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Abstract

We study the spaces of functions on R
n for which the generalized partial derivatives D

rk
k

f exist
and belong to different Lorentz spaces Lpk,sk . For this kind of functions we prove a sharp version of
the extreme case of the Sobolev embedding theorem using L(∞, s) spaces.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider functions f on R
n with generalized partial derivatives

D
rk
k f ≡ ∂rkf

∂x
rk
k

(rk ∈ N).

Our main objective is to obtain an extreme case of a Sobolev type inequality for these
functions. More precisely, we want to generalize the embedding

Wr
n/r

(
R

n
)
↪→ L(∞, n/r)

(
R

n
)

(r, n ∈ N; r � n)

(Milman–Pustylnik [16], Bastero–Milman–Ruiz [2] for r = 1) to the case where the partial
derivatives D

rk
k f of different orders belong to different Lorentz spaces Lpk,sk .
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In order to introduce the problem, we recall some basic facts and review the literature.
Let n, r ∈ N, 1 � p < ∞. The Sobolev space Wr

p(Rn) is the class of functions f ∈ Lp(Rn)

with all the generalized derivatives of order r belonging to Lp(Rn).
The classical Sobolev embedding theorem says that if 1 � p < n/r then

Wr
p

(
R

n
)
↪→ Lq∗(

R
n
)
, q∗ = np

n − rp
.

This theorem is well known and has been extensively considered in the literature. In this
paper we deal with the extreme case p = n/r (or equivalently, q∗ = ∞). If 1 = p = n/r it
is known that (see [4, §10], [19])

Wn
1

(
R

n
)
↪→ L∞(

R
n
)
.

However, it is easy to see that for 1 < p = n/r , the functions in Wr
n/r (R

n) need not to be
bounded. Many authors have studied which kind of embedding holds in this case. Hansson
[6], and independently and by different methods Brézis and Wainger [5], proved that if Ω

is an open domain in R
n (n > 1) with |Ω| < ∞,

W̃ 1
n (Ω) ↪→ Hn(Ω), (1)

where W̃ 1
n (Ω) is the closure of C∞

0 (Ω) in W 1
n and

Hn(Ω) =
{

f : ‖f ‖Hn(Ω) =
[ |Ω|∫

0

(
f ∗∗(s)

1 + log |Ω|
s

)n
ds

s

]1/n

< ∞
}

.

Moreover, Hansson [6] showed that Hn(Ω) is the optimal target space in the class of re-
arrangement invariant spaces.

However, this result can be improved in the following sense. Kolyada [10, Lemma 5.1]
(see also [9, p. 7]) proved the inequality

f ∗(t) − f ∗(2t) � ct1/n
(|∇f |)∗∗

(t), t > 0. (2)

Bastero, Milman and Ruiz (see [2, Remark (2.3)]) showed that

f ∗∗(t) − f ∗(t) � ct1/n
(|∇f |)∗∗

(t), t > 0. (3)

Inequalities (2) and (3) are equivalent (see Remark 5).
In [1,2,15] spaces related to inequality (3) were introduced and studied. It follows im-

mediately from (3) that the Sobolev space

w1
n,∞

(
R

n
) = {

f : ∇f ∈ weak-Ln
(
R

n
)}

is contained in the Bennett–De Vore–Sharpley space1

weak-L∞(
R

n
) =

{
f : ‖f ‖weak-L∞(Rn) = sup

t>0

{
f ∗∗(t) − f ∗(t)

}
< ∞

}
.

That is (cf. [1]),

w1
n,∞

(
R

n
) ⊂ weak-L∞(

R
n
)
.

1 Weak-L∞ is not a linear space and ‖.‖weak-L∞ is not a norm.
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In [2], for q > 0, the (non-linear) spaces L(∞, q)(Rn) are defined as the set of functions
f on R

n such that

‖f ‖L(∞,q) =
( ∞∫

0

[
f ∗∗(t) − f ∗(t)

]q dt

t

)1/q

< ∞.

The following strict inclusions hold for 1 < p < q < ∞:

L∞ = L(∞,1) ⊂ L(∞,p) ⊂ L(∞, q) ⊂ weak-L∞.

It follows from (3) that (see [2])

W 1
n

(
R

n
)
↪→ L(∞, n)

(
R

n
)
. (4)

Equivalent statements had been proved with different methods in [21, Eq. (3.22)] and
in [15]. In [2] it is shown how (4) improves (1).

From the recent results in [16], the embedding for derivatives of higher order

Wr
n/r

(
R

n
)
↪→ L(∞, n/r)

(
R

n
)

(5)

is derived.2

Now we can specify our objective: find an embedding of type (5) for functions with
partial derivatives of different orders. Existence of mixed derivatives is not assumed.

Let us explain more specifically which is the form of the embedding we are looking for.
We consider the space of functions f such that the generalized partial derivatives D

rk
k f

(k = 1, . . . , n) belong to different spaces Lpk . The corresponding classes of functions nat-
urally appear in the embedding theory as well as in applications. The most extended theory
of these classes is contained in the monograph [4]. Furthermore, in this paper we allow the
derivatives to belong to different Lorentz spaces Lpk,sk (Rn) (where 1 � pk, sk < ∞ and
sk = 1, if pk = 1). The use of Lorentz type limitations on the derivatives can be crucial
in the estimates of Fourier transforms [11,13,18], conditions for differentiability [20], and
embedding theorems [21].

Then our main problem is to find an embedding of type (5) for functions with the deriv-
atives D

rk
k f ∈ Lpk,sk (Rn) (k = 1, . . . , n).

The answer is given at the following inequality, proved in Theorem 4 below

‖f ‖L(∞,s)(Rn) � c

n∑
k=1

∥∥D
rk
k f

∥∥
pk,sk

, 1 � p = n/r,

where r , p and s are suitable averages of the rk’s, pk’s and sk’s to be defined later, that are
frequently used in this context.

Note that the methods from [2,15,21] cannot be used in our case since they work for
r1 = · · · = rn = 1 only. Moreover, the reasoning in [16] is not applicable because our rk’s
can be different, and so, the existence of mixed derivatives is not assumed. Thus, no induc-
tion over the order of the derivatives is possible. Instead, our approach is based on embed-
dings of Besov spaces and the transitivity of embeddings, together with results from [14].

2 Note that if f ∈ Wr
n/r (R

n), then ∇f ∈ Wr−1
n/r (Rn), and, by the well-known embedding of Sobolev spaces

into Lorentz spaces, ∇f ∈ Ln,n/r (Rn). From this and (3), the embedding (5) follows also.
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2. Some definitions

Let S0(R
n) be the class of all measurable, almost everywhere finite functions f on R

n,
such that for each y > 0,

λf (y) ≡ ∣∣{x ∈ R
n:

∣∣f (x)
∣∣ > y

}∣∣ < ∞.

The non-increasing rearrangement of f ∈ S0(R
n) is a non-increasing function f ∗ on R+ ≡

(0,+∞) that is equimeasurable with |f |. The rearrangement f ∗ can be defined by the
equality

f ∗(t) = sup
|E|=t

inf
x∈E

∣∣f (x)
∣∣, 0 < t < ∞.

The following relation holds [3, Chapter 2]:

sup
|E|=t

∫
E

∣∣f (x)
∣∣dx =

t∫
0

f ∗(u) du.

In what follows we set

f ∗∗(t) = 1

t

t∫
0

f ∗(u) du.

Assume that 0 < q,p < ∞. A function f ∈ S0(R
n) belongs to the Lorentz space

Lq,p(Rn) if

‖f ‖q,p ≡
( ∞∫

0

(
t1/qf ∗(t)

)p dt

t

)1/p

< ∞.

We have the inequality [3, p. 217]

‖f ‖q,s � c‖f ‖q,p (0 < p < s < ∞),

so that Lq,p ⊂ Lq,s for p < s. In particular, for 0 < p � q ,

Lq,p ⊂ Lq,q ≡ Lq.

Let f be a measurable function on R
n. Let j ∈ {1, . . . , n}. We define the difference

Δj(h)f (x) ≡ f (x + hej ) − f (x), h ∈ R,

where ej is the unit coordinate vector. If r > 1, inductively,

Δr
j (h)f (x) ≡ Δj(h)

[
Δr−1

j (h)f
]
(x).

Let 1 � q < ∞. The function

ωj (f ; δ)q = sup
0<h<δ

∥∥Δj(h)f
∥∥

q
, δ > 0,

is called the modulus of continuity of f with respect to the variable xj in the metric Lq .
For 1 � p < ∞ we denote Lp ≡ Lp(R+, du/u); set also L∞ ≡ L∞(R+) (see [7]).
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3. Auxiliary lemmas

Lemma 1. Let α > 0, θ � 1. Let ψ(t) be a function on R+, non-negative, non-decreasing
such that t−αψ(t) ∈ Lθ . Then, for any δ > 0 there exists a function ϕ on R+ continuously
differentiable such that:

(i) ψ(t) � ϕ(t),
(ii) ϕ(t)t−α−δ decreases and ϕ(t)t−α+δ increases,

(iii) ‖t−αϕ(t)‖Lθ � c‖t−αψ(t)‖Lθ where c is a constant that only depends on δ and α.

The proof follows the scheme of [14, Lemma 2.1], so we do not include it here.
Let 0 < αj < ∞, 1 � θj � ∞ for j = 1, . . . , n. Denote

α = n

(
n∑

j=1

1

αj

)−1

; θ = n

α

(
n∑

j=1

1

αj θj

)−1

. (6)

Lemma 2. Let n ∈ N, 0 < αj < ∞ and 1 � θj � ∞ for j = 1, . . . , n. Set α and θ as in (6).
Set also

0 < δ � 1

2
min

1�j�n
{αj }.

For j = 1, . . . , n, let ϕj be positive and continuously differentiable functions on R+, sat-
isfying ϕj (t)t

−αj ∈ Lθj . Suppose in addition that ϕj (t)t
−αj +δ increases and ϕj (t)t

−αj −δ

decreases.
Then there exist positive functions δ1, . . . , δn on R+ such that

n∏
j=1

δj (t) = t (t > 0);

and for σ(t) ≡ ∑n
j=1 ϕj (δj (t)) it holds that( ∞∫

0

t−
αθ
n

−1σ(t)θ dt

)1/θ

� c

n∏
j=1

[∥∥t−αj ϕj (t)
∥∥
Lθj

]α/nαj ,

where c is a constant that only depends on δ, rj and n.

Proof. Let 0 < a < b be two positive constants. A positive function g on R+ is said to be
of power type (a, b) if g(t)t−a ↑ and g(t)t−b ↓.

It is easy to see that if g is of power type (a, b), then its inverse g−1 exists on R+, and
it is of power type (1/b,1/a).

Also, if g1 is of power type (a1, b1) and g2 is of power type (a2, b2), then g1g2 is of
power type (a1 + a2, b1 + b2) and g1 ◦ g2 is of power type (a1a2, b1b2).

Note that the functions ϕj are of power type (αj − δ,αj + δ).
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Set now

Φ(s) = s

n−1∏
j=1

ϕ−1
j

(
ϕn(s)

)
, s > 0. (7)

Define for t > 0,

δn(t) = Φ−1(t), δj (t) = ϕ−1
j

(
ϕn

(
δn(t)

))
, j = 1, . . . , n − 1. (8)

Of course, for j = 1, . . . , n, the functions δj are of power type for some (aj , bj ). From this
it follows that

aj

t
�

δ′
j (t)

δj (t)
� bj

t
. (9)

Moreover, by (7),
n∏

j=1

δj (t) = Φ
(
δn(t)

) = t.

And by (8) (1 � i, j � n),

ϕi

(
δi(t)

) = ϕj

(
δj (t)

)
, (10)

which implies that σ(t) = nϕj (δj (t)) (j = 1, . . . , n).

Finally, using (10), Hölder’s inequality with exponents
nαj θj

θα
, (9), and the change of

variable δj (t) = z, we get( ∞∫
0

t−
αθ
n

−1σ(t)θ dt

)1/θ

= n

( ∞∫
0

n∏
j=1

[
ϕj (δj (t))

δj (t)
αj

]θα/nαj dt

t

)1/θ

� n

n∏
j=1

( ∞∫
0

[
ϕj (δj (t))

δj (t)
αj

]θj dt

t

) 1
θj

α
nαj

� c

n∏
j=1

(∥∥t−αj ϕj (t)
∥∥
Lθj

)α/nαj . �

Lemma 3. Let n ∈ N, α1, . . . , αn > 0, 1 � θ1, . . . , θn � ∞. Set α and θ as in (6). Then, for
any 1 � q < ∞ and any f ∈ S0(R

n), there exists a non-negative function σ(t) on R+ such
that

f ∗(t) � f ∗(2t) + t−1/qσ (t) (t > 0) (11)

and ( ∞∫
0

t−αθ/nσ (t)θ
dt

t

)1/θ

� c

n∑
j=1

∥∥t−αj ωj (f ; t)q
∥∥
Lθj , (12)

where c is a constant that does not depend on f .
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Proof. Without loss of generality we can suppose that the right-hand side of (12) is fi-
nite. As f ∈ S0(R

n), then the ωj (f ; ·)q are positive functions.3 Applying Lemma 1 to the
above mentioned modulus with δ = 1

2 min{αj }, we conclude that there exist continuously
differentiable functions ϕj (t) on R+ such that

0 < ωj(f ; t)q � ϕj (t) (t > 0),

ϕj (t)t
−αj −δ ↓, ϕj (t)t

−αj +δ ↑, (13)

and ∥∥t−αj ϕj (t)
∥∥
Lθj � c

∥∥t−αj ωj (f ; t)q
∥∥
Lθj . (14)

Now, note that the functions ϕj satisfy the conditions of Lemma 2. Hence, there exist pos-
itive functions δ1, . . . , δn on R+ such that

∏n
j=1 δj (t) = t and for σ(t) ≡ ∑n

j=1 ϕj (δj (t))

the following inequality holds:( ∞∫
0

t−αθ/nσ (t)θ
dt

t

)1/θ

� c

n∏
j=1

(∥∥t−αj ϕj (t)
∥∥
Lθj

)α/nαj . (15)

Last, using [12, Lemma 10.3], we have

f ∗(t) � f ∗(2t) + ct−1/q
n∑

j=1

ωj

(
f ; δj (t)

)
q
.

From this and (13) we get (11). The estimate (12) is the consequence of (15), (14) and the
inequality between arithmetic and geometric averages. �

4. Embedding theorem

Theorem 4. Let n � 2, rj ∈ N, 1 � pj , sj < ∞ for j = 1, . . . , n and sj = 1 if pj = 1. Set

r = n

(
n∑

j=1

1

rj

)−1

, p = n

r

(
n∑

j=1

1

pj rj

)−1

, s = n

r

(
n∑

j=1

1

sj rj

)−1

.

Assume that p = n/r . Then, for all f ∈ S0(R
n) that possess weak derivatives D

rj
j f ∈

Lpj ,sj (Rn) (j = 1, . . . , n), it holds that( ∞∫
0

[
f ∗∗(t) − f ∗(t)

]s dt

t

)1/s

� c

n∑
j=1

∥∥D
rj
j f

∥∥
pj ,sj

.

Proof. We fix q > max1�j�n{pj rj }. Now we apply [14, Theorem 3.1] with the parame-
ters qj that are chosen in the said theorem taking the value of the q that we have just fixed.

3 Otherwise, since f ∈ S0(Rn), we have that f ≡ 0 and the result is obvious.



980 F.J. Pérez Lázaro / J. Math. Anal. Appl. 320 (2006) 973–982
By this fact (i.e., qj = q , j = 1, . . . , n) and the assumption p = n/r , it follows that the
parameters ρj , �j , αj and θj appearing in that theorem are

ρj = 1

pj

, �j = pj

q
, αj = pj rj

q
,

1

θj

= 1 − �j

s
+ �j

sj
. (16)

Thus we get

n∑
j=1

( ∞∫
0

[
h−αj

∥∥Δ
rj
j (h)f

∥∥
q

]θj dh

h

)1/θj

� c

n∑
k=1

∥∥D
rk
k f

∥∥
pk,sk

. (17)

Note that the left-hand side of (17) is a sum of Besov type seminorms. Then, [17, Chapter 4]
as 0 < αj < 1,

∥∥t−αj ωj (f ; t)q
∥∥
Lθj � c

( ∞∫
0

[
h−αj

∥∥Δ
rj
j (h)f

∥∥
q

]θj dh

h

)1/θj

. (18)

By Lemma 3, we have( ∞∫
0

[
f ∗(t) − f ∗(2t)

]θ dt

t

)1/θ

�
( ∞∫

0

t−θ/qσ (t)θ
dt

t

)1/θ

(19)

and ( ∞∫
0

t−αθ/nσ (t)θ
dt

t

)1/θ

� c

n∑
j=1

∥∥t−αj ωj (f ; t)q
∥∥
Lθj , (20)

where (by (6), (16) and p = n/r 4). The value of α is

α = n

(
n∑

i=1

1

αi

)−1

= n

(
n∑

i=1

q

piri

)−1

= n

q
.

So, the right-hand side of (19) and the left-hand side of (20) coincide. Moreover, from (6)
and (16), we have

θ = n

α

(
n∑

j=1

1

θjαj

)−1

= q

(
n∑

j=1

[
1 − �j

sαj

+ �j

sjαj

])−1

= s.

Finally,

f ∗∗(t) − f ∗(t) � 1

t

t∫
0

f ∗(u) du − 2

t

t∫
t/2

f ∗(2u)du

= 2

t

t∫
0

(
f ∗(u) − f ∗(2u)

)
du. (21)

4 Which is the same as
∑n 1 = 1.
j=1 pj rj
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And from this and Hardy’s inequality [3, p. 124],( ∞∫
0

[
f ∗∗(t) − f ∗(t)

]s dt

t

)1/s

� c

( ∞∫
0

[
f ∗(t) − f ∗(2t)

]s dt

t

)1/s

. (22)

Putting together (22), (19), (20), (18), (17), we obtain the result. �
Remark 5. In this paragraph we show that estimates (3) and (2) are equivalent. It is easy
to see that

f ∗(t/2) − f ∗(t) � 2
(
f ∗∗(t) − f ∗(t)

)
. (23)

So, (3) implies (2). Note that (21) is easily proved too. From (2), using (21) and the fact
that for any g ∈ S0(R

n) tg∗∗(t) increases in t , the estimate (3) follows.
Inequality (23) appears in [2, Theorem 4.1]. Note also that inequalities equivalent to

(21) are used in [8, Lemma 5] and [2, Theorem 4.1].

Remark 6. In the case rj = r1, sj = pj = p1 (1 � j � n), Theorem 4 implies the embed-
ding (5).

Acknowledgment

Thanks to V.I. Kolyada for his useful ideas and suggestions.

References

[1] J. Bastero, M. Milman, F. Ruiz, On the connection between weighted norm inequalities, commutators and
real interpolation, Seminario García de Galdeano 18 (1996).

[2] J. Bastero, M. Milman, F. Ruiz, A note on L(∞, q) spaces and Sobolev embeddings, Indiana Univ.
Math. J. 52 (2003) 1215–1230.

[3] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, 1988.
[4] O.V. Besov, V.P. Il’in, S.M. Nikol’skiı̆, Integral Representation of Functions and Imbedding Theorems,

vols. 1–2, Winston, Washington, DC, Halsted, New York, 1978.
[5] H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm.

Partial Differential Equations 5 (1980) 773–789.
[6] K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979) 77–102.
[7] C. Herz, Lipschitz spaces and Bernstein’s theorem of absolutely convergent Fourier transform, J. Math.

Mech. 18 (1968) 283–323.
[8] V.I. Kolyada, On imbedding in classes φ(L), Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) 418–437, 472;

English translation in Math. USSR Izv. 9 (1975) 395–413.
[9] V.I. Kolyada, Estimates of rearrangements and imbedding theorems, Mat. Sb. (N.S.) 136 (1988) 3–23; Eng-

lish translation in Math. USSR Sb. 64 (1989) 1–21.
[10] V.I. Kolyada, Rearrangements of functions and embedding theorems, Uspekhi Mat. Nauk 44 (1989) 61–95

(in Russian); English translation in Math. Surveys 44 (1989) 73–118.
[11] V.I. Kolyada, Estimates of Fourier transforms in Sobolev spaces, Studia Math. 125 (1997) 67–74.
[12] V.I. Kolyada, Rearrangements of functions and embedding of anisotropic spaces of the Sobolev type, East

J. Approx. 4 (1998) 111–199.



982 F.J. Pérez Lázaro / J. Math. Anal. Appl. 320 (2006) 973–982
[13] V.I. Kolyada, Embeddings of fractional Sobolev spaces and estimates of Fourier transforms, Mat. Sb. 192
(2001) 51–72; English translation in Sb. Math. 192 (2001) 979–1000.

[14] V.I. Kolyada, F.J. Pérez, Estimates of difference norms for functions in anisotropic Sobolev spaces, Math.
Nachr. 267 (2004) 46–64.

[15] J. Maly, L. Pick, An elementary proof of sharp Sobolev embeddings, Proc. Amer. Math. Soc. 130 (2002)
555–563.

[16] M. Milman, E. Pustylnik, On sharp higher order Sobolev embeddings, Comm. Cont. Math. 6 (2004) 495–
511.

[17] S.M. Nikol’skiı̆, Approximation of Functions of Several Variables and Imbedding Theorems, Springer-
Verlag, Berlin, 1975.
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