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Abstract

We construct the Frobenius–Padé approximants of the function |x| in (−1, 1) for
the Chebyshev weight. These rational functions are linked with the Frobenius-
Padé approximants of the function

√
x in (0, 1). We prove geometric convergence

of the approximants of |x| in C \ {z : <(z) = 0}.
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1. Introduction

We know that the Fourier expansion of a piecewise analytic function con-
verges slowly in the L2−norm but in general we do not have convergence in the
uniform norm. It is also well known that around the discontinuities of a function
we find the Gibbs phenomenon. To overcome these problems, many different
approaches have been developed (see, for example, [1] and references therein).
Many problems in approximation theory can be connected with the problem of
approximating the piecewise analytic function |x| on a set having the origin as
an inner point. One of the main reasons is the fact that |x| can be seen as the
prototype of a 1−Lipschitz function (see [5]). In [9] and [12] it is proved that
|x| can be approximated uniformly on [−1, 1] by rational functions of degree n
with an error O(exp(−π

√
n)). For polynomials of degree n the error is O(1/n).

In this paper, we study Frobenius-Padé approximation of |x| with respect
to the Chebyshev weight. We obtain an explicit formula for these rational
functions. The rate of convergence of such approximants is O(1/n3/2) at zero
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and for compact subset of C \ {z ∈ C : <(z) = 0} is O(qn) for some q ∈ (0, 1)
which depends on the compact subset. This problem is related to Frobenius-
Padé approximation of

√
x in [0, 1] and the proof uses techniques from Padé

approximation and potential theory.
Let µ be a finite positive Borel measure on the real line R and let {ϕj}j≥0

denote the sequence of orthonormal polinomial with respecto to µ. Given f ∈
L1(µ) its Frobenius-Padé approximant of order (n,m) with respect to µ is a
rational function Πn,m = Pn,m/Qn,m where Pn,m and Qn,m are polynomials
such that deg Pn,m ≤ n, deg Qn,m ≤ m, Qn,m 6≡ 0, and∫

(Qn,m(x)f(x)− Pn,m(x))ϕj(x) dµ(x) = 0, j = 0, 1, . . . , n+m. (1.1)

It means that the Fourier expansion of Qn,m(x)f(x)− Pn,m(x) with respect to
{ϕj : j ≥ 0} starts at least in the term of index n + m + 1. Thus, Pn,m(x) is
the Fourier partial sum of order n of Qn,mf and∫

Qn,m(x)f(x)ϕj(x) dµ(x) = 0, j = n+ 1, n+ 2, . . . , n+m,

which is a linear system in the coefficients of Qn,m of m+ 1 equations. Hence,
a Frobenius-Padé approximant of f always exists. In general it is not unique.
However, if the denominators of the approximants of order (n,m) are always of
degree exactly m, then the approximant of this order is unique.

In [7], it is studied Frobenius-Padé approximants for Markov functions. The
measure defining Markov functions are supported on an interval disjoint with
the support of the measure which defines the expansion in the Frobenius-Padé
approximants. This is the typical situation considered up to now (see also [3],
[4] and [8]).

We obtain the following formulas for the numerators and denominators
of Frobenius-Padé approximants of |x| with respect to the Chebyshev weight

dx
π
√

1−x2
, x ∈ (−1, 1).

Theorem 1.1. The denominator of the Frobenius-Padé approximant of order
(2n+ 1, 2m+ 1) of |x| with respect to the Chebyshev weight is given by

Q2n+1,2m+1(x) = x 3F2(−m,−n+ 1/2, n+m+ 5/2; 2, 3/2;x2)

=

m∑
j=0

(−m)j(−n+ 1/2)j(n+m+ 5/2)j
j!(j + 1)!(3/2)j

x2j+1.
(1.2)

For the order (2n, 2m) we have

Q2n,2m(x) = 3F2(−m,−n+ 1/2, n+m+ 3/2; 3/2, 1;x2)

=

m∑
j=0

(−m)j(−n+ 1/2)j(n+m+ 3/2)j
(j!)2(3/2)j

x2j .
(1.3)
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As usual, (a)n denotes the Pochhammer symbol, i.e.

(a)n := a(a+ 1) · · · (a+ n− 2)(a+ n− 1) =
Γ(a+ n)

Γ(a)
.

Theorem 1.2. The numerator of the Frobenius-Padé approximant of order
(2n+ 1, 2m+ 1) of |x| with respect to the Chebyshev weight is given by

P2n+1,2m+1(x) = xBn,m 3F2(−n,−m− 1/2, n+m+ 2; 1/2, 3/2;x2)

= Bn,m

n∑
j=0

(−n)j(−m− 1/2)j(n+m+ 2)j
j!(1/2)j(3/2)j

x2j+1,

where Bn,m = m!(n+m+1)!(1/2)n√
πn!(1/2)m+1Γ(n+m+5/2)

. For the order (2n, 2m) we have

P2n,2m(x) = Cn,m 3F2(−n,−m− 1/2, n+m+ 1; 1/2, 1/2;x2)

= Cn,m

n∑
j=0

(−n)j(−m− 1/2)j(n+m+ 1)j
j!(1/2)2

j

x2j ,

where Cn,m = m!(n+m)!(1/2)n√
πn!(3/2)mΓ(n+m+3/2)

.

A formula for Frobenius-Padé approximants of sgn(x) with respect to the
Chebyshev weight is given in [10]. Theorems 1.1 and 1.2 are proved in Section
3. We also obtain the rate of convergence of these approximants and results of
overconvergence.

Theorem 1.3. 1. We have

lim
n

Πn,n(z) =

{
z, for <(z) > 0,
−z, for <(z) < 0,

uniformly on each compact subset of the mentioned region and for all
a > 0, limn Πn,n(x) = |x| uniformly on [−a, a].

2. The rate of convergence of Πn,n is geometric in each compact subset of
C\{<(z) = 0}; for example, if K ⊂ {z : <z > 0}, there exists q = q(K) ∈
(0, 1) such that,

lim sup
n

sup
z∈K
|Πn,n(z)− z|1/n ≤ q.

The proof of Theorem 1.3 is reduced to the study of Frobenius-Padé approx-
imants of square root function in (0, 1). Its proof requires some auxiliary results
from potential theory which are obtained in Section 4.

2. Auxiliary results

Let Πn := Pn/Qn denote a Frobenius-Padé approximant of order (n, n) of
|x| with respect to the Chebyshev weight dµ(x) = dx

π
√

1−x2
in (−1, 1). From the

definition 1.1 of Frobenius-Padé approximant we obtain the following result.
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Lemma 2.1. 1. If n = 2k, Π2k(z) = P2k(z)/Q2k(z) = pk(z2)/qk(z2), where
πk = pk/qk is the Frobenius-Padé approximant of order (k, k) of

√
x with

respect to the measure dx
π
√
x−x2

, x ∈ (0, 1).

2. There exist 2k + 1 points z1, z2, . . . , z2k+1 in (0, 1) such that

qk(zj)
√
zj − pk(zj) = 0, j = 1, . . . , 2k + 1.

Let w2k+1(z) :=
∏2k+1
j=1 (z − zj). Of course each zj depends on k but for a

simple notation we does not write these dependence.

3. The polynomial qk(x) has exactly degree k and satisfies the orthogonality
relations ∫ 0

−∞
qk(t)tj

√
−tdt

w2k+1(t)
= 0, j = 0, 1, . . . , k − 1. (2.1)

All zeros of qk are simple, contained in (−∞, 0), and their total number
is exactly k. Let ζ1 < ζ2 < . . . < ζk denote the zeros of qk.

4. The following formula holds true

qk(z)
√
z − pk(z) =

w2k+1(z)

πhk(z)

∫ 0

−∞

hk(x)qk(x)

x− z

√
−xdx

w2k+1(x)
, (2.2)

where z ∈ C \ (−∞, 0) and hk denotes any no null polynomial of degree
≤ k. In particular, if hk = qk we have

√
z − πk(z) =

w2k+1(z)

πq2
k(z)

∫ 0

−∞

q2
k(x)

x− z

√
−xdx

w2k+1(x)
. (2.3)

Of course, we have analogous formulas for odd order. For example,

P2k+1(x) = xpk(x2), Q2k+1(x) = xqk(x2),

where πk = pk/qk is the Frobenius-Padé approximants of order (k, k) of
√
x with

respect to the measure
√
x dx

π
√

1−x , x ∈ (0, 1).

Proof. From the symmetry of µ and f(x) = |x| it follows the first statement
in the lemma. The second one is a direct consequence of the orthogonality
condition in the definition of Frobenius-Padé approximants.

Let C be a positively oriented Jordan curve in C \ (−∞, 0]. Since

(qk(z)
√
z − pk(z))/w2k+1(z)

is an analytic function in C \ (−∞, 0], by Cauchy’s Theorem we have

0 =

∫
C

qk(z)
√
z − pk(z)

w2k+1(z)
zjdz =

∫
C

qk(z)
√
z

w2k+1(z)
zjdz −

∫
C

pk(z)

w2k+1(z)
zjdz

=

∫
C

qk(z)
√
z

w2k+1(z)
zjdz,
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for j = 0, 1, . . . , k. We see that pk(z)zj/w2k+1(z) has a zero of order at least 2
at infinity for such values of j, and is analytic outside C. Hence, we have∫

C

qk(z)
√
z

w2k+1(z)
zjdz = 0.

If we deform C to the boundary of an annulus slit along the negative real axis
and let its inner radius tends to 0 and its outer radius tends to ∞, then the
integral above converges to (2.1).

Observe that w2k+1 is a polynomial whose zeros lies in (0, 1) and has con-
stant sign in (−∞, 0]. From the orthogonality relation (2.1) it follows rather
immediately that deg(qk) = k, and that all its zeros are simple and contained
in (−∞, 0) (see [13], Chapter III).

By Cauchy’s integral formula, for all z in the bounded region limited by C
we deduce

hk(z)(qk(z)
√
z − pk(z))

w2k+1(z)
=

1

2πi

∫
C

hk(t)(qk(t)
√
t− pk(t))

w2k+1(t)

dt

t− z

and for all hk polynomial of degree ≤ k. Letting again curves C deform to
(−∞, 0] as before yields (2.2). We note that the integral in (2.2) exists for all
z ∈ C \ (−∞, 0) and is a continuous function. Further, we note that the factor
2i arises from the analytic continuation of

√
z to (−∞, 0) from both sides.

Remark 2.2. The poles and the zeros of the Frobenius-Padé approximants of
|x| are located in <(z) = 0 and they are strictly interlace.

For the rational approximant πk = pk/qk given in Lemma 2.1 we have the
following properties.

Lemma 2.3. 1. We have

πk(z) =
pk(z)

qk(z)
=

k∑
j=1

λj
z − ζj

+Ak. (2.4)

Moreover, the following inequalities hold

0 < πk(0) < πk(1) < 1, Ak > 0, and λj < 0, j = 1, . . . , k. (2.5)

2. The zeros of
√
z−πk(z) in C\(−∞, 0] are precisely 2k+1 points in (0, 1).

3. The polynomial pk has exactly k zeros, η1, η2, . . . , ηk, which alternate with
{ζj}, i.e.

−∞ < ζ1 < η1 < ζ2 < . . . < ζk−1 < ηk−1 < ζk < ηk < 0.

4. The derivative

π
(j)
k (z) has the same sign as (

√
z)(j) in (0,∞), j ≥ 0.

Therefore, πk is strictly increasing in [0,∞).
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Proof. The formula (2.4) follows immediately because of the zeros of qk are

simple. Setting hk(z) = qk(z)
z−ζj in (2.2), we obtain

√
z − πk(z) =

w2k+1(z)

π qk(z)
z−ζj qk(z)

∫ 0

−∞

qk(x)
x−ζj qk(x)

x− z

√
−x dx

w2k+1(x)
.

Multiplying this identity by (z − ζj), taking limit z → ζj , and by the partial
fraction decomposition of πk, we have

−λj =
w2k+1(ζj)

π(q′k(ζj))2

∫ 0

−∞

(
qk(x)

x− ζj

)2 √−x dx
w2k+1(x)

.

Because w2k+1 is a monic polynomial of degree odd whose zeros lie in (0, 1) and
ζj < 0, we get

λj < 0, j = 1, . . . , n.

If
√
z − πk(z) had more than 2n+ 1 zeros in (0, 1), by employing the same line

of reasoning as in the proof of (2.1), we conclude that qk ≡ 0; moreover,

=
(∫ 0

−∞

q2
k(x)

x− z

√
−xdx

w2k+1(x)

)
= =(z)

∫ 0

−∞

q2
k(x)

|x− z|2

√
−xdx

w2k+1(x)
6= 0, for =(z) 6= 0,

∫ 0

−∞

q2
k(x)

x− z

√
−xdx

w2k+1(x)
< 0, for z ≥ 0.

Hence, the zeros of
√
z−πk(z) in C\(−∞, 0] are precisely 2k+1 points in (0, 1).

Setting z = 0 in (2.3), it follows that

−πk(0) =
w2n+1(0)

q2
k(0)

∫ 0

−∞

q2
k(x)

x

√
−x

w2k+1(x)
dx < 0⇒ πk(0) > 0.

This, along with

lim
z→ζ±j

πk(z) = lim
z→ζ±j

 k∑
j=1

λj
z − ζj

+Ak

 = ∓∞,

allows us to conclude that πk (or equivalently pk) has a simple zero in (ζk, 0)
and in each interval (ζj−1, ζj). Also,

πk(0) = Ak

k∏
j=1

ηj
ζj
,

so we get Ak > 0.
Of course, the ith derivative of πk according to the formula (2.4) equals

π
(i)
k (z) = (−1)i

k∑
j=1

λj
(z − ζj)i

,

6



which has the same sign as (
√
z)(i).

Observe that
√
z− πk(z) is negative at zero and alternate the sign at 2k+ 1

points z1 < z2 < . . . < z2k+1 < 1. So
√
z − πk(z) > 0 for z ∈ (z2k+1, 1) and

πk(1) < 1.

Remark 2.4. In Figure 1 we have showed the error function of the Frobenius-
Padé approximants of order (1, 1) of

√
x for the measure dx

π
√
x−x2

, x ∈ (0, 1), in

the interval (0, 2), respectively.

0.5 1.0 1.5 2.0

-0.10

-0.05

0.05

0.10

0.15

Figure 1: Error function
√
x− π1 in the interval (0, 2).

Now we consider the function

Nk(z) :=

√
z − πk(z)√
z + πk(z)

=
1− z−1/2πk(z)

1 + z−1/2πk(z)
, z ∈ C \ (−∞, 0], k ≥ 1.

It is equivalent to

πk(z) =
√
z

(
1− 2

Nk(z)

1 +Nk(z)

)
, ∀z ∈ C \ (−∞, 0]. (2.6)

Lemma 2.5. Each function Nk, k ∈ N, is analytic in C\ (−∞, 0] and has zeros
precisely at z1, z2, . . . , z2k+1. The sequence {Nk} is uniformly bounded on each
compact subset of C \ (−∞, 0] and

|Nk(x± i0)| = 1, x ∈ (−∞, 0],

where Nk(x ± i0) is the limit of Nk(z) as z → x with =(z) > 0 or =(z) < 0,
respectively. Moreover, the sequence {πk} is uniformly bounded on each compact
subset of C \ (−∞, 0].

Proof. The zeros of
√
z − πk(z) in C \ (−∞, 0] are z1, z2, . . . , z2k+1 which lies

in (0, 1) and the poles of
√
z + πk(z) are the zeros of qk which lies in (−∞, 0).

Thus, the zeros of Nk in C \ (−∞, 0] are z1, z2, . . . , z2k+1.
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We know that all coefficients λj , j = 1, 2, . . . , k, in the partial fraction rep-
resentation (2.4) have identical signs, thus the value πk(z) runs through the
extended real line R when z is moved along the interval (ζj , ζj+1) with ζj and
ζj+1 two adjacent poles. Also, we have that

lim
z→0±i0

Nk(z) = −1, lim
z→∞±i0

Nk(z) = 1. (2.7)

Therefore, from the definition of the function Nk, the bijectivity of the mapping
τ(x) = ζ−x

ζ+x , and for x ∈ R, arg(ζ) = ±π2 , i.e. <(ζ) = 0,∣∣∣∣ζ − xζ + x

∣∣∣∣ = 1,

it follows that arg(Nk(z)) grows exactly by 2π if z is moved from ζj to ζj+1 on
R−+ i0. Correspondingly, arg(Nk(z)) grows by 2π if z is moved in the opposite
direction from ζj+1 to ζj on the other bank R−+ i0 of R−. Because of (2.7) the
same conclusions hold for the intervals (−∞, ζ1)+i0∪(−∞, ζ1)−i0, ((ζk, 0)−i0)
and ((0, ζk) + i0).

Thus arg(Nk(z)) grows by 2π(2k + 1) if z moves once around the boundary
of the domain C \ (−∞, 0]. This boundary consists of the two branches R−+ i0
and R− + i0 of (−∞, 0]. We know that Nk has exactly 2k + 1 simple zeros in
C \ (−∞, 0]. These are the zeros of the polynomial w2k+1. Since the growth
of arg(Nk(z)) along the boundary of C \ (−∞, 0] is 2π(2k + 1), it follows from
the argument principle that the function Nk(z) has no poles in C \ (−∞, 0] and
given a compact set K ⊂ C \ (−∞, 0] there exists a constant q < 1 such that

|Nk(z)| < q, z ∈ K.

From this inequality and (2.6) follows immediately that the sequence {πk} is
normal in C \ (−∞, 0].

3. Proof of Theorems 1.1 and 1.2

In this section we prove the formulas for the Frobenius-Padé approximants
of |x| with respect to the Chebyshev weight. Let us only give details in the case
of odd indexes because the other is similar. To avoid many indexes let us set
P2n+1 := P2n+1,2m+1 and Q2m+1 := Q2n+1,2m+1.

Proof of Theorem 1.1. Let Tk(x) = cos kθ, x = cos θ, k = 0, 1, . . . . We have

x2k+1|x| = 2 (k + 1)!(
1

2
)(k+1)

∞∑
j=0

T2j+1(x)

Γ(k + j + 5
2 )Γ(k − j + 3

2 )
, (3.1)

since

1
π

∫ 1

−1
x2k+1|x|T2j+1(x) dx√

1−x2

‖T2j+1‖2
=

4

π

∫ π/2

0

cos2k+2 θ cos(2j + 1)θ dθ

=
2 (k + 1)!( 1

2 )(k+1)

Γ(k + j + 5
2 )Γ(k − j + 3

2 )
, j = 0, 1, . . . . (3.2)
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According to the definition of Q2m+1(x) =
∑m
k=0 αkx

2k+1 and (3.1) it should
be satisfied

m∑
k=0

αk
(k + 1)!( 1

2 )(k+1)

Γ(k + i+ 5
2 )Γ(k − i+ 3

2 )
= 0, i = n+ 1, n+ 2, . . . , n+m.

Since

Γ(k + i+
5

2
) = (i+ 5/2)kΓ(i+ 5/2), Γ(k − i+

3

2
) = (3/2− i)kΓ(3/2− i),

we have

m∑
k=0

αk
(k + 1)!( 1

2 )(k+1)

(i+ 5/2)k(3/2− i)k
= 0, i = n+ 1, n+ 2, . . . , n+m.

A solution to this system is

αk =
(−m)k(−n+ 1/2)k(n+m+ 5/2)

(k + 1)!k!(1/2)k+1
.

In fact, the Saalschütz formula (see [2, Theorem 2.2.6])

m∑
k=0

(−m)k(a)k(b)k
(c)k(1 + a+ b− c−m)kk!

=
(c− a)m(c− b)m
(c)m(c− a− b)m

(3.3)

for a = m+ n+ 5/2, b = −n+ 1/2, c = 5/2 + i, yields

m∑
k=0

αk
(k + 1)!( 1

2 )(k+1)

(i+ 5/2)k(3/2− i)k
=

m∑
k=0

(−m)k(n+m+ 5/2)k(−n+ 1/2)k
(i+ 5/2)k(3/2− i)kk!

=
(i−m− n)m(i+ n+ 2)m
(5/2 + i)m(i−m− 1/2)m

,

(3.4)

which is obviously zero for i = n+ 1, n+ 2, . . . , n+m.

Proof of Theorem 1.2. According to the definition of P2n+1, (1.2) and (3.1), we
have

P2n+1(x) =

n∑
j=0

m∑
k=0

(−m)k(−n+ 1/2)k(n+m+ 5/2)k

k!Γ(k + j + 5
2 )Γ(k − j + 3

2 )
T2j+1(x)

Since
Γ(k + j + 5/2) = (j + 5/2)kΓ(j + 5/2),

Γ(k − j + 3/2) = (−j + 3/2)k(−j + 1/2)(−j − 1/2)(−j − 3/2)Γ(1− (j + 5/2)),

Γ(x)Γ(1− x) =
π

sin(πx)
, sin(

5

2
+ j)π = (−1)j ,
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we get

P2n+1(x) =
1

π

n∑
j=0

m∑
k=0

(−1)j(−m)k(−n+ 1/2)k(n+m+ 5/2)kT2j+1(x)

k!(j + 5
2 )k(−j + 3

2 )k(−j + 1
2 )(j + 1

2 )(j + 3
2 )

.

By Pfaff-Saalschütz formula (3.3)

m∑
k=0

(−m)k(−n+ 1/2)k(n+m+ 5/2)k
k!(j + 5/2)k(−j + 3/2)k

=
(n− j + 1)m(−j −m− n− 1)m
(−j + 3/2)m(−j −m− 3/2)m

and since (see [2, Definition 2.5.1 and p. 101] or [13, p. 62])

T2j+1(x) = (−1)j(2j + 1)x 2F1(−j, j + 1; 3/2;x2),

we obtain

P2n+1(x) =
2

π
x

n∑
j=0

(−1− j −m− n)m(n− j + 1)m 2F1(−j, j + 1; 3/2;x2)

(−j + 1/2)(j + 3/2)(3/2− j)m(−3/2− j −m)m
.

Now we use

(−j −m− n− 1)m = (−1)m
(n+m+ 2)j(n+m+ 1)!

(n+ 2)j(n+ 1)!
,

(n− j + 1)m =
(m+ n)!(−n)j
(−n−m)jn!

,

(−j + 3/2)m =
(1/2)m+1(1/2)j

(−m− 1/2)j(1/2− j)
,

(−j −m− 3/2)m = (−1)m
(m+ 5/2)j(5/2)m

(5/2)j
,

then with An,m = (n+m)!(n+m+1)!
n!(n+1)!(1/2)m+1(5/2)m

P2n+1(x) =
2

π
xAn,m

n∑
j=0

(n+m+ 2)j(−n)j(−m− 1
2 )j(−j + 1

2 )j(
5
2 )j 2F1(−j, j + 1; 3

2 ;x2)

(−j + 1/2)(j + 3/2)(n+ 2)j(−n−m)j(1/2)j(m+ 5/2)j
.

Changing the order of summation

n∑
j=0

j∑
i=0

ai,jx
2i =

n∑
i=0

x2i
n−i∑
j=0

ai,j+i

with (x)j+i = (x+ i)j(x)i and

(j + 5
2 )i(

5
2 )j

( 3
2 )j(i+ j + 3

2 )
=

2

3
(j +

3

2
)i,

(−i− j)j(i+ j + 1)j
(1/2)jj!

=
(−1)j22j(2j + 1)i

i!
,
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we have

P2n+1(x) =
4x

3π
An,m

n∑
i=0

(−4x2)i
(−n)i(n+m+ 2)i(−1/2−m)i
(−n−m)i(n+ 2)i(m+ 5/2)i

W,

where

W =

n−i∑
j=0

(2i+ 1)j(−n+ i)j(n+m+ 2 + i)j(−m− 1/2 + i)j(3/2 + i)j
j!(−n−m+ i)j(n+ 2 + i)j(m+ 5/2 + i)j(1/2 + i)j

=
(−1)nΓ(n+ i+ 2)Γ(−i+ 1/2)Γ(m+ i+ 5/2)Γ(m+ 1)(−n−m)i

Γ(2i+ 2)Γ(−n+ 1/2)Γ(n+m+ 5/2)Γ(n+m+ 1)
.

In the second identity above for W we have used the Dougall formula (see [2,
formula (2.2.10)]),

5F4 (a, a/2 + 1,−b,−c,−d; a/2, a+ b+ 1, a+ c+ 1, a+ d+ 1; 1)

=
Γ(a+ b+ 1)Γ(a+ c+ 1)Γ(a+ d+ 1)Γ(a+ b+ c+ d+ 1)

Γ(a+ 1)Γ(a+ b+ c+ 1)Γ(a+ b+ d+ 1)Γ(a+ c+ d+ 1)

with

a = 2i+ 1, −b = n+m+ i+ 2, −c = 1/2− n+ i, −d = −m+ i.

Simplifying (−n−m)i and using that Γ(n+m+ 1) = (n+m)!, (n+ 2)i =
Γ(n+2+i)
Γ(n+2) , (m + 5/2)i = Γ(m+5/2+i)

Γ(m+5/2) , Γ(−i + 1/2) = Γ(1/2)
(−1)i(1/2)i

, Γ(2i + 2) =

(3/2)i4
ii! and (5/2)m = Γ(5/2+m)

(3/4)Γ(1/2) , the proof is finished.

By Stirling’s asymptotic formula is straightforward the following results.

Corollary 3.1. Let αn denote the leading coefficient of qn. We have

lim
n
α1/n
n =

3
√

3

2
,

and as n→∞,

Πn,n(0) = πn(0) ∼

{
2√
π
n−3/2, n odd,

1√
π
n−3/2, n even.

Moreover, all the coefficients of qn have n−th root asymptotic behavior uniformly
on the index; it means that if αj,n denotes the coefficient of zj in qn(z), then
supj lim supn |αj,n|1/n <∞ and this also holds for the coefficients of pn.

Corollary 3.2.
lim
n

sup
x∈[−1,1]

|Qn(x)|x| − Pn(x)| = 0.

11



Proof. Again we only give details in the case of odd indexes. According to the
definition of Frobenius-Padé approximants

Q2n+1(x)|x| − P2n+1(x) =
∑

j≥2n+1

fn,2j+1T2j+1(x),

where

fn,2j+1 =
1

π

∫ 1

−1

(Q2n+1(x)|x| − P2n+1(x))
T2j+1(x)

‖T2j+1‖2
dx√

1− x2

=
1

π

∫ 1

−1

Q2n+1(x)|x|T2j+1(x)

‖T2j+1‖2
dx√

1− x2
.

By (1.2), (3.2), and (3.4), we have, for a constant α which is independent of n
and j,

fn,2j+1 = α
(j − 2n)n(j + n+ 2)n

(j + 5/2)n(j − n− 1/2)n

1

Γ(j + 5/2)Γ(3/2− j)
.

Since
(j − n− 1)(j + 2n+ 1)

(j + n+ 3/2)(j − 3/2)
< 1,

0 <
(j − 2n)n(j + n+ 2)n

(j + 5/2)n(j − n− 1/2)n
=

(j − n− 1)(j + 2n+ 1)

(j + n+ 3/2)(j − 3/2)

× (j2 − (n+ 2)2)(j2 − (n+ 3)2) · · · (j2 − (2n)2)

(j2 − (5/2)2)(j2 − (7/2)2) · · · (j2 − (n+ 1/2)2)
< 1,

1

Γ(j + 5/2)Γ(3/2− j)
=

(−1)j

Γ(1/2)2(j + 1/2)(j + 3/2)
.

These relations immediately imply the corollary.

Remark 3.3. By Corollary 3.2 and since qn(0) = 1, there exists

hn ∈ span{1, x, x3/2, . . . , xn, xn+1/2}

such that
lim
n→∞

sup
x∈[0,1]

|x1/2 − hn(x)| = 0

and ∫ 1

0

(x1/2 − hn(x))xj dµ(x) = 0, j = 0, . . . , 2n,

An analogous conclusion holds changing x1/2 by any power xk/2 with k even.

Remark 3.4. The hypergeometric functions Q2n+1,2m+1 and Q2n,2m are con-
tigous (see [2, p. 94]). The same conclusion holds for P2n+1,2m+1 and P2n,2m.
A five-term recurrence relation for Frobenius-Padé approximats is proved in
[14].

12



4. Proof of Theorem 1.3

Let πn be the Frobenius-Padé approximant of order (n, n) of
√
x with respect

to the measure µ with dµ = dx
π
√
x−x2

or dµ =
√
x dx

π
√

1−x , x ∈ (0, 1). By Lemma 2.1

the proof of Theorem 1.3 is equivalent to prove the corresponding convergence
of {πn}n∈N to

√
x. If we check this convergence uniformly on compact subset

of (0, 1], since
√
x is continuous in [0, 1], and πn(x) is a nondecreasing positive

function of x ∈ [0, 1], it holds limn πn =
√
x uniformly on [0, 1]. Therefore, it is

enough to prove the following result.

Theorem 4.1. For every compact subset of C \ (−∞, 0] there exists a constant
q ∈ (0, 1) such that

lim sup
n

sup
z∈K
|πn(z)−

√
z|1/n ≤ q.

In the proof of Theorem 4.1 we use some results from potential theory. We
associate with apolynomial P of degree n the normalized counting measure for
its zeros

νP =
1

n

∑
ζ:P (ζ)=0

δζ ,

where δζ is the Dirac measure concentrated at ζ and each zero is counted ac-
cording to its multiplicity. The convergence of a sequence of measure will be
understood in the sense of weak-* topology. For a positive Borel measure β in
C its logarithmic potential is defined by

V (β, z) := −
∫

log |z − t| dβ(t),

where we assume that log |z − t| ∈ L1(β) or the function log |z − t| is bounded
from above in the support of β.

Lemma 4.2. Let gn(z) := 1
n log |qn(z)|. The sequence {gn} of harmonic func-

tions in C\(−∞, 0] is uniformly bounded on each compact subset of C\(−∞, 0].
Thus, for each sequence of indexes Λ ⊂ N there is a subsequence Λ′ ⊂ Λ such
that {gn(z) : n ∈ Λ′} converges uniformly on each compact subset of C\ (−∞, 0]
and the following limit exists

lim
n∈Λ′

νqn =: σ. (4.1)

Moreover, the probability measure σ is supported in [−∞, 0], its logarithmic
potential is a convex strictly decreasing function with V (σ, x) < 0, t ∈ (0,∞),
and limt→0− V (σ, x) ≤ 0 exists.

Proof. Let K ⊂ C \ (−∞, 0] be a compact set. Since the zeros of qn are in
(−∞, 0) and according to Corollary 3.1, we have

gn(z) ≥ 1

n
log cn + log d(K, (−∞, 0]) ≥ b,
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gn(z) ≤ 1

n
log qn(|z|) ≤


1
n log qn(1), for |z| ≤ 1,

1
n log |z|+ 1

n log qn(1), in other case
≤ B,

for all z ∈ K, where b, B are real numbers which depend on the compact K
and d(K, (−∞, 0]) := infz∈K, x∈(−∞,0] |z − x|. Therefore, the sequence {gn} is
a bounded harmonic sequence in C \ (−∞, 0], and any sequence {gn}n∈Λ have
a subsequence {gn}n∈Λ′ , Λ′ ⊂ Λ, that converges uniformly on each compact
subset of C \ (−∞, 0]. Hence

lim
n∈Λ′

∫
f dνqn

exists for all f ∈ C(C \ (−∞, 0]), so {νqn}n∈Λ′ converges. Let σ be its limit.
Observe that gn(0) = 0 and from Corollary 3.1 lim gn(1) > 0, gn(z) ≤

1
n log |z|+gn(1) for |z| > 1. As gn(x) is a concave monotone function x ∈ [0,∞),
there are not points x1, x2 ∈ (0,∞) with V (σ, x1) = 0 or V (σ, x1) = V (σ, x2),
because the uniform limit of concave function is a concave function.

Let

In(z) :=

∫ 0

−∞

q2
k(x)

x− z
(−x)1/2dx

w2n+1(x)
, z ∈ C \ (−∞, 0).

By Lemma 2.1 we have In(z) > 0 for z ∈ [0,∞),

qn(z)
√
z − pn(z) =

w2n+1(z)In(z)

qn(z)
, z ∈ C \ (−∞, 0) (4.2)

and ∫ 1

0

w2n+1(x)xj
In(x)

qn(x)

dx√
1− x

= 0, j = 0, 1, . . . , 2n. (4.3)

Lemma 4.3. Given any sequence of indexes Λ ⊂ N, there exists a subsequence
Λ′ ⊂ Λ such that the following limit exists

lim
n∈Λ′

νw2n+1
=: ω. (4.4)

The measure ω is a probability measure supported on [0, 1]. There exists a con-
stant I ∈ R such that

lim
n∈Λ′

1

n
log |In(z)| = I, (4.5)

uniformly on each compact subset of C \ (−∞, 0].

Proof. Because {νw2n+1 : n ∈ Λ} is a sequence of probability measures supported
on [0, 1] (see Lemma 2.1), the statement (4.4) follows at once from Banach-
Aloglou’s theorem. This is equivalent to

lim
n∈Λ′

V (νw2n+1
, z) = V (ω, z), (4.6)
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uniformly on compact subset of C \ [0, 1]. We run through n ∈ Λ′ and let
z0 ∈ (0,∞) be fixed, then

In(z) =

∫ 0

−∞

x− z0

x− z
1

x− z0

q2
n(x)(−x)1/2dx

w2n+1(x)
√

1− x
,

so for each compact set K ⊂ C \ (−∞, 0], there exist positive constants b, B
such that

b|In(z0)| ≤ |In(z)| ≤ B|In(z0)|, z ∈ K.
Further,

|qn(z)|2|
√
z − πn(z)| = |w2n+1(z)||In(z)|

⇒ |In(z)| ≤ |w2n+1(z)|
|qn(z)|2

, |
√
z − πn(z)| = |w2n+1(z)||In(z)|

|qn(z)|2

so there exist I ∈ [−∞,∞) such that (4.5) holds. Since
√
z is a branch of a

multiple-valued function, the value I = −∞ is rejected because in such case
from (4.6) and Lemma 4.2 taking subsequence if necessary we have

lim
n∈Λ′

|
√
z − πn(z)|1/n = 0,

uniformly on compact subset of C \ (−∞, 1] which is impossible (see [6]).

Proof of Theorem 4.1. Let en(z) := qn(z)
√
z − pn(z), z ∈ C \ (−∞, 0]. Then√

z − πn(z) = en(z)
qn(z) . According to Corollary 3.2 for each compact subset K of

(0, 1] we have
lim sup

n
sup
z∈K
|en(z)|1/n ≤ 1

and by Lemma 4.2
lim inf

n
inf
z∈K
|qn(z)|1/n > 1,

then theorem follows for compact subset of (0, 1].
Now let us prove that limn πn(z) =

√
z uniformly on compact subset of

C \ (−∞, 0]. By Lemma 2.5 {πn}n∈N is a normal family in C \ (−∞, 0], thus
by Montel’s theorem it is enough to prove that each convergent subsequence of
{πn}n∈N converges to

√
z. This fact happens in (0, 1] according to the first para-

graph of this proof. The uniqueness principle for analytic function completes
our aim.

Let K be a compact subset of C\(−∞, 0]. Let Λ denote a sequence of indexes
such that such that

lim
n∈Λ

sup
z∈K
|πn(z)−

√
z|1/n = lim sup

n
sup
z∈K
|πn(z)−

√
z|1/n.

By Lemmas 4.2 and 4.3 there exists a subsequence Λ′ ⊂ Λ such that (4.1), (4.4)
and (4.5) hold. Then according to (2.3) and limn πn(z) =

√
z in C \ (−∞, 0],

we obtain

− lim
n∈Λ′

1

n
log |πn(z)−

√
z| = V (ω, z)− V (ν, z) + I ≥ 0, (4.7)
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uniformly on compact subset of C \ (−∞, 0]. Therefore, the function V (ω, z)−
V (ν, z) + I, z ∈ C \ (−∞, 0], is a nonnegative superharmonic function in C \
(−∞, 0] which is greater than 0 in (0, 1]. By the minimum principle for super-
harmonic function (see [11, Theorem 0.5.2])

V (ω, z)− V (ν, z) + I > 0, z ∈ C \ (−∞, 0]

and for each compact subset K ⊂ C \ (−∞, 0] we get

min
z∈K

(V (ω, z)− V (ν, z) + I) > 0. (4.8)

Combining (4.7) and (4.8) the proof is completed.
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[13] G. Szegő, Orthogonal polynomials, five ed., Amer. Math. Soc., Provi-
dence, R. I., 1975.

[14] J. Van Iseghem, Shohat-Favard type theorem for orthogonal series. J.
Comput. Appl. Math. 219 (2008), no. 2, 537–550.

17


