the number of flowers per inflorescence under field conditions. 
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Tables 

Table 1: Characterization of the grapevine variety colour, inflorescence size and phenological stage at the time of 
image acquisition. 

Grapevine variety Colour Inflorescence size 
(average #flowers/inflorescence) Phenological stage 

Airén White 738 53-55 
Albariño White 277 55-57 
Cabernet Sauvignon Red 419 53-55 
Grenache Red 613 55-57 
Pinot Noir Red 181 55-57 
Riesling White 237 55-57 
Syrah Red 169 53-55 
Tempranillo Red 242 53-55 
Touriga Nacional Red 192 55 
Verdejo White 483 53-55 
Viognier White 228 55 

aPhenological stage at which inflorescence images were taken. The numbers refer to the phenological 
growth stages according to the BBCH-Identification Key of Grapevine in BBCH (Lorenz et al., 1994). BBCH 
53: Inflorescence clearly visible; 55: Inflorescence swelling: flowers pressed together; 57: Flowers 
separate; inflorescence developed.  

 

Table 2: Results obtained with image analysis algorithm in terms of average and standard deviation values of 
Recall (࡯ࡾതതതത, ࡯ࡾ࣌) and Precision (ࡾࡼതതതത, ࡾࡼ࣌). Figures are detailed per variety (n=12). 

Variety ࡯ࡾതതതത ࡯ࡾ࣌ തതതതࡾࡼ  ࡾࡼ࣌
Viognier 0.86 0.03 0.82 0.05 
Verdejo 0.89 0.03 0.81 0.05 
Touriga Nacional 0.89 0.04 0.88 0.06 
Tempranillo 0.89 0.03 0.87 0.03 
Syrah 0.81 0.05 0.81 0.07 
Riesling 0.83 0.04 0.87 0.05 
Pinot Noir 0.86 0.04 0.79 0.09 
Grenache 0.87 0.04 0.86 0.05 
Cabernet Sauvignon 0.86 0.05 0.89 0.05 
Albariño 0.89 0.05 0.76 0.08 
Airen 0.79 0.06 0.90 0.03 
Overall 0.86 0.05 0.84 0.07 
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Table 3: Results yielded by the linear (single variable and multivariable) and non-linear models to estimate the 
actual flower number per inflorescence from features manually extracted from images (n=77) 

Variety 
Single variable linear 

model 
Multivariable linear model Non-linear model 

R2 RMSEa RPDb R2 RMSEa RPDb R2 RMSEa RPDb 
Viognier 0.88 39.2 7.86 0.89 39.6 7.79 0.91 22.8 13.56 
Verdejo 0.97 38.6 7.98 0.96 40.4 7.64 0.97 52.4 5.89 
Touriga Nacional 0.70 58.0 5.32 0.72 62.5 4.94 0.75 51.3 6.01 
Tempranillo 0.99 17.3 17.80 0.99 16.6 18.55 0.99 19.5 15.81 
Syrah 0.97 28.9 10.66 0.97 30.3 10.18 0.95 35.0 8.82 
Riesling 0.94 25.9 11.92 0.94 27.2 11.35 0.95 17.9 17.29 
Pinot Noir 0.82 26.7 11.57 0.84 24.7 12.50 0.86 41.6 7.42 
Garnacha 0.88 58.9 5.24 0.95 57.9 5.33 0.91 40.1 7.68 
Cabernet Sauvignon 0.99 26.3 11.74 0.99 24.3 12.72 0.99 29.3 10.53 
Albariño 0.68 26.4 11.67 0.78 22.6 13.67 0.83 33.3 9.26 
Airen 0.98 43.4 7.12 0.98 45.1 6.84 1.00 43.3 7.13 
Global 0.96 38.0 8.12 0.96 38.5 8.01 0.96 38.4 8.04 

a: root-mean-square error; represents the average root deviation between predicted and observed values.  
b: ratio of performance-to-deviation; is the ratio between the standard deviation of the sample set used to 
train a model and the RMSE measured for that model. 
 

Table 4: Results yielded by the linear (single variable and multivariable) and non-linear models in the estimation 
of the total flower number per inflorescence from features extracted using image analysis algorithm (n=77). 

Variety 
Single variable linear 

model 
Multivariable linear model Non-linear model

R2 RMSEa RPDb R2 RMSEa RPDb R2 RMSEa RPDb

Viognier 0.70 62.4 4.94 0.75 23.6 13.08 0.89 15.6 19.74 
Verdejo 0.95 83.3 3.70 0.96 52.4 5.89 0.95 52.4 5.89 
Touriga Nacional 0.34 67.2 4.59 0.19 32.5 9.50 0.52 37.4 8.25 
Tempranillo 0.94 20.4 15.09 0.95 10.2 30.22 0.99 10.2 30.22 
Syrah 0.76 36.5 8.46 0.84 28.8 10.70 0.86 32.2 9.59 
Riesling 0.82 29.7 10.38 0.72 39.1 7.90 0.81 32.6 9.46 
Pinot Noir 0.45 48.2 6.39 0.17 38.5 8.01 0.43 44.8 6.88 
Garnacha 0.79 74.5 4.14 0.84 47.8 6.46 0.91 55.6 5.55 
Cabernet Sauvignon 0.98 24.1 12.79 0.99 21.4 14.45 0.99 21.4 14.45 
Albariño 0.58 77.3 3.99 0.65 30.8 10.03 0.79 22.4 13.80 
Airen 0.37 98.2 3.14 0.84 126.9 2.43 0.85 60.6 5.09 
Global 0.91 59.9 5.15 0.94 46.7 6.61 0.96 37.1 8.32 

a: root-mean-square error; represents the average root deviation between predicted and observed values.  
b: ratio of performance-to-deviation; is the ratio between the standard deviation of the sample set used to 
train a model and the RMSE measured for that model. 
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