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The present paper studies multiple failure and signature analysis of 
coherent systems using the theory of monomial ideals. While sys-
tem reliability has been studied using Hilbert series of monomial 
ideals, this is not enough to understand in a deeper sense the ideal 
structure features that reflect the behavior of the system under 
multiple simultaneous failures. Therefore, we introduce the lcm-
filtration of a monomial ideal, and we study the Hilbert series and 
resolutions of the corresponding ideals. Given a monomial ideal, 
we explicitly compute the resolutions for all ideals in the asso-
ciated lcm-filtration, and we apply this to study coherent systems. 
Some computational results are shown in examples to demonstrate 
the usefulness of this approach and the computational issues that 
arise. We also study the failure distribution from a statistical point 
of view by means of the algebraic tools described.

© 2016 Elsevier Ltd. All rights reserved.

1. Algebraic reliability summary

Let n be a positive integer and consider a coherent system S with n components, each of which 
can be in a finite number of states. The set of possible states of the whole system S can be coded as 
elements of Nn . The set of possible states contains a distinguished subset F of failure states which we 

E-mail addresses: mohammad@math.tu-berlin.de (F. Mohammadi), eduardo.saenz-de-cabezon@unirioja.es
(E. Sáenz-de-Cabezón), h.wynn@lse.ac.uk (H.P. Wynn).
http://dx.doi.org/10.1016/j.jsc.2016.08.010
0747-7171/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2016.08.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:mohammad@math.tu-berlin.de
mailto:eduardo.saenz-de-cabezon@unirioja.es
mailto:h.wynn@lse.ac.uk
http://dx.doi.org/10.1016/j.jsc.2016.08.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2016.08.010&domain=pdf


F. Mohammadi et al. / Journal of Symbolic Computation 79 (2017) 140–155 141
assume to be coherent, meaning closed above under the standard entrywise ordering. The assumption 
of coherence is equivalent to saying that the failure states are precisely the exponents appearing in 
the monomials of the monomial ideal MF (S) ⊆ k[x1, . . . , xn]. This ideal is known as the failure ideal
of the system S .

Fix now a probability distribution on the set of states of the system. Our goal is to compute the 
reliability of S , i.e. the probability that S is in a working (non-failure) state. Alternatively, we want to 
compute the unreliability of S , i.e. the probability that S is in failure state. The unreliability, or failure 
probability of S is defined as E[1F ] where E denotes expectation, and 1F is the indicator function of 
the failure set F , which is equal to 1 for all failure states and 0 otherwise. Note that the expectation 
of the indicator function of F expresses the probability that the system is in one of the states of the 
set F .

The indicator function and the multigraded Hilbert series of the ideal MF (S) are closely related. 
Specifically, if F is any free resolution of MF (S) with multigraded ranks γi,μ we have

HSMF (S)(t, x) = 1 + ∑n
i=1(−1)iti(

∑
μ∈Nn γi,μxμ)∏n

j=1(1 − x j)
. (1.1)

To simplify our notation, we set

HMF (S)(t, x) = −
n∑

i=1

(−1)iti(
∑
μ∈Nn

γi,μxμ), (1.2)

and we refer to this as the numerator of the Hilbert series of MF (S). This numerator is a way of 
counting the set of all monomials in the ideal MF (S) by considering this set as the union of the sets 
of monomials in the ideals generated by each of the minimal generators of MF (S). This is therefore 
a special kind of inclusion–exclusion formula.

We also set

HMF (S)(1,α) = 1F (α) = −
n∑

i=1

(−1)i
∑
μ∈Nn

γi,μ1xμ(α), (1.3)

where 1xμ(α) is the indicator function of the states μ ≥ α. If F is a minimal free resolution of MF (S)

then the ranks γi,μ are the smallest possible and depend only on MF (S), in this case we call them 
the multigraded Betti numbers of MF (S) and denote them by βi,μ . The formula (1.3) is potentially 
useful for determining failure probabilities because it reduces the problem to the computation of the 
simpler probabilities E[1xμ(α)]. By truncating the sum over i we obtain obvious lower and upper 
bounds for 1F (α) and thus on failure probabilities. These bounds improve the traditional Bonferroni 
bounds based on inclusion–exclusion. Among the bounds coming from free resolutions, the tightest 
ones are obtained when F is taken to be the minimal free resolution of MF (S).

From these basic principles, the authors have studied different aspects of the relation between 
monomial ideals and coherent systems in a series of works. In Sáenz-de Cabezón and Wynn
(2010; 2011) several relevant systems, including k-out-of-n systems and variants, or series-parallel 
systems were studied, obtaining explicit and recursive formulas for the Betti numbers of the failure 
ideals of those systems. In Sáenz-de Cabezón and Wynn (2015) the Hilbert function of the system 
ideal is applied to optimal design in reliability. Other works extending the scope of application of this 
approach are Sáenz-de Cabezón and Wynn (2014) and Mohammadi et al. (2016) devoted to robust-
ness measure of networks and percolation on trees respectively.

In this paper we propose two further steps for the application of multigraded Hilbert series in 
probability, namely the study of multiple simultaneous failures of the system, and signature analysis. 
These two problems, not totally unrelated, imply a deeper knowledge of the structure of the system 
under consideration, beyond the information given by reliability analysis. The algebraic approach has 
already proven being useful for the analysis of the structure of coherent systems, not only in what 
respects the reliability of the system but also on system design and measures of components impor-
tance (Sáenz-de Cabezón and Wynn, 2010, 2015). The main contributions of the algebraic approach 
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to system reliability have been so far the improvements of the extensively used inclusion–exclusion 
method, the new algorithms that have been proven to be efficient for several important systems 
(k-out-of-n and variants or series-parallel systems) and finally a good tool to obtain insight of the 
system’s structure, beyond the mere numerical computation of reliability figures. This approach is a 
good complement to the wide variety of techniques used by reliability experts (Kuo and Zuo, 2003).

The tools used so far, namely the Hilbert series of the failure ideal of the system are not enough 
when one needs to study simultaneous failures or signature analysis. We therefore introduce a new 
algebraic object that provides the necessary insight on the structure of the ideals: the lcm-filtration. 
With this motivation at hand, the main contribution of the paper is the definition of the lcm filtration 
of a monomial ideal, the study of its resolutions and Hilbert series and also the performance of actual 
computations on these objects. The results obtained are then successfully applied to the study of 
simultaneous failures and signatures in two different paradigmatic examples.

The plan of the paper is the following. In §2 we present the two problems that we are dealing 
with: multiple failure and signature analysis. In this section, we see that the main algebraic ob-
ject we need to understand to study these problems is the lcm-filtration of a monomial ideal. The 
lcm-filtration is studied in §3 where we give an explicit free resolution for the ideals involved in the 
lcm-filtration of any monomial ideal I . This section uses previous work by Aramova et al. (1997; 1998)
on squarefree stable ideals, and by Peeva and Velasco (2011) on frames of monomial resolutions. We 
study also the behavior of this and other resolutions in examples. Finally, §4 is devoted to estimation 
of the probability distribution of the multiple failures of a system. During the paper we use two dif-
ferent, paradigmatic examples, consecutive k-out-of-n systems and cut ideals of complete graphs. The 
structural differences of the behavior of these two systems with respect to multiple failures is made 
evident by the use of the concepts and techniques developed in the paper.

2. Two steps further

2.1. Multiple failures

Let S be a coherent system in which several minimal failures can occur at the same time. Let 
Y be the number of such simultaneous failures. The event {Y ≥ 1} is the event that at least one 
elementary failure event occurs, which is the same as the event that the system fails. If xα and xβ are 
the monomials corresponding to two elementary failure events, then lcm(xα, xβ) = xα∨β corresponds 
to the intersection of the two events and we have Y ≥ 2. The corresponding ideal is 〈xα〉 ∩ 〈xβ 〉. The 
full event Y ≥ 2 corresponds to the ideal generated by all such pairs. The argument extends to Y ≥ k
and to study the tail probabilities prob{Y ≥ k}. We now discuss these ideals in more detail.

2.1.1. The lcm-filtration and the survivor
Let I ⊆ k[x1, . . . , xn] be a monomial ideal and {m1, . . . , mr} be a minimal monomial generating 

system of I . Let Ik be the ideal generated by the least common multiples of all sets of k distinct 
monomial generators of I ,

Ik = 〈lcm({mi}i∈σ ) : σ ⊆ {1, . . . , r}, |σ | = k〉.
We call Ik the k-fold lcm-ideal of I . The ideals Ik form a descending filtration

I = I1 ⊇ I2 ⊇ · · · ⊇ Ir,

which we call the lcm-filtration of I .
The survivor functions

F (k) = prob{Y ≥ k}
for a coherent system, are obtained from the multigraded Hilbert function of the k-fold lcm-ideal Ik . 
In fact, to emphasize the counting we relabel MF (S) as I1.

Example 2.1. Consider a sequential (also named consecutive) k-out-of-n system with n = 5, k = 2. 
Then

I1 = 〈x1x2, x2x3, x3x4, x4x5〉.
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The numerator of the Hilbert series obtained from the Taylor resolution of I1 is formed by succes-
sively taking the lcm’s of pairs, triples and so on, with sign changes and with cancellations across 
neighboring rows. The indicator function of the failure set of this system, 1F (α) is the evaluation of 
the polynomial

x1x2 + x2x3 + x3x4 + x4x5 − (x1x2x3 + x2x3x4 + x3x4x5 + x1x2x4x5) + x1x2x3x4x5

which is the numerator of the Hilbert series of I1, i.e., HI1(1, x). The Taylor resolution (which is equiv-
alent to the full inclusion–exclusion formula) uses all the terms from the full lcm-lattice. A similar 
analysis gives the numerator of the Hilbert series of I2, HI2 (1, x) as:

x1x2x3 + x2x3x4 + x3x4x5 + x1x2x4x5 − (x1x2x3x4 + x2x3x4x5 + x1x2x3x4x5).

The above considerations can be summarized in the following lemma.

Lemma 2.2. Let Y be the number of failure events of a system S. If G(MF (S)) is the set of monomial minimal 
generators of the failure ideal MF (S) = I1 , then

P{Y ≥ k} = E[1Mk (α)] = HIk (1,α),

where 1Mk is the indicator function of the exponents of monomials in the k-fold lcm-ideal

Ik := 〈lcm({mi}i∈σ ) : σ ⊆ G(MF (S)), |σ | = k〉.

As a result, we also obtain identities, lower and upper bounds for multiple failure probabilities 
from free resolutions in §3.

2.2. Signature analysis

2.2.1. Classical signature
The theory of signature analysis considers a system with n components which fail independently 

with a common failure time distribution with cumulative distribution function, cdf, F(t) and den-
sity f (t). As time proceeds, components start to fail and one can write the failure times as

T(1), T(2), . . . , T(n).

In statistical terminology, these are the order statistics of the full set of failure times. Because of the 
distributional assumption there are no ties. Now at some (first) integer i the system will fail: T = T(i)
where T is the failure time of the system. The signature si codes the probabilities

si = prob{T = T(i)}
= prob{T ≥ T(i)} − prob{T ≥ T(i+1)}, i = 1, . . . ,m.

Moreover, because the system must eventually fail, 
∑n

i=1 si = 1. For material on signature analysis 
see Boland (2001), Samaniego (2007). A main idea of this paper is that we can derive s1, . . . , sn from 
the failure ideal. The value si is the conditional probability that exactly i components have failed, 
conditional on the event that the system has failed. If we use a squarefree (binary) representation, 
then for the monomials describing individual failures the degree gives the number of component 
failures. Thus, if Pi = ∑

α∈F ,|α|=i pα , where pα is the probability that the system is in the failure 
state α, and P (F) = ∑

α∈F pα (i.e., the full probability of failure), then

si = Pi

P (F)
.

Identities, upper and lower bounds for the Pi are inherited from those for the P (F) simply by inter-
secting with the event Ai = {α : |α| = i}, which can be found by extracting all the terms of the same 
degree i.
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We have that si = E[1Ei (α)]
E[1F (α)] , where Ei is the set consisting of α’s for which exactly i elements have 

failed and α is a failure state.

Notation. Let I = MF (S) ⊂ k[x1, . . . , xn] be the failure ideal of the system S . We use I [i] to denote the 
set of squarefree monomials of degree i in I , and 〈I [i]〉 for the ideal generated by all such monomials. 
The indicator function 1Ei is the indicator function of the set of exponents of the monomials in I [i] .

Observe that now the exact formulas for the probabilities si as well as upper and lower bounds 
can be obtained from the free resolutions and Hilbert series of 〈I [i]〉. In particular, si is the difference 
of the evaluation of the numerator of the Hilbert series of 〈I [i]〉 and that of 〈I [i+1]〉.

2.2.2. The k-fold signature
Now we focus on multiple simultaneous minimal failures on the system. As time proceeds, com-

ponents start to fail simultaneously and one can write the failure times as

T k
(1), T k

(2), . . . , T k
(n),

where T k
(i) , 1 ≤ k ≤ n, is the time in which we have k simultaneous minimal failures with i failed 

components. As before, at some (first) integer i the system will have k simultaneous minimal failures: 
T k = T k

(i) where T k is the time of k minimal failures in the system. The k-signature sk
i codes the 

probabilities

sk
i = prob{T k = T k

(i)}
= prob{T k ≥ T k

(i)} − prob{T k ≥ T k
(i+1)}, i = 1, . . . ,n, and k = 1, . . . , r.

Now the ideal encoding the states that at least k failures occur simultaneously is the k-fold 
lcm-ideal Ik . Doing the same analysis as we did for the classical signature, we obtain that sk

i is the 
difference of the evaluation of the numerator of the Hilbert series of 〈I [i]k 〉 and 〈I [i+1]

k 〉. This is why 
we call sk

i the k-fold signature of the system.

3. The lcm-filtration and its resolutions

3.1. Aramova–Herzog–Hibi resolution and frames

Let I ⊆ k[x1, . . . , xn] be a monomial ideal with r generators, and let Ik be the k-fold lcm-ideal 
of I . In this section we want to study various free resolutions of Ik . We will use an explicit minimal 
resolution for the ideal generated by all k-fold products of r variables, which is called the k-out-of-r
ideal. Using frame theory, as developed by Peeva and Velasco (2011), we construct resolutions of Ik , 
and relate them to the Taylor resolution (Taylor, 1966).

3.1.1. The minimal free resolution of the k-out-of-r ideal
Let Ik,r ⊆ R = k[x1, . . . , xr] be the ideal generated by all products of k different variables. This ideal 

corresponds in algebraic reliability theory, to the ideal of a k-out-of-r system (Sáenz-de Cabezón and 
Wynn, 2011). It is clear that Ik,r is a squarefree stable ideal in the sense of Aramova et al. (1998), 
hence its minimal free resolution is of the same form of the Eliahou–Kervaire resolution (Eliahou and 
Kervaire, 1990) as described explicitly by Aramova et al. (1998). Let us recall here some definitions 
and notation from Aramova et al. (1998). For the squarefree monomial m = xi1 xi2 · · · xid with i1 < i2 <

· · · < id we denote min(m) = i1 and max(m) = id . For every squarefree monomial ideal I minimally 
generated by G(I) and for any squarefree monomial in I , there exists a unique pair (a, b) of squarefree 
monomials in R such that a ∈ G(I), m = a · b and max(a) < min(b). Thus, we have a map g from 
the set of squarefree monomials in I to the set G(I). This map is given by g(m) = a. Now, given 
j ∈ {1, 2, . . . , r} with j ∈ supp(m) we set m j = g(x j ·m) and y(m) j = (x j ·m)/m j . Aramova, Herzog and 
Hibi gave an explicit resolution of any squarefree monomial ideal using the function g . The cellular 
realizations of these resolutions are described in Dochtermann and Mohammadi (2014).
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We give here an explicit description of the Aramova–Herzog–Hibi resolution of Ik,r independent of 
the map g and based only on the subsets of {1, . . . , r}.

Proposition 3.1. Let Ik,r ⊆ k[x1, . . . , xr] be the k-out-of-r ideal. The minimal free resolution of Ik,r is given by

Ik,r : 0 −→ Fr−k
∂−→ · · · ∂−→ F1

∂−→ Ik,r −→ 0,

where:

(1) Each generator of Fi is labeled by a pair [σ , τ ] such that σ , τ ⊆ {1, . . . , r}, σ ∩ τ = ∅, |σ | = k, |τ | = i
and max(σ ) > max(τ ).

(2) The differential ∂ is given by

∂([σ ,τ ]) =
∑
j∈τ

(−1)sgn( j,τ )(−x j[σ ,τ − j] + xmax(σ )[σ − max(σ ) + j, τ − j])

if max(τ ) < max(σ − max(σ )), or

∂([σ ,τ ]) =
∑
j∈τ

(−1)sgn( j,τ )(−x j[σ ,τ − j])+xmax(σ )[σ −max(σ )+max[τ ], τ −max(τ )]

if max(τ ) > max(σ − max(σ )). Observe that in the first case we have 2|τ | summands, and in the second 
case only |τ | + 1 summands.

Proof. Since Ik,r is squarefree stable, we can use the description of its minimal free resolution given 
in Aramova et al. (1998) which has an equivalent labeling of the generators of each free module Fi . 
Using our notation, this differential is

δ([σ ,τ ]) =
∑
j∈τ

(−1)sgn( j,τ )(−x j[σ ,τ − j] + y(σ ) j[σ j, τ − j]),

where σ j = g(σ + j), y(σ ) j = (σ + j) − σ j and [μ, ρ] = 0 if max(ρ) > max(μ).
To complete the proof we have to show that:

(1) For all j ∈ τ , y(σ ) j = max(σ ) and σ j = σ − max(σ ) + j;
(2) If max(τ ) > max(σ − max(σ )) and j < max(τ ), then max(τ − j) > max(σ − max(σ ) + j) and 

hence [σ − max(σ ) + j] = 0.

To prove (1) observe that for σ + j the unique δ, γ such that σ + j = δ ∪ γ with δ ∈ G(Is,r) and 
max(δ) < min(γ ) are δ = σ − max(σ ) + j and γ = max(σ ): First, it is clear that δ ∪ γ = σ + j, and 
since j ≤ max(τ ) < max(σ ) then max(δ) < min(γ ). Then, by definition σ j = δ = σ − max(σ ) + j and 
y(σ ) j = σ + j − σ j = σ + j − σ + max(σ ) − j = max(σ ).

To prove (2) first we note that if j = max(τ ), then max(σ − max(σ ) + j) ≥ j and max(τ − j) < j. 
Thus max(σ −max(σ ) + j) > max(τ − j). Now if j < max(τ ), then on one hand we have that max(σ −
max(σ )) < max(τ ) implies that max(σ − max(σ ) + j) is equal to max(max(σ − max(σ )), j), which 
is strictly less than max(τ ) = max(τ − j). Hence we have that [σ − max(σ ) + j, τ − j] = 0. On the 
other hand, if max(σ − max(σ )) > max(τ ) then max(σ − max(σ ) + j) = max(σ − max(σ )) is strictly 
greater than max(τ ) = max(τ − j). This completes the proof. �

Using Ik,r we construct now a resolution of Ik . We use the techniques and terminology of Peeva 
and Velasco (2011). First recall that the lcm-lattice of a monomial ideal M denoted by LM is the lattice 
whose elements are labeled by the least common multiples of the monomial minimal generators 
of M . A monomial ideal M in a polynomial ring S is called a reduction of another monomial ideal M ′
in a polynomial ring S ′ over the same ground field of S , if there exists a map f : LM′ → LM which is 
a bijection on the atoms and preserves lcm’s. Such a map is called a degeneration.
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Lemma 3.2. Ik is a reduction of Ik,r .

Proof. Consider the map f : LIk,r → LIk that takes σ to mσ , where mσ = lcm({mi}i∈σ ). The map f is 
clearly a degeneration and hence Ik is a reduction of Ik,r . Observe that f is not an isomorphism in 
general. �

We can now construct the f -degeneration f (Ik,r) following Peeva and Velasco (2011, Construc-
tion 4.3), which by Peeva and Velasco (2011, Theorem 4.6) is a free resolution of Ik . We can also 
construct the f -homogenization of Ik,r by Peeva and Velasco (2011, Construction 4.10) and since Ik,r
is a minimal free resolution of Ik,r , both f -degeneration and f -homogenization coincide. We denote 
the so obtained (not necessarily minimal) resolution of Ik by Ik . Let us describe it:

The elements of the basis of Ik are also labeled by pairs [σ , τ ] such that σ , τ ⊆ {1, . . . , r}, σ ∩ τ =
∅, |σ | = s, |τ | = i and max(σ ) > max(τ ). Observe that the multidegree of element [σ , τ ] in Ik is 
f (σ ∪ τ ). The differential ∂ is given by

∂([σ ,τ ]) =
∑
j∈τ

(−1)sgn( j,τ )(− mσ∪τ

mσ∪τ− j
[σ ,τ − j] + mσ∪τ

mσ∪τ−max(σ )

[σ − max(σ ) + j, τ − j])

if max(τ ) < max(σ − max(σ )), or

∂([σ ,τ ]) =
∑
j∈τ

(−1)sgn( j,τ ) − mσ∪τ

mσ∪τ− j
[σ ,τ − j]

+ mσ∪τ

mσ∪τ−max(σ )

[σ − max(σ ) + max[τ ], τ − max(τ )]

if max(τ ) > max(σ − max(σ )).

Theorem 3.3. Let I = 〈m1, . . . , mr〉 be a monomial ideal. Ik is a free resolution of Ik for all k. The Betti numbers 
of Ik,r are an upper bound for the Betti numbers of Ik.

Remark 3.4. I1 is the Taylor resolution of I .

3.1.2. Resolutions for Ik
For any monomial ideal we can construct different free resolutions. A distinguished one is the 

unique (up to isomorphism) minimal free resolution, which is not always easy to obtain computa-
tionally. For this and other reasons, one usually uses other non-minimal resolutions, that are easier to 
obtain. A prominent example is Taylor resolution (Taylor, 1966). Taylor resolution begins with any set 
of monomial generators of the ideal (not necessarily the minimal generating set) and the resolution 
is described combinatorially. In the case of the ideals Ik involved in the lcm-filtration of I , there are 
two natural choices for Taylor resolutions, the one that uses the minimal generating set of Ik and the 
one that uses the (redundant) generating set given by all k-fold lcm’s of generators of I . We denote 
the first one by Tk and the second one by Tk . Tk is the usual Taylor resolution of Ik . We also have 
the minimal free resolution Mk and the above described resolution Ik .

All three resolutions Tk , Mk and Ik are subcomplexes of Tk . Mk is a subcomplex of Tk , Tk and Ik . 
But Tk , the usual Taylor resolution of Ik , and Ik are not subcomplexes of each other. Therefore Ik is 
one of the rare examples of interesting non-sub-Taylor resolutions of a monomial ideal, which also 
has non-minimal first syzygies. Mermin in (2012, Question 8.1) asks whether there are any (interest-
ing) resolutions of a monomial ideal which are not subcomplexes of the Taylor resolution. The one 
described above is an example of such resolution.

3.2. Examples

Let us describe now two examples that demonstrate the usefulness of the lcm-filtration to detect 
structural differences in the ideals (i.e. the systems) under study. The first example shows ideals of 
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Fig. 1. Sizes of resolutions of I2,n for n = 10, 11, 12. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

consecutive linear k-out-of-n systems, i.e. systems that fail whenever k consecutive components out 
of n components fail. The second example is the cut ideal of the n-complete graph. This ideal models 
the behavior of all-terminal reliability of a system of n components, i.e. the system fails whenever 
there are two disconnected nodes, that is when the graph is disconnected. The behavior of these 
two systems with respect to multiple simultaneous failures is well illustrated by the study of their 
lcm-filtrations. These will be our running examples in this paper. We now introduce them and show 
the behavior of the resolutions of the ideals in their lcm-filtrations.

Example 3.5. Consecutive 2-out-of-n ideals:
The ideal of the consecutive 2-out-of-n system is minimally generated by products of consecutive 

pairs of the variables, x1x2 up to xn−1xn . This corresponds to the edge ideal of the line graph, which 
has been intensively studied (also from the algebraic reliability point of view, see Sáenz-de Cabezón 
and Wynn, 2011) and for which the minimal free resolution and Betti numbers are known (He and 
Van Tuyl, 2010). Fig. 1 shows the behavior of Tk (green, circles), Ik (red, squares) and Mk (blue, 
diamonds) for the lcm-filtrations of the ideals of the consecutive 2-out-of-n systems for n = 10, 11, 12. 
Each line corresponds to the full filtration of one ideal, the abscissa corresponds to the level k of the 
filtration, and the ordinate gives the logarithm of the total size of the resolution, understood as the 
sum of all the ranks of the modules in the resolution. In this example we can see that while the 
generating set of each Tk is smaller than the corresponding one of Ik , the latter resolution is much 
closer to the minimal free resolution, except for the latest steps of the filtration.

Example 3.6. Cut ideals of graphs:
Fig. 2 shows the picture of the logarithm of the size of Tk (green, circles), Ik (red, squares) and 

Mk (blue, diamonds) for the ideals in the lcm-filtration of the ideal of the complete graphs on 4 and 
5 vertices. Observe that the picture is completely different from Fig. 1. There are two main differ-
ences: In the first place, Taylor resolution is closer to the minimal one than Ik and that is because 
the cancellations of non-minimal generators are much more numerous here than in the case of the 
consecutive k-out-of-n ideals, and therefore the difference of the resolutions is much more evident. 
Another difference is that the green and blue lines have some horizontal trends. This is because for 
some values of k, the k-fold lcm ideals are exactly the same, i.e. in this case the filtration has a 
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Fig. 2. Sizes of resolutions of the ideals in the lcm filtration of I4 and I5. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

staircase behavior, it remains constant for some steps and then shrinks and so on. This was not evi-
dent just from the generating set of the ideal and has to do with the nature of the cut ideals of the 
complete graph, which have been extensively studied in Mohammadi (2016a; 2016b), Mohammadi 
et al. (2016; in preparation), Mohammadi and Shokrieh (2014; 2016). Here we just mention the main 
results that illustrate the behavior we have just observed, and we refer the interested readers to 
Mohammadi et al. (in preparation) for more details.

Let Kn be the complete graph on n vertices. Let In ⊂ k[xij : 1 ≤ i < j ≤ n] be the cut ideal of Kn . 
For integer k, 1 ≤ k ≤ n, we let In,k be the k-fold lcm-ideal of In . We denote by Pn,k the set of 
k-partitions of [n]. For any k-partition of [n], we associate a monomial whose support is the set of 
edges between distinct blocks of the partition. For example for the partition σ = 12|3|4 of K4 we 
associate the monomial mσ = x13x14x23x24x34.

We denote by Pn,k the ideal minimally generated by the monomials associated to the partitions 
in Pn,k . We have the following relations between the ideals In,k and the ideals Pn,k .

Theorem 3.7. (Mohammadi et al., in preparation, Theorem 3.1) For all integers k and n, 1 ≤ k ≤ n we have

In,2k−1 = In,2k−1+1 = · · · = In,2k−1 = Pn,k+1.

3.3. Computational cost

When dealing with the kind of computations we are presenting in this paper, one has to consider 
computational costs, in particular for applications. The problem of computing the list of multiple 
failure events of a system (equivalently, the lcms of the generators of a monomial ideal) is intrinsically 
expensive in term of memory (and time). This is mainly due to the fact that the cardinality of the 
set of k-fold lcms of the elements of a set grows exponentially with respect to the size of the set. 
This said, we can analyze the computations needed to compute the Betti numbers of the ideals in the 
lcm-filtration in the ways proposed in this section. There are some interesting considerations in this 
respect.

For our analysis we will use our running examples, namely consecutive 2-out-of-n systems and the 
cut ideal of complete graphs. We will use for our analysis a simple program written in the computer 
algebra system Macaulay2 (Grayson and Stillman) running on a MacOsX 10.9 machine with an Intel 
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Fig. 3. Costs of each of the tasks for the consecutive 2-out-of-16 i deal. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Core i5 1.4 GHz processor with 4 GB of DDR RAM. Our program computes the sizes of the Taylor, 
Aramova–Herzog–Hibi and minimal resolutions of the ideals in the lcm-filtration of a given monomial 
ideal. The Taylor resolutions considered will use the minimal generating sets of the corresponding 
ideals. The main tasks needed are the following:

(1) Computing the k-fold lcms of the generators of the ideal: The computation of the k-fold lcms 
of a set of monomials is a theoretically easy task, but since the number of such lcms is 
large, its computational cost is not irrelevant. For this, we use the inbuilt command lcm in
Macaulay2.

(2) Obtaining the minimal set of generators of the ideal Ik: This step implies autoreduction of the 
set of generators obtained in the previous step, so that we obtain the minimal generating set. We 
use the command monomialIdeal in Macaulay2 which, for a given set of monomials, builds 
the minimal generating set.

(3) Computing the minimal free resolution of Ik: This is in principle the computationally most ex-
pensive task. For this we use the Macaulay2 command res and assume we already have the 
minimal generating set of the corresponding ideal.

Figs. 3 and 4 show the distribution of time of each of these three tasks in the 2-out-of-16 and the 
cut ideal of complete graph K5. We have chosen these examples because the number of generators of 
the original ideal is in both cases 15. The 2-out-of-16 ideal is generated in degree 2, and the number 
of minimal generators of each of the corresponding ideals is relatively big. On the other hand, the 
generators of the cut ideal of the complete graph have bigger degrees. In this case, there are many 
more cancellations between the generators of the lcm-ideals, which are minimally generated by much 
fewer monomials. These differences have their reflection in the distribution of times of the three tasks 
mentioned above. The cut ideal of the complete graph uses most of its time in computing the k-fold 
lcm-ideals. A good optimization of this part of the algorithm is therefore crucial for the application of 
this method to this kind of ideals. In the case of the 2-out-of-16 ideal, on the contrary, the best part 
of the computing time is devoted to the computation of the minimal free resolutions. Observe that 
the total times in both examples are quite similar, the differences are due to the different distribution 
of computing time among tasks, which reflects the differences in the lcm-filtration of both examples. 
For each of the examples, the maximum amount of CPU time used by a single ideal is less than 10 
seconds. For our purposes, however, the distribution of time among tasks is more important than 
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Fig. 4. Costs of each of the tasks for the cut ideal of K5. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

the total time for each ideal, since this distribution reflects the structural differences between the 
aforementioned examples.

The computation of the k-fold lcm-ideals is unavoidable for our purposes, hence the data in our 
experiments show that for examples like the 2-out-of-16 ideals, computing the Aramova–Herzog–Hibi 
resolutions makes the computation possible, for the time needed for the minimal free resolution 
is too big too soon. On the other hand, for examples like the cut ideal of the complete graph K5, 
the computation time of the minimal free resolution is (at this size of examples) not so relevant, 
and one should focus on an efficient implementation of the construction of the k-fold lcm-ideals. 
In this respect, Theorem 3.7 is a strong result that on one hand reduces the number of ideals to 
be computed, and on the other hand allows us to substitute the computations of the subsequents 
ideals by computations of partitions of the set of vertices, for which we can adapt already existing 
efficient algorithms. The efficient computation of cut ideals for the complete graph is an important 
point towards the algebraic study of the Erdös–Rényi model of random networks. We focus in more 
detail on this on our work in progress (Mohammadi et al., in preparation).

4. Failure distributions and signatures

Squarefree monomial ideals have a special role in the study of classical system reliability as ex-
plained in §2, and this extends to lcm ideals. The first cut ideal I1 represents the full system failure 
set which is the event that at least one minimal cut has occurred. Then, the first lcm-ideal of I1, 
namely I2, is the event that at least two minimal cuts have occurred; and so on to at least k minimal 
cuts have occurred. For a general probability distribution over the states, and to obtain the probability 
of one of these events, one would have to sum the raw probabilities of the state making the event. 
But for simple independence models one can avoid this by the use of elementary probability methods, 
as explained in the next subsection.

We now have, as promised, two ways of giving a description of failure which are finer than the 
basic failure event represented by I1. Each is represented by a special integer count. The first, just 
discussed, is the number of elementary cuts, under system failure. The second, which is discussed in 
§2.2.1, is the number of edges which are cut, under system failure. In both cases we can find, under 
our probability model, the (marginal) distribution of each count as a random variable and also their 
joint distribution. We do this for a simple example in the final subsection.



F. Mohammadi et al. / Journal of Symbolic Computation 79 (2017) 140–155 151
4.1. Computing means and higher moments

In the case of binary (squarefree) ideals, which includes the case of the k-out-of-r ideal and the 
cut ideal of a network in this paper, the computation of the moment of the distribution of Y , the 
number of elementary cuts, is straightforward.

Lemma 4.1. Let C be the set of elementary cuts for a network reliability problem, and let Y be the number 
of elementary cuts. Then under the Erdös–Rényi independence model with probability p, the expectation of Y
considered as a random variable, is given by

E(Y ) =
∑
α∈C

p|α|,

where |α| is the degree of α.

Proof. Let Xα be the indicator function for the cut α. Then Y = ∑
α∈C Xα and E(Y ) = E(

∑
α∈C Xα) =∑

α∈C E(Xα). But for any α, Xα = ∏n
i=1 Xαi

i , where Xi is the indicator function of the failure of the 
i-th component for i = 1, . . . , n. However, for any indicator function prob{Xα = 1} = E(Xα) by inde-
pendence in the Erdös–Rényi model. Thus E(Xα) = E(

∏n
i=1 Xαi

i ) = ∏n
i=1 E(Xαi

i ) = p|α| which completes 
the proof. �
Theorem 4.2. For the complete graph Kn the mean value is:

μn =

⎧⎪⎪⎨
⎪⎪⎩

∑[ n
2 ]

k=1

(n
k

)
pk(n−k) if n is odd;

∑[ n
2 ]−1

k=1

(n
k

)
pk(n−k) + 1

2

(n
n
2

)
p( n

2 )2
if n is even.

Proof. By Lemma 4.1 we just need to count the number of elementary cuts, i.e. 2-partitions of the 
graph. By Postnikov and Shapiro (2004, Corollary 6.8) this number is equal to S(n, 2) where S(n, k)

denotes the Stirling number of the second kind (i.e. the number of ways to partition a set of n
elements into k nonempty subsets). Note that for a partition with k vertices in one part, and n − k
vertices in the other part, we have k(n − k) edges between these two parts, and the number of such 
partitions is 

(n
k

)
. In the case that n is even and k = n

2 , we have to divide this number by two because 
of double counting. �
Theorem 4.3. For the sequential k-out-of-n ideal Ik,n, the mean value is μk,n = (n − k + 1)pk.

Proof. In this case we have n − k + 1 cut monomials of degree k. Thus the result follows by 
Lemma 4.1. �
Remark 4.4. The same method can be used to obtain higher order moments. For the second non-
central moment, μ2 = E(Y 2) we write

μ2 = E

⎛
⎝

(∑
α∈C

Xα

)2
⎞
⎠

= E

⎛
⎜⎝∑

α∈C
X2

α +
∑
α,β∈C
α �=β

Xα Xβ

⎞
⎟⎠ .

Noting that X2
α = Xα and Xα Xβ = Xα∧β , and using the argument above we have
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μ2 =
∑
α∈C

p|α| + 2
∑
γ ∈C2

p|γ |,

where C2 is the set of monomial generators in the first lcm list, preserving repetitions.
In general, Ck is the list of k − lcm’s of the monomials corresponding to the elements of C . We see 

that the k-th non-central moment can be written in terms of the lcm-ideals up to the k-th level.

4.2. Examples

We develop the case of sequential 2-out-of-6 ideal with all the accompanying lcm-ideals in more 
details. We compute the Hilbert series Hk(x, t) based on Aramova–Herzog–Hibi version of the Hilbert 
series for the lcm-ideals Ik for k = 1, . . . , 5. The ideal is I = 〈x1x2, x2x3, x3x4, x4x5, x5x6〉. The numera-
tors of the Hilbert series are

H1(t, x) = 1 − (x1x2 + x2x3 + x3x4 + x4x5 + x5x6)t

+ (x1x2x3 + x1x2x3x4 + x1x2x4x5 + x1x2x5x6 + x2x3x4 + x2x3x4x5

+ x2x3x5x6 + x3x4x5 + x3x4x5x6 + x4x5x6 + x1x2x3x4)t
2

+ (x1x2x3x4x5 + x1x2x3x5x6 + x1x2x3x4x5 + x1x2x3x4x5x6

+ x1x2x4x5x6 + x2x3x4x5 + x2x3x4x5x6 + x2x3x4x5x6 + x3x4x5x6)t
3

+ (x1x2x3x4x5 + x1x2x3x4x5x6 + x1x2x3x4x5x6

+ x1x2x3x4x5x6 + x2x3x4x5x6)t
4 − x1x2x3x4x5x6t5

H2(t, x) = 1 − (x1x2x3 + x1x2x3x4 + x1x2x4x5 + x1x2x5x6 + x2x3x4 + x2x3x4x5

+ x2x3x5x6 + x3x4x5 + x3x4x5x6 + x4x5x6)t + (2x1x2x3x4 + 2x1x2x3x4x5

+ 2x1x2x3x5x6 + 2x1x2x3x4x5 + 2x1x2x3x4x5x6 + 2x1x2x4x5x6

+ 2x2x3x4x5 + 2x2x3x4x5x6 + 2x2x3x4x5x6 + 2x3x4x5x6)t
2

− (3x1x2x3x4x5 + 3x1x2x3x4x5x6 + 3x1x2x3x4x5x6 + 3x1x2x3x4x5x6

+ 3x2x3x4x5x6)t
3 + 4x1x2x3x4x5x6t4

H3(t, x) = 1 − (x1x2x3x4 + x1x2x3x4x5 + x1x2x3x5x6 + x1x2x3x4x5

+ x1x2x3x4x5x6 + x1x2x4x5x6 + x2x3x4x5 + x2x3x4x5x6 + x2x3x4x5x6

+ x3x4x5x6)t + (3x1x2x3x4x5 + 3x1x2x3x4x5x6 + 3x1x2x3x4x5x6

+ 3x1x2x3x4x5x6 + 3x2x3x4x5x6)t
2 − 6x1x2x3x4x5x6t3

H4(t, x) = 1 − (x1x2x3x4x5 + x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6

+ x2x3x4x5x6)t + 4x1x2x3x4x5x6t2

H5(t, x) = 1 − x1x2x3x4x5x6.

Under the usual failure model, of independent component (edge) failure with probability p, if Y is 
the number of failures the survivor functions are given by:

Pk = F (k)

= P{Y ≥ k}
= 1 −Hk(1, p).

These are given by (see Fig. 5):
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Fig. 5. Plots of Pk(p), k = 1, . . . ,5, from left to right, respectively.

P1 = 5p2 − 4p3 − 3p4 + 4p5 − p6

P2 = 4p3 − 6p5 + 3p6

P3 = 3p4 − 2p6

P4 = 2p5 − p6

P5 = p6

Setting p0 = 1 − P1, pk = Pk − Pk+1, k = 1, ..., 4 and p5 = P5 we find the (discrete) distribution 
as

p0 = 1 − 5p2 + 4p3 + 3p4 − 5p5 + p6

p1 = 5p2 − 8p3 − 3p4 + 10p5 − 4p6

p2 = 4p3 − 3p4 − 6p5 + 5p6

p3 = 3p4 − 2p5 − p6

p4 = 2p5 − 2p6

p5 = p6

The mean of this distribution is μ6,2 = ∑5
i=0 ipi = 5p2. The form of the distribution for general 

sequential k-out-of-n was found relatively recently (see Ling, 1988) together with the general form of 
the mean, confirmed in our case:

μn,k = (n − k + 1)pk.

In probability theory and related areas this might be called “the expected number of runs of size k
in a Bernoulli sequence of length n and probability p”. Care has to be taken, in accessing the liter-
ature, concerning the definition of a run. For example whether overlaps are counted, as here, this 
distinguishes from isolated runs of length k.

For the signature we need to find the intersection Ĩk of the k-out-of-n ideals for k = 1, . . . , 6 with 
the sequential k-out-of-n ideal I1, noting that the latter is the basic failure ideal. A simple way to 
carry out this calculation is to identify for each k = 1, . . . , 6 which monomial of degree k occurs in I1.

For k = 1, none of x1, . . . , x6 lie in I1 and for k = 2 we obtain Ĩ2 = I1. Similarly:
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Table 1
Elementary cuts via component failure, 
for the sequential 2-out-of-6 system.

6 1

5 2 2

4 3 3

3 4

2 5
z�y 1 2 3 4 5

Ĩ3 = 〈x1x2x3, x2x3x4, x3x4x5, x4x5x6〉
Ĩ4 = 〈x1x2x3x4, x1x2x4x5, x1x2x5x6, x2x3x4x5, x2x3x5x6, x3x4x5x6〉
Ĩ5 = 〈x1x2x3x4x5, x1x2x3x5x6, x1x2x4x5x6, x2x3x4x5x6〉
Ĩ6 = 〈x1x2x3x4x5x6〉.

The associated cumulative probabilities including Ĩ2 are:

Q 2 = 5p2 − 4p2 − 3p4 + 4p5 − p6

Q 3 = 4p3 − 3p4

Q 4 = 6p4 − 6p5 + p6

Q 5 = 4p5 − 3p6

Q 6 = p6.

Again by taking differences we obtain the raw signature probabilities as

q2 = 5p2 − 8p3 + 4p3 − p6

q3 = 4p3 − 9p4 + 6p5 − p6

q4 = 6p4 − 10p5 + 4p6

q5 = 4p5 − 4p6

q6 = p6.

From these we compute the signatures as s j = q j
P1

for j = 2, . . . , 6.
One purpose of this paper is to present the {pk}n

k=1, namely the distribution of the number of 
elementary cuts as an alternative “signature” to the classical signature distribution, of the number 
of failed components, in the event of failure. But we can also study systems by looking at several 
different types of signature, what might be called multivariate signature analysis. To make this point 
clear we compute, for the current example, the joint distribution, that is to say the distribution of the 
bivariate random variables (Y , Z), where Y is the number of elementary cuts and Z is the number of 
failed components, conditional on failure.

The case p = 1
2 corresponds to simple counting since every binary state vector has probability 1

26 . 
Table 1 gives the counts of the number of elementary cuts versus the number of component failures, 
for the 20 failure states (a blank cell indicates the count is zero). This shows a close association 
between the two types of signature.
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