DFT Rationalization of the Diverse Outcomes of the Iodine(III)-Mediated Oxidative Amination of Alkenes

  1. Funes-Ardoiz, I. 5
  2. Sameera, W.M.C. 45
  3. Romero, R.M. 5
  4. Martínez, C. 5
  5. Souto, José A. 5
  6. Sampedro, D. 3
  7. Muñiz, K. 15
  8. Maseras, F. 25
  1. 1 Institució Catalana de Recerca i Estudis Avançats
    info

    Institució Catalana de Recerca i Estudis Avançats

    Barcelona, España

    ROR https://ror.org/0371hy230

  2. 2 Universitat Autònoma de Barcelona
    info

    Universitat Autònoma de Barcelona

    Barcelona, España

    ROR https://ror.org/052g8jq94

  3. 3 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  4. 4 Kyoto University
    info

    Kyoto University

    Kioto, Japón

    ROR https://ror.org/02kpeqv85

  5. 5 Instituto Catalán de Investigación Química
    info

    Instituto Catalán de Investigación Química

    Tarragona, España

    ROR https://ror.org/013j2zh96

Revista:
Chemistry - A European Journal

ISSN: 0947-6539

Año de publicación: 2016

Volumen: 22

Número: 22

Páginas: 7545-7553

Tipo: Artículo

DOI: 10.1002/CHEM.201600415 SCOPUS: 2-s2.0-84968736397 WoS: WOS:000379727900032 GOOGLE SCHOLAR

Otras publicaciones en: Chemistry - A European Journal

Resumen

A computational study of the mechanism for the iodine(III)-mediated oxidative amination of alkenes explains the experimentally observed substrate dependence on product distribution. Calculations with the M06 functional have been carried out on the reaction between PhI(N(SO2Me)2)2 and three different representative substrates: styrene, α-methylstyrene, and (E)-methylstilbene. All reactions start with electrophilic attack by a cationic PhI(N(SO2Me)2)+ unit on the double bond, and formation of an intermediate with a single C-I bond and a planar sp2 carbocationic center. The major path, leading to 1,2-diamination, proceeds through a mechanism in which the bissulfonimide initially adds to the alkene through an oxygen atom of one sulfonyl group. This behavior is now corroborated by experimental evidence. An alternative path, leading to an allylic amination product, takes place through deprotonation at an allylic C-H position in the common intermediate. The regioselectivity of this amination depends on the availability of the resonant structures of an alternate carbocationic intermediate. Only in cases where a high electronic delocalization is possible, as in (E)-methylstilbene, does the allylic amination occur without migration of the double bond. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.