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In this paper we use a one-parametric family of second-order iterations to solve a nonlinear
operator equation in a Banach space. Two different analyses of convergence are shown.
First, under standard Newton—Kantorovich conditions, we establish a Kantorovich-type
convergence theorem. Second, another Kantorovich-type convergence theorem is proved,
when the first Fréchet-derivative of the operator satisfies a Lipschitz condition. We also
give an explicit expression for the error bound of the family of methods in terms of a real
parameter @ > 0.

1. Introduction

Let us consider the problem of solving the equation
F(x)=0 (1.1)

in Banach spaces by means of iterative processes.

Let X, Y be Banach spaces and F : 2 € X — Y a nonlinear operator on an open
convex domain £2. Let us assume that F’(xp)~! € L(Y, X) exists at some xo € §2, where
L(Y, X) is the set of bounded linear operators from Y into X.

A well-known cubically convergent iterative procedure to solve (1.1) is the Chebyshev
method (Argyros & Chen (1993)):

Xnpl = Xn — [1 + %F’(xn)"F”(x,,)F’(xn)"F(xn)] F'(x)) 'F(xs), n>0,

where / is the identity operator on X. Here F'(x,) and F"(x,) denote the first and second
Fréchet-derivatives of F evaluated at x = x,,. Note that F'(x,) is a linear operator whereas
F”(x,) is a bilinear operator for all n > 0. For discretized versions of Chebyshev’s method
see Argyros (1995), UI'm (1964).

One aim of this paper is to reduce operational costs and to ease conditions for the F op-
erator. This is satisfied, for instance, if the second Fréchet-derivative of F is not evaluated
at each x, or this derivative does not exist. These situations are studied in Sections 2 and 3
respectively. There, the second Fréchet-derivative is replaced by a fixed bilinear operator.
So we introduce a new iterative process

Xnpl = Xp — [1 + %F’(x,)—'AF'(x,)"F(x,.)] F) ' F(xy), n20, (1.2
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to solve (1.1), where A : X x X — Y is a general bounded bilinear operator which satisfies
Al = @ (a > 0). Note that for A = 0 we obtain Newton’s iteration.

Observe that the speed of convergence of (1.2) is lower than for Chebyshev’s method,
since the order of convergence drops from three to two. Thus we will try to obtain second-
order iterative processes faster than Newton’s method.

Using the method of majorizing sequences (see Kantorovich & Akilov (1982), Potra &
Ptik (1984), Rheinboldt (1968), Yamamoto (1988)), the following two important problems
are studied: we give sufficient conditions for the convergence of (1.2) to a solution x*
of (1.1), as well as the uniqueness of x*, and we find estimates for the distances |lx, —
x*||, n = 0.

We show that one of the basic assumptions in the study of the convergence of (1.2) is
that F must be twice-differentiable in some ball around the initial iterate (Kantorovich &
Akilov (1982), Rheinboldt (1968)), or that the linear operator F’ must satisfy a Lipschitz
condition (Potra & Ptdk (1984), Yamamoto (1988)). Notice that the latter assumption is
milder than the former one.

Letusdenote B(x,r) ={ye X;[ly—x|| < r}jand B(x,r)={ye X; |ly —x|| <r}.

2. First analysis: study of convergence when the nonlinear operator is twice-Fréchet
differentiable

Let us assume the nonlinear operator F is twice-Fréchet differentiable on £2. Following
Argyros & Chen (1993, 1994), we write (1.2) as:

Yn=Xp — Fl(xn)-lp(xn), 2.1)

1
Xn4l = Yn — EF'(X,,)_IA()’,, - xn)z- 2.2)

The following conditions are assumed:

(i) There exists a continuous linear operator Iy = F'(x)™!, xo € £2. Moreover || Ip|| <

B.
Gi) |F'(x)|| S kforx € 2.
(iii) |F"(x) — Al <k—aforxe 2 (a<k).
(iv) llyo — xoll < 1.
(v) The equation

g = kp_ L +—-=0 (2.3)

has two positive roots £* and £** (¢* < 1**). Equivalently, kBn < 1.

Let us consider now the scalar sequences

8(t)
=i — ’ = O) > ) .
Sn 20 to n>0 (2.4)
n—In 2
tatl = Sn — 3—(3———)-. n>0, (2.5)

2 g(tn)
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where g is the polynomial defined in (2.3). In the next lemma we show that the sequence
{t,} defined by (2.4) and (2.5) is increasing and quadratically convergent to t* for all 0 <
a < k.

LEMMA 2.1 Let g be the polynomial defined in (2.3). Let us write the sequence given by
(2.4) and (2.5) as

8(t) o g(t)
=0, Ln=Glt)=th———|1+-57),
o n+1 a( n) n g’(t,,) ( + ) g’(tn)2
Then this sequence is increasing and converges quadratically to ¢* forall 0 < @ < k.

Proof. Note that

! _ g(t) " 3 _
G = 07 [g 0 +a (ELg(t) 1)] >0
in [0, 1*], where
_gg"®
LO= "y

(Hernandez (1991)). Then by mathematical induction on n, it follows that ¢, < ¢*, n > 0.
On the other hand, it is easy to show that t, < t,4) for all n € N and consequently the
proof is completed. o

We can obtain the following Ostrowski—Kantorovich representation for F(x,4).

LEMMA 2.2 Let F be a nonlinear operator mapping an open convex domain £2 in X to
Y. Assume that F is twice-Fréchet differentiable on 2. The following approximation is
true for all n > O:

Xp+1 Ya
Fxns) = / F"(x) (kg1 — %) dx + [ F"(x)(tnpn — ya) dx
Ya X,

1]
~

Y
+ [( @ - Mo -0 . @6
Proof. To prove the previous statement we observe that
F(xn-H) = F(In+l) - F(yn) - Fl(yn)(xﬂ+l - yn) + F(yn) + Fl(yn)(xrl+l - yn)'
We also have

Fnt1) = FOm) = F'(n) (East — ya) = / ) (s — 1) d,
Y

Ya
F(ym) = / F'(x)(yn — x) dx

and

Ya A
F'(9a)(Eas1 — ya) = / F' @)1 = )45 = 20 = 50

Xg

Substituting these in the above, we obtain (2.6). O
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Next we see that the sequence {t,} given by (2.4) and (2.5) is the majorizing sequence
of {x,} defined by (2.1) and (2.2).

LEMMA 2.3 Let us assume that conditions (i)~(v) are satisfied. Then
lXn+1 — Xnlltas1 —ta, n 2 0.

Proof. By using mathematical induction on #, it is enough to show that the following
statements are true for all n 2> O:

-1
F'(x) | € —,
) 1P~ 1< s
[Hn] ”yn - xn" S Sp — In,s
(OI,] lIxp41 = Yull < tag1 — Sas

[IVa] [1Fxne)ll < 8as1) -

All the above statements are true for n = 0 with initial conditions (i)~(v). Then we
assume that they are true for a fixed n and all smaller integer values. Observe that

1
= ToF' ) = [ ToF"Gio+ i1 = 50) (it — ) 1
0
So
11 = o F' (xne)|l < Bkllxasr — xoll < Bkt* < 1,

and by the Banach lemma, F’(x,,;)~" exists and

7ol < B < -1 '
= = ToF' (xaedll 1= Bkllxays — xoll ~ g'(ta+1)

Hence [1,4,] is true. [1I,+1] and [II1, ;] follow easily.
Using (2.6) and taking norms we obtain

IF ()™M < N

k k—a
| FCense)ll = E"xn+l = Yl + kllxat1 = Yall yn — xall + T"yn — xal?

k k—a
< E(tn+1 - Su)2 + k(tay1 — 5n)(Sn — ta) + ) (sn — tﬂ)2 = g(tas1).
Thus [IV,] is also true.
Finally, it follows inmediately that ||x,4+) — X, || < th4) — ¢z foralln > 0. (|

THEOREM 2.4 Let xo € £2 be an initial value. Let us assume that conditions (i}~(v) are
satisfied and B(yp, t* — ) C $2. Then the procedure defined by (2.1) and (2.2) is well
defined for all n > O and is convergent, and x,, y, € B(xg, t*) for all n > 0. The limit
x* is the unique solution of (1.1) in B(xy, t**). We also have the following error bound
estimates for all n > 0:

lx* —x,l <t* —t, and [x* — y,l} < t* =54,
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A MODIFICATION OF THE CHEBYSHEV METHOD 515

Proof. The fact that the convergence of the sequence {t,} defined by (2.4) and (2.5) implies
the convergence of the sequence {x,} given by (2.1) and (2.2) is a consequence of {¢,}
majorizing {x,} (see Lemma 2.3). Furthermore, making n — oo in statement [IV,] of
Lemma 2.3, we deduce that F(x*) = 0. We also have

llxs = Yoll < lxn = Ya—tll + lyn—1 — Xa—tll + - - - + x1 = yoll
€ (ty — $p=1) + (Spm1 — tp=1) + -+ + (11 — 50)
=t,—-n<t—n
and similarly
lyn —yoll Sss—n < t* —n.
Forp 2 0,
IXnsp = Xall K thip =ty N Xntp — Yall < tasp — Sa
and letting p — oo we obtain
lx* —xall <t* =t and [x* —y,ll <t* =55, 020

Now to demonstrate uniqueness, let us assume that there exists another solution z* of
(1.1) in B(xp, t**). Taking into account that

1
1ol /0 IF/(x* 412 = %) — Fl(xo)l e
1
< ﬂk/ e+ 12" — ) — xoll dt
0

1
< ﬂk/ (A= D)lx* = xoll + tllz* — xoll) ds
0

k
< %(:‘ +1%y =1,

we infer that the linear operator fol F'(x* 4+ t(z* — x*)) dt is invertible. From the approxi-
mation

1
f F(x*+1(—x") —x)dt=F@@*) - Fx*) =0,
0

it follows that x* = z*, This completes the proof of the theorem. a

Now we will obtain error expressions for the sequence {t,} defined by (2.4) and (2.5).
Following Ostrowski (1943), we derive the following error bounds.

THEOREM 2.5 Let g be the polynomial given by (2.3) and assume that g has two positive
roots t* and ** (¢* < t**). Let {t,} be the sequence given by (2.4) and (2.5).
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t‘
(a) Whent* <r**,letf = e and A, =60,/1 — -f.”[‘hen we have

(t" _ tt)AZ‘

Ji=F-af

t** — )87
1-62 °

-

<t*—t < n>0,

where A, < 1.
(b) When ¢t* = ¢**, we have

1 al"
t—t,=t"{-—-—1] , >0.
(2 Bk) "

Proof. First we seta, =t* —t, and b, = t** — t,. Moreover we notice that

k k
g(tn) = Eanbn and gl(tn) = _E(an + b,).

Now by (2.5) we have

2 k(a,,_l + b,,_l)2 - abg_,

= 2.7
o e T (@t + b @7

and
2 k(a,—1 + bn—])2 - aa:_l
-l k(@n_y +by_1)3

If t* < ¢**, denote the ratio of a, and b, by §,. So

b, =b

k(148,_1) —a
6y =82 =82_ | H(4s-1).
" b —ast, o )
Taking into account that the function
k(14 u)? —a

Hu) = k(1 + u)? — au?

is nondecreasing for all @ < &, we obtain
8 <82, < < &Y

and

Then the first part holds.
If t* = ¢**, then a, = b, and by (2.7) we get

_ 1 o
Gn =Gn1\2 "8 )

By recurrence, the second part also holds. a

6102 4940J00 6z UO Josn efory e ap pepisioAlun Aq 201.889/1 LG/v/. L AoBSe-ajolue/eulew/woo dno-olWwepede/:sdly Woly PSpeojumoq



A MODIFICATION OF THE CHEBYSHEV METHOD 517

To illustrate Theorem 2.4, we provide the following example.

EXAMPLE 2.6 Let us consider the system of equations F(x, y) = 0 where
F(x,y) = (x2 — 2y +1/3, y* —4x +2/3).

Then we have

' -1 _ 1 y 1
P& ‘2(xy—2)<2 x)

if (x, y) does not belong to the hyperbola xy = 2. The second derivative is a bilinear
operator on R? given by

[=-2 V]
(=R =]

F'(x,y) =

[= 2w
N O

We take the max-norm in R? and the norm

Al = max{lay| + lai2l, la21] + lanl}

a a
A= 11 2 )
az dan

As in Rall (1961) we define the norm of a bilinear operator B on R? by

for

2

Z bijkxk

k=1

2
IBl = sup max )
fxf=1 j=1

where x = (x;, x3) and

b“ bl2

s
B =

byl b

b3' b3

If we choose Xo = (3, 3) and 2 = B (xo, 0-9), then

2 33

k= F” y —_‘—2, = |3l == d = — = —_—

IF” (e, I B=Iloll== and 7=y — xl %

Now for instance if we consider the bilinear operator
1 0
00
A=l o | @8

01
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518 JOSE A. EZQUERRO

TABLE 1
Iterative process (1.2)

n Xn Yn

0 0-5000000000000000  0-5000000000000000
1 0-1627287819889861  0-1570800939423388
2 0-1748627729486347 0-1819178649869130
3 0-1749448931399644  0-1819695227985917
4 0-1749448936348263 0-1819695245711170

then |A|| = 1 = «, and hypothesis (iii) is satisfied. Thus the polynomial (2.3) becomes

7 231
=12 ——t 4.
gty =t 2’+268

This polynomial has two positive roots t* = 0-450962 and r** = 3-04904. Therefore the
process given by (1.2) where A is defined by (2.8) converges to

(x*, y*) = (0-1749448936348263, 0-181969524571117),

see Table 1. Moreover this solution is unique in B(xg, 3-04904) and the error bound ex-
pressions are for alln > 0:

2-598078 (0-1045831)% < 0450962 — 1. < 2-:598078 (0-1479029)%
0-7071067 — (0-1045831)* " 1 — (0-1479029)*

Observe that the process given by (1.2) converges to (x*, y*) faster than the Newton
method (see Tables 1 and 2).

3. Second analysis: study of convergence when the first Fréchet-derivative satisfies a
Lipschitz condition

Let us assume that F is a nonlinear once-Fréchet differentiable operator in an open convex
domain $2. We assume throughout this section that

(c1) There exists a continuous linear operator I'y = F'(x0)™!, xo € £2.
©) I(F'x)— FFONI < klx—yl, x,yeR, k>0

() Al =a, [RAll <a/b, |IF(x)ll =a/b.

(c4) b—2ak > 0.

Note that conditions (c))—(c4) are milder than conditions (i)~(iv) of Section 2.
Before establishing results on existence and uniqueness of the solution of equation (1.1),
we need the following two lemmas, whose proofs are trivial.

b
LEMMA 3.1 Let a be a fixed real number which satisfies 0 € a < E(b — 2ak). Then

) 20 b2
() [b+ T, m‘] # 0.
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A MODIFICATION OF THE CHEBYSHEV METHOD 519

TABLE 2
Newton's method

n Xn Yn

0  0-5000000000000000  0-5000000000000000
1 0-1309523809523810 0-1071428571428571
2 0-1734830412576077 0-1808104209356618
3 0-1749444542650147 0-1819683798417195
4 0-1749448936344844  0-1819695245709607

2

b
i) fN < m the equation

kN
pt) = Tt2-1n+a =0 3.1

2

has two positive roots r) and ry (r; < r2). Besides N = Sk iff ry =rs.

Observe that a modification in the usual ‘test’ function p (see Argyros (1992, 1993b),
Argyros & Chen (1993, 1994), Kantorovich & Akilov (1982), Yamamoto (1988)) has been
introduced: we have inserted a parameter N in the p polynomial. Then convergence of the
family (1.2) is proved under conditions (c)}~(c4) and the hypothesis of Lemma 3.1.

LEMMA 3.2 Let p be the polynomial defined in (3.1). Then the sequence

_ ., p(ts) g_ p(tn)
=00t =k 0 (1 T3 p’(tn)z) > 20 G2

b
is increasing and converges quadratically to r; forall 0 € a < E(b — 2ak).

Now we give a Kantorovich-type convergence theorem.

THEOREM 3.3 Let us assume that conditions (¢;)~(cs) hold and
b
0 < a< —(b— 2ak).
@S - ( )

Then the sequence {x,} defined by (1.2) converges to a solution x* of (1.1) in B(xp, )N $2
for
20 b?
Nel|lb+—,—|.
: [ e Zak]
The limit x* is the unique solution of (1.1) in B(xp, r) N 2 where
2(N -b)
+ N

r=r;

Moreover ||x* —x,|| <11 —t,, n 2 0.
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To prove the above theorem we give the next result.

LEMMA 3.4 Under the assumptions of Theorem 3.3, the iterations (1.1) are well defined
and converge to a solution x* of (1.1). More precisely, we have:

lxXns1 — Xnll < tas1 —ta, n 20, (3.3)
Ix* = x| Sri—ta, n20. 3.4

Proof. We show forn > 0:
[L,] There exists I3, = F'(x,)"",

1 IGAD < ——2—,
() 1Al < -2
(L] (113 F (o)l < 200
p'(1y)
pltn)
IV,] I ToF(xy)| € — .
V,] 175 F (el < 285

Notice that [Ip]{IV,) follow immediately from (c;)—(c4). We prove [I,4,1-[IV.41] by
using mathematical induction. Following Altman (1961) and Yamamoto (1988), under our
assumptions (c))}(Cs4), Iny1 = F'(xp41)~" exists and so [I,4;] and [II,.,] are true. To
prove [IV,.,], we infer by Taylor’s formula and taking into account (1.2) that

F(xns1) = F(xa) + F'(x2)(xn41 — Xn) +/ " (F'(x) = F'(xy)) dx

- —%mmn»2 + / TP @) - F ) dx.

Thus

P(ta)
P'(ta)
Repeating the same process for the p polynomial given by (3.1), we obtain

2
a k
o F(xas)l € % ( ) + E(tn+l —t)%

D\ kN
Pltny1) = —% (;7_/((2_))) + 7(‘n+l — )2
Now to prove
I F Gna)ll < —%. 3.5)

it suffices to see that

P(tns1) P\ (@ Kk N
TP el + Z12 < (ﬂ(m) (;+§(1 ——)) <o,

2a
since N > b+ = Then the induction is complete.
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A MODIFICATION OF THE CHEBYSHEV METHOD 521

Furthermore
lxa4+1 — xall = E(l + %F,,AFHF(X,,)) rnF(xn)[l

@ ptn) \ plta) _
S- (1 * Ep'(rm) P T

Hence (3.3) holds. The convergence of {t,} implies the convergence of {x,} to a limit x*
(see Kantorovich & Akilov (1982)). Making n — oo in (3.5), we infer that F (x*) = 0.
Finally, forq > 0,

lXn+q — xall < bntq — tn,
and letting g — oo we get (3.4). a

Proof of Theorem 3.3. The convergence of the sequence {x,} defined by (1.2) to a limit
x* is an immediate consequence of Lemmas 3.1, 3.2 and 3.4. To show the uniqueness of
the solution x*, let us assume that y* is another solution of (1.1) in B(xg, r) where

r=r+ 2N —b)
= 2 kN .
Using the approximation
x‘+t(y‘-x‘)
Ft 410" = x) = Flo) = [ F'(2) dz
X

and the estimate

1
/0 IToll I1F'(x0) — F'(x* +t(y* — x*))|l dt

1
< k/ (%0 — x* (1 = 1) + Ixo — y* lir) dr
0

rn+r
k =1,
(")

we deduce that the inverse of fol F'(x* + t(y* — x*)) dt exists. From the approximation

1
F(y*) — F(x*) = / F(x*+t(y* —x" )" —x*)dt =0,
0

we conclude that x* = y*. ]

REMARK 3.5 The error estimates for the sequence {t,} defined by (3.2) are similar to the

ones for the sequence defined by (2.4) and (2.5). In an analogous way, we get ford = %:
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@ Ifry <ry,let® = - and A, = #/T—d. Then
r;
(rn—r)A7 (r2 — 9%
Sed—ar ~" RS T 0 "0

where A, < 1.
(b) If t* = ¢**, then

1 d\"
I']—t,.,=r|(-2-—-8‘) , n=20.

REMARK 3.6 Notice that in practice we can always consider N = b+2a/k, since for this
value we get the smallest error bound for (3.2). In fact, we deduce exactly as in Theorem
2.4 that

s KN+ pa) e

Un = Ky
TN )2 —ap?
-,
where u, = :l t" . It is easy to check that the function
27 ¢n
kN(1 )2 -
_](N)—“ ( + Un l) o

AN+ pay)? —apl
is nondecreasing and consequently for N = b + 2a/k we obtain the smallest error bound.

Now we apply our results of Theorem 3.3 by taking into account an example consid-
ered in part by Argyros (1988a, b, 1992, 1993a, b). Determining existence and uniqueness
domains of solutions for a differential equation is the goal of the example.

EXAMPLE 3.7 We consider the following differential equation
y// + )’2 =0,
y(©0) =0=y(1).

(3.6)

Divide the interval [0, 1] into n subintervals and set & = 1/n. We denote the points of
subdivision by 0 = wp < w; < --- < w, = 1 with the corresponding values of the
function yo = y(wg), y1 = y(wy),...,ys = y(w,). A standard approximation for the
second derivative at these points is

n_ Vit T2 Fyin
yl - h2 ’

Noting that yo = 0 = y,, define the operator F : R"~! — R"~! by

F(y) = Gy + h*%g(y)
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A MODIFICATION OF THE CHEBYSHEV METHOD 523

where
2 -1 0 0
-1 2 -1 0 i& :;
2
G=]10 -1 2 0}, go»= : and y= i
o 0 o0 2 Yot n-t
Then
»n 0 0
0
F'(y) = G — 2h? ”
0 0 Yn—1

Let y € R*7!, then the norm will be ||y|| = lgm(ax : |y:|. The corresponding norm on
tn—
GeR"!'xR"lis

IGI = max Zlg.n—

We note that for all x, y € R*!:

IF'(x) — F')Il = Ildiag{2h?(x; — yi)}|| = 2h nax Ixi — yil < 2h*|Ix — yll.
To show the convergence of (1.2) to a solution y* of (3.6), set n = 10 and, since the
solution would vanish at the endpoints and be positive in the interior, a reasonable choice
of initial approximation would seem to be % sin wx. This gives us the following vector:

0-0772542
01469460
0-2022540
0-2377640
Xo = 0-2500000
0-2377640
0-2022540
0-1469460
(}0772542)

Using the notation of Theorem 3.3 we can easily obtain the following results:
1
5= Il = 13-0918 and —Z- = ||l F(xp)|| = 0-255796.
Then a = 0-0195386, b = 0-0763837 and k = 0-261836. For these values we have ¢ <

0-0646531. Therefore we choose a constant bilinear operator A where | A} = 0-06 = a.
So N = 0-169162 and equation (3.1) becomes

0-07:2 — 0-0763837 + 0-0195386 = 0,
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TABLE 3

n  Interval of valid o a rn r

10 [0, 0-064653] 006 0409384 7-22899
12 [0, 0-044508]) 004 0391193 7-24823
15 [0, 0-029082]) 0-02 0334575 7-34042

whose solutions are r; = 0-409384 and r, = 0-681812. Hence by Theorem 3.3, itera-
tion (1.2) converges to a solution y* = (y7,y3,...,y;) of the equation F(y) = O in
B(xp, 0-409384). Moreover the solution y* is unique in B(xg, r), where r = 7-22899.
Furthermore, we have forall n > 0:

0-272427 (0-453887)% 0-272427 (0-600436)%°
< 0409384 — 1, < _
0755929 — (0-453887)" 1 — (0-600436)2

Finally note that, to solve the differential equation (3.6), the following interpolation
problem is considered
( 0o & & .. 3 1)
0y »w - »% 0

and its solution is an approximation to the solution of (3.6).

Notice that the larger n is, the smaller the interval for « is (see Table 3). For different
values of n we get the results given in Table 3.

From Table 3, we see that for larger values of n we obtain better existence and unique-
ness domains of solutions of equation (3.6).

4. Conclusions

The Chebyshev method is one of the best known iterative processes to solve a nonlinear
equation F(x) = 0. The goal of this paper was to reduce operational costs and at the
same time to relax the conditions on the second Fréchet-derivative by replacing it with a
fixed bilinear operator. Moreover, results for the case when the derivative does not exist
are provided. The ‘penalty’ for this approach is that the order of convergence drops from
three to two. However, for the same computational cost, it remains faster than the Newton
method. Sufficient conditions and a complete error analysis for the iterative method (1.2)
are also provided.

On the other hand, two different analysis techniques are considered to study convergence
of the iterative procedure (1.2). First, the F operator must be twice-differentiable in some
ball around the initial iteration, then conditions on the second Fréchet-derivative of F are
given. Second, the goal is to relax the conditions on F, for instance, the linear operator F’
satisfies a Lipschitz condition, instead of the previous one for F”.

Unfortunately, a difficulty appears with the second technique: the decomposition ob-
tained from Taylor’s expansion is not appropriate. To solve it, we establish a new technique
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which consists of inserting a parameter in the ‘test’ function so that a suitable decompo-
sition is obtained. Then, a scalar sequence majorizing the sequence {x,} given by (1.2) is
obtained.
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