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We investigate the spaces of functions on R
n for which the generalized partial derivatives D

rk
k f exist and

belong to different Lorentz spaces Lpk,sk . For the functions in these spaces, the sharp estimates of the Besov
type norms are found. The methods used in the paper are based on estimates of non-increasing rearrangements.
These methods enable us to cover also the case when some of the pk’s are equal to 1.
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1 Introduction

In this paper we study the spaces of functions f on R
n which possess the generalized partial derivatives

Drk

k f ≡ ∂rkf

∂xrk

k

(rk ∈ N) . (1.1)

Our main goal is to obtain sharp estimates for the norms of the differences

∆rk

k (h)f(x) ≡
rk∑

j=0

(−1)rk−j

(
rk

j

)
f(x + jhek) (h ∈ R) (1.2)

(ek is the unit coordinate vector). We will specify this problem below; here we only note that it was completely
solved in the case when all derivatives (1.1) belong to the same space Lp(Rn). Nevertheless, it is reasonable to
suppose that the derivatives Drk

k (k = 1, . . . , n) belong to different spaces Lpk . The corresponding classes of
functions naturally appear in the embedding theory as well as in applications. The most extended theory of these
classes is contained in the monography [2]. Furthermore, many authors have studied Sobolev and Nikol’skii-
Besov spaces whose construction involves, instead of Lp-norms, norms in more general spaces (see [12]). In
this paper we suppose that derivatives belong to different Lorentz spaces Lpk,sk(Rn) (where 1 ≤ pk, sk < ∞
and sk = 1, if pk = 1). Note that very interesting comments and results concerning this type of Sobolev spaces
can be found in [19]. There are many important problems in Analysis which lead to these spaces. For instance,
it was proved by E. M. Stein [17] that the sharp condition for the differentiability a.e. for a function f ∈ W 1

1

is that �f belongs to the Lorentz space Ln,1. The use of Lorentz type limitations on the derivatives can be
crucial in the estimates of Fourier transforms (as it can be deduced from [9, 11, 15]). That is, if we look for a
sharp conditions on the derivatives to guarantee a given integrability property of the Fourier transform, then these
conditions generally will be expressed in terms of Lorentz norms.

Let us return to the our main problem: estimates for the norms of the differences (1.2). As it was mentioned
above, estimates of this type are already known. In particular, they give a refinement of the classical Sobolev
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embedding theorem with the limiting exponent. The simplest version of this theorem asserts that for any function
f in the Sobolev space W 1

p(R
n) (1 ≤ p < n)

‖f‖q∗ ≤ c

n∑
k=1

∥∥∥∥ ∂f

∂xk

∥∥∥∥
p

, q∗ =
np

n − p
. (1.3)

Sobolev proved this inequality in 1938 for p > 1; his method, based on integral representations, did not work in
the case p = 1. Only at the end of the fifties Gagliardo and Nirenberg gave simple proofs of the inequality (1.3)
for all 1 ≤ p < n.

The inequality (1.3) has been generalized and developed in various directions (see [2, 10, 12, 13, 20, 21] for
details and references). It was proved that the left-hand side in (1.3) can be replaced by the stronger Lorentz
norm; that is, there holds the inequality

‖f‖q∗,p ≤ c

n∑
k=1

∥∥∥∥ ∂f

∂xk

∥∥∥∥
p

, 1 ≤ p < n . (1.4)

For p > 1 this result follows by interpolation (see [14, 18]). In the case p = 1 some geometric inequalities were
used to prove (1.4) (see [3, 4, 7, 8, 16]).

An elementary approach to the study of Sobolev type inequalities, based on estimates of non-increasing re-
arrangements, has been worked out in [8]. In [8] there was proved an extension of the inequality (1.4) to the
anisotropic Sobolev spaces W r1,...,rn

p (Rn) (p ≥ 1, rk ∈ N) defined by the conditions f, Drk

k f ∈ Lp(Rn). Af-
terwards, it was shown in [10] that the same methods give an analogous result in the case when the derivatives
Drk

k f belong to different spaces Lpk . Observe that this approach has been still further simplified in the work
[11], where the iterative rearrangements were used.

The sharp estimates of the norms of differences for the functions in Sobolev spaces firstly have been proved
by V. P. Il’in [2, Vol. 2, pp. 72]. For the space W 1

p(Rn) Il’in’s result reads as follows: if n ∈ N, 1 < p < q < ∞
and α ≡ 1 − n(1/p − 1/q) > 0, then

n∑
k=1

(∫ ∞

0

[
h−α

∥∥∆1
k(h)f

∥∥
q

]p dh

h

)1/p

≤ c

n∑
k=1

∥∥∥∥ ∂f

∂xk

∥∥∥∥
p

. (1.5)

Actually, this means that there holds the continuous embedding to the Besov space

W 1
p(R

n) ↪→ Bα
q,p(R

n) .

It is easy to see that the inequality (1.5) fails to hold for p = n = 1. Nevertheless, it was proved in [6] that (1.5)
is true in the case p = 1, n ≥ 2.

The inequality (1.5) for p = 1, n ≥ 2 was used to prove some estimates of Fourier transforms of functions in
Sobolev spaces (see [15], [9]). In particular, using these results, we can compare the inequalities (1.3) and (1.5).
Let us consider the case p = 1, n = 2. The inequality (1.3) means that for any function f ∈ W 1

1

(
R

2
)

its Fourier

transform f̂ belongs to L2
(
R

2
)
. At the same time, as it was shown in [9], the stronger result can be easily derived

from (1.5); that is, if f ∈ W 1
1

(
R

2
)
, then f̂ ∈ L2,1

(
R

2
)
. Note that this assertion does not follow from (1.4).

The extension of the inequality (1.5) to the spaces W r1,...,rn
p was given in [8]. This is the following inequality

n∑
k=1

(∫ ∞

0

[
h−αk

∥∥∆rk

k (h)f
∥∥

q,p

]p dh

h

)1/p

≤ c

n∑
k=1

∥∥Drk

k f
∥∥

p
, (1.6)

where 0 < 1/p − 1/q < r/n, r ≡ n
(∑n

i=1 r−1
i

)−1
and αk = rk

[
1 − n

r

(
1
p − 1

q

)]
; the inequality is valid if

p > 1, n ≥ 1 or p = 1, n ≥ 2. Using (1.6), we get the following continuous embedding

W r1,...,rn
p (Rn) ↪→ Bα1,...,αn

q,p (Rn) .

For p > 1 this embedding was proved by Il’in [2, Vol. 2, pp. 72]. The main result in [8] is the proof of (1.6) for
p = 1, n ≥ 2. This result was applied in [9] to obtain Fourier transforms estimates for functions in W r1,...,rn

1 .
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Now we can specify our main problem: find the sharp estimates of the type (1.6) for the case when the deriva-
tives Drk

k f belong to different Lorentz spaces Lpk,sk . The main result of the paper is the following inequality
(see Theorem 3.1 below)

(∫ ∞

0

[
h−αj

∥∥∆rj

j (h)f
∥∥

qj ,1

]θj dh

h

)1/θj

≤ c

n∑
k=1

∥∥Drk

k f
∥∥

pk,sk
. (1.7)

We shall not specify here the conditions on the parameters. Technically, the most complicated case is one when
some of the pk’s are equal to 1 and some of them are greater than 1. The basic difficulty is to find the sharp values
of the parameters θj ; let us emphasize that it is exactly the main result of the work. In this connection observe
that an inequality similar to (1.7) was proved by Il’in [2, Vol. 2, pp. 72] in the case pk = sk > 1 (k = 1, . . . , n),
but with the value of the parameter θ = max1≤k≤n pk, which is not sharp when pk are different.

The general base of our approach is contained in the Lemmas 2.2, 2.3 and 2.4 given below. These lemmas were
proved earlier by the first named author. Lemmas 2.3 and 2.4 give estimates of non-increasing rearrangement of
a function in terms of its derivatives. We use also the scheme of the proof of the inequality (1.6) developed in [8].
Observe that in our case some essential modifications of this scheme are requiered.

Note also that as in the articles [9], [11], [15], the results of this paper can be applied to the study of estimates
of Fourier transforms in Sobolev spaces.

2 Auxiliary propositions

Let S0(Rn) be the class of all measurable and almost everywhere finite functions f on R
n such that for each

y > 0,

λf (y) ≡ ∣∣{x ∈ R
n : |f(x)| > y}∣∣ < ∞ .

A non-increasing rearrangement of a function f ∈ S0(Rn) is a non-increasing function f∗ on R+ ≡ (0, +∞)
that is equimeasurable with |f |. The rearrangement f∗ can be defined by the equality

f∗(t) = sup
|E|=t

inf
x∈E

|f(x)| , 0 < t < ∞ .

The following relation holds [1, Ch. 2]

sup
|E|=t

∫
E

|f(x)| dx =
∫ t

0

f∗(u) du .

In what follows we set

f∗∗(t) =
1
t

∫ t

0

f∗(u) du .

Assume that 0 < q, p < ∞ . A function f ∈ S0(Rn) belongs to the Lorentz space Lq,p(Rn) if

‖f‖q,p ≡
(∫ ∞

0

(
t1/qf∗(t)

)p dt

t

)1/p

< ∞ .

We have the inequality [1, pp. 217]

‖f‖q,s ≤ c ‖f‖q,p (0 < p < s < ∞) ,

so that Lq,p ⊂ Lq,s for p < s. In particular, for 0 < p ≤ q

Lq,p ⊂ Lq,q ≡ Lq .
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Lemma 2.1 Let ψ ∈ Lp,s(R+) (1 ≤ p, s < ∞) be a non-negative non-increasing function on R+. Then for
any δ > 0 there exists a continuously differentiable function ϕ on R+ such that:

(i) ψ(t) ≤ ϕ(t) , t ∈ R+;
(ii) ϕ(t)t1/p−δ decreases and ϕ(t)t1/p+δ increases on R+;

(iii) ‖ϕ‖p,s ≤ c ‖ψ‖p,s,
where c is a constant that only depends on p and δ.

P r o o f. We can suppose that δ < 1/p. Set

ϕ1(t) = 2tδ−1/p

∫ ∞

t/2

u1/p−δψ(u)
du

u
.

Then ϕ1(t) t1/p−δ decreases and

ϕ1(t) ≥ 2tδ−1/pψ(t)
∫ t

t/2

u1/p−δ−1 du ≥ ψ(t) .

Furthermore, applying Hardy’s inequality [1, pp. 124], we easily get that

‖ϕ1(t)‖p,s ≤ c ‖ψ‖p,s . (2.1)

Set now

ϕ(t) = (δ + 1/p)t−1/p−δ

∫ t

0

ϕ1(u)uδ+1/p du

u
. (2.2)

Then ϕ(t)t1/p +δ increases on R+ and

ϕ(t) ≥ ϕ1(t) ≥ ψ(t) , t ∈ R+ .

Furthermore, the change of variable v = u2δ in the right-hand side of (2.2) gives that

t1/p−δϕ(t) = c t−2δ

∫ t2δ

0

η
(
v1/(2δ)

)
dv ,

where η(u) = ϕ1(u)u1/p−δ is a decreasing function on R+. Thus, t1/p−δϕ(t) decreases. Finally, using Hardy’s
inequality and (2.1), we get (iii). The lemma is proved.

Let rk ∈ N and 1 ≤ pk < ∞ for k = 1, . . . , n (n ≥ 2).
Denote

r = n


 n∑

j=1

1
rj




−1

, p =
n

r


 n∑

j=1

1
pjrj




−1

(2.3)

and

γk = 1 − 1
rk

(
r

n
+

1
pk

− 1
p

)
. (2.4)

Then γk > 0 and

n∑
k=1

γk = n − 1 . (2.5)

Indeed, (
r

n
+

1
pk

− 1
p

) n∑
j=1

1
rj

= 1 +
∑
j �=k

(
1
pk

− 1
pj

)
1
rj

< 1 +
∑
j �=k

1
rj

≤ rk

n∑
j=1

1
rj

.
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Thus, γk > 0. The equality (2.5) follows immediately from (2.3).
To prove our main results we use estimates of the rearrangement of a given function in terms of its derivatives

Drk

k f (k = 1, . . . , n). Thus, we apply simultaneously n estimates in which upper bounds involve functions
belonging to different Lorentz spaces. The following lemma enables us to find a sharp “intermediate” estimate.

We will use the notations (2.3) and (2.4).

Lemma 2.2 Let rk ∈ N, 1 ≤ pk, sk < ∞ for k = 1, . . . , n (n ≥ 2) and sk = 1 if pk = 1. Set

s =
n

r


 n∑

j=1

1
sjrj




−1

.

Let

0 < δ ≤ 1
4

min
γj<1

min
(
γj , 1 − γj

)
. (2.6)

Suppose that ϕk ∈ Lpk,sk(R+) (k = 1, . . . , n) are positive continuously differentiable functions with ϕ′
k(t) < 0

on R+ such that ϕk(t)t1/pk −δ decreases and ϕk(t)t1/pk+δ increases on R+. Set for u, t > 0

ηk(u, t) =

{
(t/u)rk−1ϕk(u) , if pk = 1 ,

(t/u)rkϕk(t) , if pk > 1 ,

and

σ(t) = sup

{
min

1≤k≤n
ηk(uk, t) :

n∏
k=1

uk = tn−1 , uk > 0

}
. (2.7)

Then:
(i) there holds the inequality(∫ ∞

0

ts(1/p−r/n)−1σ(t)sdt

)1/s

≤ c′
n∏

k=1

‖ϕk‖r/(nrk)
pk,sk

; (2.8)

(ii) there exist positive continuously differentiable functions uk(t) on R+ such that

n∏
k=1

uk(t) = tn−1 (2.9)

and

σ(t) = ηk(uk(t), t) (t ∈ R+ , k = 1, . . . , n) ; (2.10)

(iii) for any k such that

1
pk

>
1
p
− r

n
(2.11)

the function uk(t)tδ−1 decreases on R+;
(iv) if pk = 1, then∫ ∞

0

uk(t)
t

ϕk(uk(t)) dt ≤ c ‖ϕk‖1 . (2.12)

P r o o f. Fix t > 0 and denote

µt(u) = min
1≤k≤n

ηk(uk, t) , u = (u1, . . . , un) ∈ R
n
+ .

This is a continuous function on R
n
+. Observe that every function ηk(s, t) is strictly decreasing and continuous

with respect to s on R+. Furthermore, ηk(s, t) → 0 as s → +∞. Thus,

µt(u) −→ 0 as max uk −→ +∞ .
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This implies the existence of a point u∗ ∈ R
n
+ such that

µt(u∗) = σ(t) and
n∏

k=1

u∗
k = tn−1 .

For any k = 1, . . . , n there exists a unique point uk(t) > 0 such that ηk(uk(t), t) = σ(t). It is clear that
u∗

k ≤ uk(t) for all k (otherwise we would have that µt(u∗) < σ(t)). Suppose that u∗
j < uj(t) for some j.

Take u′
j ∈ (

u∗
j , uj(t)

)
and choose u′

k ∈ (0, u∗
k) (k 
= j) such that

∏n
k=1 u′

k = tn−1. Then we obtain that
µt(u′) > σ(t), in contradiction with the definition of σ(t). Thus, u∗

k = uk(t) (k = 1, . . . , n), and we get that the
functions uk(t) satisfy both equalities (2.9) and (2.10).

Further, for any j = 1, . . . , n

ηj

(
uj(t), t

)
= ηn(un(t), t) . (2.13)

It follows that there exist functions ψj(s, t) ∈ C1
(
R

2
+

)
(j = 1, . . . , n − 1) such that

∂ψj

∂s
(s, t) > 0 , (s, t) ∈ R

2
+ , (2.14)

and

uj(t) = ψj(un(t), t) (j = 1, . . . , n − 1) . (2.15)

Indeed, if pj = 1, then (2.13) implies that

λj(uj(t)) = t1−rj ηn(un(t), t) ,

where λj(s) ≡ s1−rj ϕj(s) is a continuously differentiable function with λ′
j(s) < 0 (s > 0). Thus, (2.15) holds

with

ψj(s, t) = λ−1
j

(
t1−rj ηn(s, t)

)
;

clearly, ψj ∈ C1
(
R

2
+

)
and satisfies (2.14). If pj > 1, then (2.15) holds with the function

ψj(s, t) = t
[
ϕj(t)/ηn(s, t)

]1/rj
,

which also belongs to C1
(
R

2
+

)
and satisfies (2.14).

It follows from (2.9) and (2.15) that for any t > 0

Φ(un(t), t) = tn−1 ,

where

Φ(s, t) = s
n−1∏
j=1

ψj(s, t) .

Since Φ′
s(s, t) > 0, we get that un ∈ C1(R+) and therefore, by (2.15), uj ∈ C1(R+) for any j = 1, . . . , n. The

statement (ii) is proved. Note also that by (2.10) the function σ is continuously differentiable in R+.
Now we will prove that for all t > 0

r/n − 1/p − δ

t
≤ σ′(t)

σ(t)
≤ r/n − 1/p + δ

t
. (2.16)

Our conditions on ϕk imply that for any k = 1, . . . , n(
1
pk

− δ

)
1
t

≤ −ϕ′
k(t)

ϕk(t)
≤
(

1
pk

+ δ

)
1
t

. (2.17)
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Further, if pk > 1, then by (2.10)

σ′(t)
σ(t)

=
rk

t
− rk

u′
k(t)

uk(t)
+

ϕ′
k(t)

ϕk(t)
(2.18)

and by (2.17)

rk − 1/pk − δ

t
− rk

u′
k(t)

uk(t)
≤ σ′(t)

σ(t)
≤ rk − 1/pk + δ

t
− rk

u′
k(t)

uk(t)
. (2.19)

If pk = 1, then we have by (2.10)

σ′(t)
σ(t)

=
rk − 1

t
− (rk + αk(t))

u′
k(t)

uk(t)
, (2.20)

where

αk(t) = −
[
1 + uk(t)

ϕ′
k(uk(t))

ϕk(uk(t))

]
.

By (2.17) (pk = 1),

−δ ≤ αk(t) ≤ δ . (2.21)

Now, differentiating (2.9) and taking into account (2.5), we get that for any t > 0 there exists m ≡ m(t) such
that

u′
m(t)

um(t)
≤ γm

t
.

If pm > 1, then by the first of the inequalities (2.19),

σ′(t)
σ(t)

≥ rm − 1/pm − rmγm − δ

t
=

r/n − 1/p − δ

t
.

If pm = 1 (in this case γm < 1), then by (2.20) and (2.21)

σ′(t)
σ(t)

≥ rm − 1 − γm(rm + δ)
t

≥ r/n − 1/p− δ

t
.

Thus, we have the first inequality in (2.16). To prove the second inequality observe that by (2.5) and (2.9) for any
t > 0 there exists l ≡ l(t) such that

u′
l(t)

ul(t)
≥ γl

t
.

As above, it remains to apply the right-hand side inequality of (2.19) in the case pl > 1 or (2.20) and (2.21) in
the case pl = 1.

To prove (iii) assume that k satisfies the condition (2.11) (that is, γk < 1). Let pk > 1. By (2.18), (2.17) and
(2.16),

rk
u′

k(t)
uk(t)

=
rk

t
− σ′(t)

σ(t)
+

ϕ′
k(t)

ϕk(t)
≤ rk + 1/p− r/n − 1/pk + 2δ

t
=

rkγk + 2δ

t
.

Thus, by (2.6),

u′
k(t)

uk(t)
≤ 1 − δ

t
,
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which implies (iii) (in the case pk > 1). If pk = 1, then by (2.20) and (2.16)

(rk + αk(t))
u′

k(t)
uk(t)

≤ rk − 1 + 1/p − r/n + δ

t
=

rkγk + δ

t
.

From here (see (2.6)),

u′
k(t)

uk(t)
≤ rkγk + δ

(rk + αk(t))t
≤ rkγk + δ

(rk − δ)t
≤ 1 − δ

t
.

This implies (iii).
To prove (iv) assume that pk = 1. By (2.20) and (2.16)

(rk + αk(t))
u′

k(t)
uk(t)

≥ rk − 1 + 1/p − r/n − δ

t
=

rkγk − δ

t
.

From here (see (2.6)),

u′
k(t)

uk(t)
≥ rkγk − δ

(rk + αk(t))t
≥ rkγk − δ

(rk + δ)t
>

δ

t
.

It follows that∫ ∞

0

uk(t)
t

ϕk(uk(t)) dt ≤ 1
δ

∫ ∞

0

u′
k(t)ϕk(uk(t)) dt =

1
δ
‖ϕk‖1 .

Thus, we obtain (2.12).
It remains to prove the inequality (2.8). By (2.10), we have

σ(t)r/(nrk) =
(

t

uk(t)

)r/n[
ϕk(uk(t))

uk(t)
t

]r/(nrk)

, if pk = 1 ,

and

σ(t)r/(nrk) =
(

t

uk(t)

)r/n

ϕk(t)r/(nrk) , if pk > 1 .

Multiplying these equalities and using (2.9), we get

σ(t) = tr/n
∏

pk=1

[
uk(t)

t
ϕk(uk(t))

]r/(nrk) ∏
pk>1

(ϕk(t))r/(nrk) . (2.22)

Denote

qk =
nrksk

rs
.

Then
n∑

k=1

1
qk

= 1 and
n∑

k=1

sk

pkqk
=

s

p
.

Therefore, applying Hölder’s inequality with the exponents qk and using (2.12), we get from (2.22)∫ ∞

0

ts(1/p−r/n)−1σ(t)s dt ≤ c
∏

pk=1

‖ϕk‖rs/(nrk)
1

∏
pk>1

‖ϕk‖rs/(nrk)
pk,sk

.

The proof is now complete.

The Lebesgue measure of a measurable set A ⊂ R
k will be denoted by mesk A.
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54 Kolyada and Pérez: Estimates of difference norms

For any Fσ-set E ⊂ R
n denote by Ej the orthogonal projection of E onto the coordinate hyperplane xj = 0.

By the Loomis-Whitney inequality [5, 4.4.2],

(mesn E)n−1 ≤
n∏

j=1

mesn−1 Ej . (2.23)

As usual, for any x = (x1, . . . , xn) ∈ R
n we denote by x̂k the (n − 1)-dimensional vector obtained from x by

removal of its k-th coordinate.
Let f ∈ S0(Rn), t > 0 and let Et be a set of type Fσ and measure t such that

|f(x)| ≥ f∗(t) for all x ∈ Et .

Denote by λj(t) the (n − 1)-dimensional measure of the projection Ej
t (j = 1, . . . , n). By (2.23), we have that

n∏
j=1

λj(t) ≥ tn−1 . (2.24)

The following lemma was proved in [8] (see also [10]).

Lemma 2.3 Let n ≥ 2, rk ∈ N (k = 1, . . . , n). Assume that a locally integrable function f ∈ S0(Rn) has
weak derivatives Drk

k f ∈ Lloc(Rn) (k = 1, . . . , n). Then for all 0 < t < τ < ∞ and k = 1, . . . , n we have

f∗(t) ≤ K

[
f∗(τ) +

(
τ

λk(t)

)rk (
Drk

k f
)∗∗(τ)

]
(2.25)

and

f∗(t) ≤ K

[
f∗(τ) +

(
τ

λk(t)

)rk−1

ψ∗
k

(
λk(t)

2

)]
, (2.26)

where K is a constant depending only on r1, . . . , rn and

ψk(x̂k) =
∫

R

|Drk

k f(x)| dxk , x̂k ∈ R
n−1 . (2.27)

Lemma 2.4 Let n ≥ 2, rk ∈ N, 1 ≤ pk, sk < ∞ for k = 1, . . . , n and sk = 1 if pk = 1. Set

r = n

(
n∑

k=1

1
rk

)−1

, p =
n

r

(
n∑

k=1

1
pkrk

)−1

, (2.28)

and

s =
n

r

(
n∑

k=1

1
skrk

)−1

. (2.29)

Assume that a locally integrable function f ∈ S0(Rn) has weak derivatives Drk

k f ∈ Lpk,sk(Rn) (k = 1, . . . , n).
Then for any ξ > 1

f∗(t) ≤ K
[
f∗(ξt) + ξr̄σ(t)

]
, (2.30)

where r̄ = max rk, the constant K depends only on r1, . . . , rn and

(∫ ∞

0

ts(1/p−r/n)−1σ(t)s dt

)1/s

≤ c

n∏
k=1

∥∥Drk

k f
∥∥r/(nrk)

pk,sk
. (2.31)
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P r o o f. For every fixed k = 1, . . . , n we take (see (2.27))

ψ(t) ≡ ψk(t) =

{
ψ∗

k(t/2) , if pk = 1 ,

(Drk

k f)∗∗ (t) , if pk > 1 .

Then ‖ψk‖1 = 2
∥∥Drk

k

∥∥
1
, if pk = 1, and by Hardy’s inequality [1, pp. 124]

||ψk||pk,sk
≤ c

∥∥Drk

k f
∥∥

pk,sk
,

if pk > 1. Next we apply Lemma 2.1 with δ defined as in Lemma 2.2. This way we obtain the functions which
we denote by ϕk(t) (k = 1, . . . , n). Further, with these functions ϕk we define the function σ(t) by (2.7). By
Lemma 2.2, we have the inequality (2.31). Using Lemma 2.3 with τ = ξt, we obtain

f∗(t) ≤ K

[
f∗(ξt) + ξr̄

(
t

λk(t)

)rk

ϕk(t)
]

,

if pk > 1, and

f∗(t) ≤ K

[
f∗(ξt) + ξr̄

(
t

λk(t)

)rk−1

ϕk(λk(t))

]
,

if pk = 1. Taking into account (2.7) and (2.24), we immediately get (2.30).

Note that in the case p1 = . . . = pn, s1 = . . . = sn Lemma 2.4 actually is contained in [10] (see Lemmas 7
and 8 in [8]).

Corollary 2.5 Assume that a function f satisfies the conditions of Lemma 2.4 and f ∈ L1(Rn) + Lp0(Rn)
for some p0 > 0 such that

1
p0

>
1
p
− r

n
.

Let max(1, p0) < q < ∞ and

1
q

>
1
p
− r

n
. (2.32)

Then for any θ > 0 f ∈ Lq,θ(Rn) and

‖f‖q,θ ≤ c

[
‖f‖L1+Lp0 +

n∏
k=1

∥∥Drk

k f
∥∥r/(nrk)

pk,sk

]
. (2.33)

P r o o f. We can assume that θ < min(1, p0, s). Let f = g+h, with g ∈ L1(Rn) and h ∈ Lp0(Rn). Applying
Hölder inequality, we obtain

J1 ≡
∫ ∞

1

[
t1/qf∗(t)

]θ dt

t
≤ 2θ

[∫ ∞

1

[
t1/qg∗(t/2)

]θ dt

t
+
∫ ∞

1

[
t1/qh∗(t/2)

]θ dt

t

]

≤ c

[(∫ ∞

0

g∗(t) dt

)θ

+
(∫ ∞

0

h∗(t)p0 dt

)θ/p0
]

.

It follows that

J1 ≤ c′ ‖f‖θ
L1+Lp0 . (2.34)
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Let 0 < δ < 1. Using (2.30) with ξ =
(
21/θK

)q
, we get by Hölder inequality and (2.32):

Jδ ≡
∫ ∞

δ

[
t1/qf∗(t)

]θ dt

t
≤ J1 + Kθ

∫ 1

δ

[
t1/qf∗(ξt)

]θ dt

t
+ c

∫ 1

0

tθ/q −1σ(t)θ dt

≤ J1 +
1
2

Jδ + c′
(∫ 1

0

ts(1/p−r/n)−1σ(t)s dt

)θ/s

.

By (2.34), Jδ < ∞. The inequality (2.33) follows now from (2.31) and (2.34).

Remark 2.6 Let rk ∈ N, 1 ≤ pk, sk < ∞ for k = 1, . . . , n (n ≥ 2) and sk = 1, if pk = 1. Let r, p and s
be the numbers defined by (2.28) and (2.29). Assume that p < n/r and set q∗ = np/(n − rp). Then for any
function f ∈ C∞(Rn) with compact support we have

‖f‖q∗,s ≤ c

n∏
k=1

∥∥Drk

k f
∥∥r/(nrk)

pk,sk
. (2.35)

This statement follows immediately from the Lemma 2.4. The inequality (2.35) gives a generalization of the
classical Sobolev’s inequality with limiting exponent. A slightly different scheme of the proof of (2.35) was given
in [10, Theorem 13.1]. In the case pk = sk > 1 (k = 1, . . . , n) the inequality (2.35) contains in [2, Ch. 4]. For
r1 = . . . = rn = 1 the proof of (2.35) was given in [19]. One can find a detailed description of the preceding
results in [10] (see also [19]).

3 The main theorem

Theorem 3.1 Let n ≥ 2, rk ∈ N, 1 ≤ pk, sk < ∞ for k = 1, . . . , n and sk = 1 if pk = 1. Let r, p and s be
the numbers defined by (2.28) and (2.29). For every pj (1 ≤ j ≤ n) satisfying the condition

ρj ≡ r

n
+

1
pj

− 1
p

> 0 ,

take arbitrary qj > pj such that

1
qj

>
1
p
− r

n

and denote

κj = 1 − 1
ρj

(
1
pj

− 1
qj

)
, αj = κjrj ,

1
θj

=
1 − κj

s
+

κj

sj
.

Then for any function f ∈ S0(Rn) which has the weak derivatives Drk

k f ∈ Lpk,sk(Rn) (k = 1, . . . , n) there
holds the inequality

(∫ ∞

0

[
h−αj

∥∥∆rj

j (h)f
∥∥

qj ,1

]θj dh

h

)1/θj

≤ c

n∑
k=1

∥∥Drk

k f
∥∥

pk,sk
, (3.1)

where c is a constant that does not depend on f .

P r o o f. First observe that by our conditions 0 < κj < 1. Denote

gk(x) =
∣∣Drk

k f(x)
∣∣ .

Further, assume that j = 1 and set for h > 0

fh(x) = |∆r1
1 (h)f(x)| .
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For almost all x ∈ R
n we have (see [2, Vol. 1, pp. 101])

fh(x) ≤
∫ h

0

. . .

∫ h

0

g1(x + (u1 + . . . + ur1)e1) du1 . . . dur1 . (3.2)

From here,

f∗
h(t) ≤ hr1g∗∗1 (t) . (3.3)

Indeed, for any subset A ⊂ R
n with |A| = t∫

A

fh(x) dx ≤ hr1 sup
B⊂Rn, |B|=t

∫
B

g1(y) dy = hr1tg∗∗1 (t) .

From this, it follows (3.3).
If p1 = 1 (in this case s1 = 1), then it follows from (3.2) that fh ∈ L1(Rn). If p1 > 1, then (3.3) implies that

fh ∈ Lp1,s1(Rn). Thus, by Corollary 2.5 we have that fh ∈ Lq1,1(Rn).
Denote for h > 0

J(h) ≡ ‖fh‖q1,1 =
∫ ∞

0

t1/q1 −1f∗
h(t) dt .

Set ξ0 = (4K)q1 and

Q(h) = {t > 0 : f∗
h(t) ≥ 2Kf∗

h(ξ0t)} , (3.4)

where K is the constant in Lemma 2.3. Then∫
R+\Q(h)

t1/q1 −1f∗
h(t) dt ≤ 2K

∫ ∞

0

t1/q1 −1f∗
h(ξ0t) dt

= 2Kξ
−1/q1
0

∫ ∞

0

t1/q1 −1f∗
h(t) dt =

1
2

J(h) .

Therefore,

J(h) ≤ 2
∫

Q(h)

t1/q1 −1f∗
h(t) dt ≡ 2J ′(h) . (3.5)

Denote

ψk(x̂k) =
∫

R

gk(x) dxk , if pk = 1 .

Let ε = (1 − κ1)/2 and

0 < δ < ε min
((r1n

r
− 1

)−1

,
1
2

min
γj<1

min
(
γj , 1 − γj

))
. (3.6)

Now for every k = 1, . . . , n we apply Lemma 2.1 with ψ(t) = ψ∗
k(t/2) in the case pk = 1 and ψ(t) = g∗∗k (t) in

the case pk > 1. We obtain that there exist functions ϕk(t) (k = 1, . . . , n) on R+ such that

ϕk(t) t1/pk −δ ↓ , ϕk(t) t1/pk +δ ↑ , (3.7)

ψ∗
k(t/2) ≤ ϕk(t) , if pk = 1 , (3.8)

g∗∗k (t) ≤ ϕk(t) , if pk > 1 , (3.9)

and

‖ϕk‖pk,sk
≤ c

∥∥Drk

k f
∥∥

pk,sk
. (3.10)

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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We shall estimate f∗
h(t) for fixed h > 0 and t ∈ Q(h). Let E(t, h) be a set of type Fσ and measure t such that

fh(x) ≥ f∗
h(t) for all x ∈ E(t, h) . (3.11)

Denote by λk(t, h) the (n − 1)-dimensional measure of the orthogonal projection of E(t, h) onto the coordinate
hyperplane xk = 0. By Lemma 2.3, (3.8) and (3.9), we have that for each t ∈ Q(h)

f∗
h(t) ≤ c

(
t

λk(t, h)

)rk−1

ϕk(λk(t, h)) , if pk = 1 , (3.12)

and

f∗
h(t) ≤ c

(
t

λk(t, h)

)rk

ϕk(t) , if pk > 1 . (3.13)

Applying inequality (2.23) and Lemma 2.2, we obtain that there exist a non-negative function σ(t) and positive
continuously differentiable functions uk(t) (k = 1, . . . , n) on R+ satisfying the following conditions:

f∗
h(t) ≤ c σ(t) , t ∈ Q(h) , (3.14)(∫ ∞

0

ts(1/p−r/n)−1σ(t)s dt

)1/s

≤ c

n∏
k=1

∥∥Drk

k f
∥∥r/(nrk)

pk,sk
, (3.15)

σ(t) =

{
(t/uk(t))rk−1

ϕk(uk(t)) , if pk = 1 ,

(t/uk(t))rk ϕk(t) , if pk > 1 ,
(3.16)

n∏
k=1

uk(t) = tn−1 , (3.17)

u1(t)tδ−1 decreases , (3.18)∫ ∞

0

uk(t)
t

ϕk(uk(t)) dt ≤ c
∥∥Drk

k f
∥∥

1
, if pk = 1 . (3.19)

The estimate (3.14) can be used for t “sufficiently small”. For “large” t we need different estimates, involving h.
First, we have the estimate (3.3). Nevertheless, this estimate does not work in the case p1 = 1

(
the operator

g → g∗∗ is unbounded in L1
)
.

We shall prove an estimate which can be applied for all values of p1 ≥ 1. Denote

β(t) = t/u1(t) . (3.20)

We shall prove that for any h > 0 and any t ∈ Q(h)

f∗
h(t) ≤ c hr1−εβ(t)εχ(t) , (3.21)

where ε = (1 − κ1)/2 and

χ(t) ≡ σ(t)β(t)−r1 =

{
u1(t)ϕ1(u1(t))/t , if p1 = 1 ,

ϕ1(t) , if p1 > 1
(3.22)

(see (3.16)). By (3.10) and (3.19),

‖χ‖p1,s1 ≤ c
∥∥Dr1

1 f
∥∥

p1,s1
. (3.23)

For h ≥ β(t) (t ∈ Q(h)) the inequality (3.21) follows directly from (3.14) and (3.22). Assume that 0 < h ≤
β(t), t ∈ Q(h). If p1 > 1, then (3.21) is the immediate consequence of (3.3), (3.9) and (3.22).

Let p1 = 1. First suppose that there exists 1 ≤ j ≤ n such that

λj(t, h) ≥ 1
2

uj(t)
(

β(t)
h

)r1/rj

.
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If pj > 1, then by (3.13) and (3.16)

f∗
h(t) ≤ c

(
t

uj(t)

)rj

ϕj(t)
(

h

β(t)

)r1

= c σ(t)
(

h

β(t)

)r1

.

If pj = 1, then we apply (3.12). Notice that

λj(t, h) ≥ 1
2

uj(t) .

Taking into account that for δj = ε rj/r1 the function ϕj(u)u1−δj decreases and the function ϕj(u)u1+δj

increases (see (3.6) and (3.7)), we get that

(
λj(t, h)

)1−δj
ϕj

(
λj(t, h)

) ≤
(

1
2

uj(t)
)1−δj

ϕj

(
uj(t)

2

)
≤ c

(
uj(t)

)1−δj
ϕj

(
uj(t)

)
.

Thus, by (3.12)

f∗
h(t) ≤ c hr1−εβ(t)ε−r1

(
t

uj(t)

)rj−1

ϕj(uj(t)).

From these estimates and (3.16) it follows the inequality (3.21), where χ(t) is defined by (3.22).
Now assume that for each j = 1, . . . , n.

λj(t, h) <
1
2

uj(t) (β(t)/h)r1/rj . (3.24)

First of all, it follows that

λ1(t, h) <
t

2h
. (3.25)

Further, for any Fσ-set A ⊂ E ≡ E(t, h) denote by Aj the orthogonal projection of A onto the hyperplane
xj = 0. If

mesn−1 A1 ≤ 1
2

u1(t)
(

h

β(t)

) r1n

r −1

≡ 1
2

γ(t, h) , (3.26)

then

mesn A ≤ t

2
.

Indeed, otherwise we would have by (3.26) and (2.23)

n∏
j=2

mesn−1 Aj ≥ tn−1

2n−2γ(t, h)
=

1
2n−2

(
β(t)
h

)r1
∑n

j=2 r−1
j

n∏
j=2

uj(t) ,

contrary to the assumption (3.24).
Using Lemma 3 of [8], we decompose the projection E1(t, h) into measurable disjoint subsets P and S such

that

mesn−1 S =
1
2

γ(t, h)

and ∫
P

ψ1(x̂1) dx̂1 ≤
∫ t/(2h)

γ(t,h)/2

ψ∗
1(u) du . (3.27)
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It follows from the observation given above that the measure of the set

E′ = {x ∈ E(t, h) : x̂1 ∈ P}

is at least t/2. For x̂1 ∈ E1(t, h) we denote by T (x̂1) the section of the set E(t, h) by the line that passes
through x̂1 and is perpendicular to the hyperplane x1 = 0 (note that T (x̂1) is a set of type Fσ). For almost all
x̂1 ∈ E1(t, h) we have (see (3.2))

f∗
h(t)mes1 T (x̂1) ≤

∫
T (x̂1)

fh(x) dx1 ≤ hr1

∫
R

|Dr1
1 f(x)| dx1 = hr1ψ1(x̂1) .

Integrating this inequality with respect to x̂1 over P and taking into account (3.27) and the inequality∫
P

mes1 T (x̂1) dx̂1 = |E′| ≥ t

2
,

we get (see also (3.8))

f∗
h(t) ≤ hr1

t

∫ t/h

γ(t,h)

ϕ1(u) du . (3.28)

For 0 < h ≤ β(t) we have

γ(t, h) ≤ u1(t) ≤ t/h .

Furthermore, let η = ε/
(

r1n
r − 1

)
. By (3.7), ϕ1(u)u1+η increases and ϕ1(u)u1−ε decreases on (0,∞). Thus,

we have ∫ t/h

γ(t,h)

ϕ1(u) du =
∫ u1(t)

γ(t,h)

ϕ1(u) du +
∫ t/h

u1(t)

ϕ1(u) du

≤ ϕ1(u1(t))u1(t)1+ηγ(t, h)−η/η + ϕ1(u1(t))u1(t)1−ε(t/h)ε/ε

= c h−εβ(t)εu1(t)ϕ1(u1(t)) .

From here and (3.28) it follows (3.21).
Finally, taking into account (3.14) and (3.21), we obtain that for any h > 0 and any t ∈ Q(h)

f∗
h(t) ≤ c Φ(t, h) , (3.29)

where

Φ(t, h) = min
(
σ(t), hr1−εβ(t)εχ(t)

)
(3.30)

and χ(t) is defined by (3.22).
Further, we have (see (3.5))

J ′(h) ≤ c

∫ ∞

0

t1/q1 −1Φ(t, h) dt

and

J ≡
∫ ∞

0

h−α1θ1−1J(h)θ1 dh ≤ c

∫ ∞

0

h−α1θ1−1 dh

(∫ ∞

0

t1/q1 −1Φ(t, h) dt

)θ1

.

By (3.18), the function β(t)t−δ increases on R+. It easily follows that the inverse function β−1 exists on R+

and satisfies the condition

β−1(2z) ≤ 21/δβ−1(z) . (3.31)

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Math. Nachr. 267 (2004) / www.mn-journal.com 61

Furthermore, we have

J ≤ c


∫ ∞

0

h−α1θ1−1 dh

(∫ β−1(h)

0

t1/q1 −1Φ(t, h) dt

)θ1

+
∫ ∞

0

h−α1θ1−1 dh

(∫ ∞

β−1(h)

t1/q1 −1Φ(t, h) dt

)θ1

 ≡ c (J1 + J2) .

Applying Minkowsi’s inequality, we obtain

J
1/θ1
1 =


∫ ∞

0

h−α1θ1−1 dh

( ∞∑
k=0

∫ β−1(2−kh)

β−1(2−k−1h)

t1/q1−1σ(t) dt

)θ1



1/θ1

≤
∞∑

k=0


∫ ∞

0

h−α1θ1−1 dh

(∫ β−1(2−kh)

β−1(2−k−1h)

t1/q1−1σ(t) dt

)θ1



1/θ1

=
∞∑

k=0

2−kα1


∫ ∞

0

z−α1θ1−1 dz

(∫ β−1(z)

β−1(z/2)

t1/q1−1σ(t) dt

)θ1



1/θ1

.

Further, using the Hölder inequality and (3.31), we get

∫ β−1(z)

β−1(z/2)

t1/q1−1σ(t) dt ≤ c

(∫ β−1(z)

0

tθ1/q1−1σ(t)θ1 dt

)1/θ1

Thus, by Fubini’s theorem and (3.22)

J1 ≤ c

∫ ∞

0

z−α1θ1−1 dz

∫ β−1(z)

0

tθ1/q1−1σ(t)θ1 dt

= c

∫ ∞

0

tθ1/q1−1σ(t)θ1 dt

∫ ∞

β(t)

z−α1θ1−1 dz

= c′
∫ ∞

0

tθ1/q1−1σ(t)θ1β(t)−α1θ1 dt

= c′
∫ ∞

0

tθ1/q1−1χ(t)κ1θ1σ(t)(1−κ1)θ1 dt .

(3.32)

The same reasonings give that

J2 ≤ c

∫ ∞

0

z[r1(1−κ1)−ε]θ1
dz

z

∫ ∞

β−1(z)

tθ1/q1−1β(t)θ1εχ(t)θ1 dt

= c

∫ ∞

0

tθ1/q1−1β(t)θ1εχ(t)θ1 dt

∫ β(t)

0

z[r1(1−κ1)−ε]θ1−1 dz

= c′
∫ ∞

0

tθ1/q1−1χ(t)θ1β(t)r1(1−κ1)θ1 dt .

By (3.22) the last integral is the same as one on the right-hand side of (3.32). Therefore, we have that

J ≤ c

∫ ∞

0

tθ1/q1−1χ(t)κ1θ1σ(t)(1−κ1)θ1 dt .

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Now we apply Hölder inequality with the exponents u = s1/(κ1θ1) and u′ = s1/(s1 − κ1θ1). Observe that

(1 − κ1)θ1u
′ = s ,

(
θ1

q1
− s1

p1u

)
u′ = s

(
1
p
− r

n

)
.

Thus, we obtain, using (3.15) and (3.23):

J1/θ1 ≤ c

(∫ ∞

0

ts(1/p−r/n)−1σ(t)s dt

)(1−κ1)/s

‖Dr1
1 f‖κ1

p1,s1

≤ c


 n∏

j=1

∥∥Drj

j f
∥∥r/(nrj)

pj ,sj




1−κ1 ∥∥Dr1
1 f

∥∥κ1

p1,s1
.

Since
n∑

j=1

r

nrj
= 1 ,

we obtain the inequality (3.1). The theorem is proved.

Remark 3.2 First we recall the definition of the Besov space in the direction of the coordinate axis xj (see
[13, Ch. 4]).

Let α > 0, 1 ≤ p, θ < ∞ and 1 ≤ j ≤ n. Define the space Bα
p,θ;j(R

n) as the class of all functions
f ∈ Lp(Rn) for which

‖f‖Bα
p,θ;j

≡ ‖f‖p +
(∫ ∞

0

[
h−α

∥∥∆r
j(h)f

∥∥
p

]θ dh

h

)1/θ

< ∞ (3.33)

for any integer r > α. Of course, the right-hand side in (3.33) depends on r, but every choice of the integer r > α
leads to equivalent norms [13, Ch. 4].

Now observe that the conditions of Theorem 3.1 do not imply the belongness of the function f to some
Lν(Rn). However, if we assume in addition that f ∈ Lp0(Rn) for some p0 ≥ 1 and that qj > p0, then by
Corollary 2.5 we get f ∈ Lqj ,1(Rn). Thus, with these additional conditions Theorem 3.1 implies that f ∈
B

αj

qj ,θj;j
(Rn) and

‖f‖
B

αj
qj,θj ;j

≤ c

[
‖f‖p0 +

n∑
k=1

∥∥Drk

k f
∥∥

pk,sk

]
.

Remark 3.3 It is important to emphasize that the values of the parameters θk found in the Theorem 3.1 are
sharp. To verify this statement we shall consider the following simple example.

Assume that n = 2, r1 = r2 = 1, 1 ≤ p1, p2 < ∞ and s1 = p1, s2 = p2. Furthermore, suppose that

p ≡ 2
(

1
p1

+
1
p2

)−1

< 2 .

Then
1
pi

>
1
p
− 1

2
(i = 1, 2) .

Let q1 > p1 be such that

1
q1

>
1
p
− 1

2
.

As in Theorem 3.1, set

κ1 = 1 − 1/p1 − 1/q1

1/p1 − 1/p + 1/2
, α1 = κ1 ,

1
θ1

=
1 − κ1

p
+

κ1

p1
.
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Let 0 < ε < θ1; define the following numbers

α =
2/p− 1

1 + 2(1/p1 − 1/p)
, β =

2/p− 1
1 + 2(1/p2 − 1/p)

,

δ =
1

p1[1 + 2(1/p1 − 1/p)]
θ1

θ1 − ε
, γ =

1
p2[1 + 2(1/p2 − 1/p)]

θ1

θ1 − ε
.

Further, denote for (x, y) ∈ [−1, 1]2

ϕ0(x, y) = |x|α
(

log
e

|x|
)δ

+ |y|β
(

log
e

|y|
)γ

.

Set

D =
{
(x, y) ∈ [−1, 1]2 : ϕ0(x, y) ≤ 1

}
and

f(x, y) ≡ fε(x, y) =

{
[ϕ0(x, y)]−1 − 1 , if (x, y) ∈ D ,

0 , if (x, y) /∈ D .

Carrying out routine calculations, one can show that the function f has the following properties:

(i) f ∈ Lν
(
R

2
)

for any 1 ≤ ν ≤ 2p/(2 − p);

(ii)
∂f

∂x
∈ Lp1

(
R

2
)
,

∂f

∂y
∈ Lp2

(
R

2
)
;

(iii)
∫ ∞

0

[
h−α1

∥∥∆1
1(h)f

∥∥
q1

]θ1−ε dh

h
= +∞ .

This implies that the values of θk in Theorem 3.1 cannot be reduced.
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