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Estimation of mechanical properties of
steel strip in hot dip galvanising lines

J. B. Ordieres Meré*1, A. González Marcos1, J. A. González2 and
V. Lobato Rubio2

In this paper, the application of data mining and artificial intelligence techniques stemming from

other problem areas to the particular case of a galvanised steel manufacturing process, is

presented. The main goal is to optimise the quality control of galvanised steel by developing a

predictive model of the mechanical properties according to the chemical composition and

manufacturing conditions in the annealing furnace.
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Introduction
Galvanised products have a long life and excellent
corrosion resistance. Zinc provides twofold protection
for the steel base, adding the galvanic action specific to
this element to the physical barrier of the coating itself.
Thus, the use of galvanised products is increasingly
popular for a large number of applications. These
applications can be used both indoors in hidden areas
and outdoors in exposed areas. Construction, agricul-
ture and domestic appliances are some of the most
common applications. The use of galvanised products in
the automotive industry has increased over the years as
a response to the ever increasing requirements for
improved corrosion resistance, paint adherence, surface
finish, weldability and drawability.

In order to economically produce galvanised steel of
excellent quality, it is necessary to control the process
conditions to fulfil all quality demands. There have been
improvements in the modelling and control of the
annealing furnace1,2 and in the coating system con-
trol,3–5 as well as in other areas. The present paper
describes the control of the mechanical properties, and
therefore, the drawability, of galvanised steel using data
mining and artificial intelligence techniques.

First, a description of the continuous galvanising
process and control system of mechanical properties
currently used at the most important steelmaking company
in Spain is given. Then, the different techniques used to
develop the model are described. Finally, the results are
depicted to demonstrate the performance improvement of
the control system and its main advantages.

Continuous galvanising steel line
The analysed continuous galvanising line produces galvan-
ised sheets and coils using various grades of cold rolled

steel strip base suited to the final use of the product
required. First, in order to form a continuous strip,
coils are uncoiled and a shear cuts off the end of each
coil so that they can be welded together. Then, the oil,
dirt and oxides on the surface of the cold rolled coils are
removed before the strip enters the annealing section of
the line. A good adherence, necessary to obtain an
excellent coating quality, is achieved by perfect strip
cleaning.

The clean strip passes through the annealing furnace
to give steel the desired properties by heating it to
particular temperatures and profiles that determine the
grain structure within the metal and prepare it for the
galvanising process. The entire process is carried out in a
protective atmosphere that also reduces the surface of
the strip used in the coating preparation step. The
annealing cycle has the following phases (Fig. 1):

(i) the cold strip is recrystallised by heating it to the
highest temperature of the annealing profile

(ii) the strip temperature is maintained and grain
growth takes place

(iii) an initial slow cooling period is used to control
the metal texture

(iv) then, a fast cooling period prepares the steel for
the strain aging treatment. The strip is cooled to
a temperature appropriate for the coating step

(v) the overaging step results in the precipitation of
carbon to an extent that reduces the solute
carbon. Thus, the strain aging tendency of the
strip is reduced.

After the annealing step, the strip enters the molten zinc
bath in order to form a zinc coating that is metallurgi-
cally bonded to the steel surface. The coating thickness
is controlled by air knives installed after the zinc bath.
The control of the coating thickness is one of the most
critical areas of development for coated sheets.

Finally, the coated strip is subjected to a chromate
conversion treatment by the application of chromate
solutions to the strip surface. This chromate treatment
results in a surface resistant to corrosion during storage
and transport until the steel can be used in other
applications.
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Control system for mechanical properties
Nowadays, the mechanical properties of galvanised
sheets and coils are measured after their fabrication.
Owing to the offline control, a large dead time occurs
which makes the control solution inefficient. That is, the
continuous galvanising line produces at least two coils
or sheets from the very moment a coil with undesired
properties is detected until appropriate actions are
taken. Such a delay results in the cost for each coil of
an inappropriate quality.

In order to improve the control system and allow for
online control of the desired mechanical properties, data
mining and artificial intelligence techniques are used to
develop a predictive model. With this model, the impact
of the manufacturing conditions in the annealing
furnace on the final mechanical properties was analysed.

Modelling of mechanical properties

Database
The aim of the data mining analysis was to predict the
yield strength, tensile strength and elongation as func-
tions of a large number of variables, including the
chemical composition, heat treatment and strip speed in
the annealing furnace. Missing values could be tolerated
since they made the predictions more noisy. Therefore,
the database used in the present work consisted of 1731

samples. Skin pass elongation was kept out of the
analysis as far as it was the same for all coils and so
differences were meaningless.

Table 1 shows the range, mean and standard deviation
of each variable, including the outputs (yield strength,
tensile strength and elongation). The purpose here was
simply to list the variables and give an idea of the range
covered.

Exploratory data analysis
As a previous step to the modelling, it is often useful to
visualise the experimental data in order to observe their
structure, possible outliers, different groups, etc. The
two main techniques used in the present work were
scatterplot matrix and projection.

Scatterplot matrix

A visual inspection of all possible pairwise scatterplots
in the variables gave an idea of the relationships among
all variables. Figure 2 shows that there is a relationship
between the strip temperature and speed in the anneal-
ing furnace and the mechanical properties analysed. This
relationship was the main interest of the present work
because these were the variables that could be controlled
and modified during the annealing process. The impact
of the chemical composition on the yield strength, tensile
strength and elongation is currently the subject of
further study.6–8

Projection techniques

Visualising the data in a seventeen-dimensional space,
corresponding to the 17 input variables used in this
work, is difficult. To overcome this problem, the original
data was compressed by using projection techniques
which project m-dimensional data onto a d-dimensional
space (usually d52 since the resultant data configuration
can easily be evaluated manually), preserving as far
as possible the original data structure. The resulting
visualisation depicts clusters in input space as groups of
data points mapped close to each other in the output
adimensional plane. Thus, the inherent structure of the

Table 1 Variables used in developing model of mechanical properties

Variable Minimum Maximum Mean Standard deviation

Input variables
Strip temperature at heating phase output (avg. temp.), uC 718.1 867.4 811.2 29.2188
Strip speed in furnace (avg. vel.), m min21 34 146 107.11 23.1882
Carbon, wt-% 0 0.0993 0.01399 0.0217
Manganese, wt-% 0.0859 0.5837 0.2101 0.122475
Silicon, wt-% 0.0029 0.1888 0.02265 0.046606
Sulphur, wt-% 0 0.0348 0.008517 0.002721
Phosphorus, wt-% 0.0034 0.0828 0.01711 0.017249
Aluminium, wt-% 0.0175 0.0959 0.03115 0.007588
Copper, wt-% 0.0067 0.0677 0.01525 0.006415
Nickel, wt-% 0.0125 0.0725 0.01833 0.005514
Chromium, wt-% 0.0097 0.041 0.01837 0.003867
Niobium, wt-% 0.0001 0.0547 0.002495 0.007823
Vanadium, wt-% 0.0001 0.0045 0.001875 0.001187
Titanium, wt-% 0.0001 0.0979 0.05446 0.031186
Boron, wt-% 0 0.004 0.0003006 0.000562
Nitrogen, wt-% 0.002 0.0114 0.003678 0.001053
Carbon equivalent Ceq, wt-% 0 0.1722 0.04943 0.035989

Output variables
Yield strength, MPa 121.5 464 219.7 67.1917
Tensile Strength, MPa 282 523 335.1 48.6782
Elongation, % 22 51 39.79 5.3764

1 Example of annealing profile
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input signals can be gained from the structure detected
in the two-dimensional visualisation.

These techniques can be divided into two main
groups, namely, linear and non-linear techniques. The
most common non-linear technique is Sammon map-
ping,9 whereas principal component analysis (PCA)10 is
the most popular linear projection.

Sammon mapping is an iterative method that uses
a gradient descent algorithm to minimise the error
function E, which represents how well the present
configuration of the data in the d-dimensional space fits
the original data in the m-dimensional space

E~
1P

ivj

dij

XN

ivj

(dij{dij)
2

dij

where dij and dij are the distances between the ith and jth
vector, respectively, in the m-dimensional embedding
space and in the d-dimensional projection space.
Sammon mapping attempts to minimise this error by
positioning the points in the lower dimensional space so
that the distance between the points is as close as
possible to the distance between the corresponding
points in the higher dimensional space.

The principal component analysis transforms a set
of correlated variables into a number of uncorrelated
variables, called principal components, which are ordered
by reducing variability. The uncorrelated variables are
linear combinations of the original variables. It can also
be seen as a rotation of the existing axes to new positions
in the space defined by the original variables. In this new
rotation, there will be no correlation between the new

2 Relationship between manufacturing conditions in annealing furnace and mechanical properties

3 Projection methods results

Ordieres Meré et al. Mechanical properties of steel strip in hot dip galvanising lines

Ironmaking and Steelmaking 2004 VOL 31 NO 1 45



variables defined by the rotation. The first new variable
contains the maximum amount of variation; the second
new variable contains the maximum amount of variation
unexplained by the first and orthogonal to the first, etc.

Sammon mapping in Fig. 3 reveals the existence of
three or four different clusters. The results obtained

using PCA were the same. Therefore, it was necessary to
obtain a different model for each group.

Classification
To divide the data set into a number of disjoint classes
so as to ensure that coils in the same class were similar to

4 Results from declassification process

5 Clustering results summary
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one another, a hierarchical agglomerative clustering
algorithm was used. Figure 4 shows the tree produced
by the clustering process that divides the data into three
clusters without doubt. These groups are the same as
those observed in the projection techniques.

Table 2 gives the number of elements for each cluster
and the differences between classes can be observed in
Fig. 5: boxplots are a way of summarising a distribution.
In comparing the boxplots across groups, a simple
summary is to say that the box area for one group is
higher or lower than that for another group. To the
extent that the boxes do not overlap, the groups are
quite different from one another.

Proposed models
Each model consisted of the 17 input variables and three
output variables listed in Table 1. First, linear regression
analysis was used to obtain the model of the mechanical
properties for each cluster, but the results were not
good. Then, a much more general form of regression, i.e.
neural network analysis, was applied to estimate the

yield strength, tensile strength and elongation of the
galvanised steel.

To obtain the best generalisation, the data set was
randomly split into three parts:

(i) a training set used to train the neural net

(ii) a validation set used to determine the perfor-
mance of the neural network on unseen patterns
during learning. The learning is stopped at the
minimum of the validation set error

(iii) a test set was finally used to check the general
performance of the neural net.

Table 3 shows the number of randomly selected samples
used in the different phases of the neural networks
learning. A larger data set would be of value in creating
a model based on a greater span of knowledge.
However, owing to the ‘small’ number of patterns and
in order to reduce the number of connections, a model
was trained for each output instead of training a model
with all of the mechanical properties.

a training errors v. hidden units; b validation errors v. hidden units; c test errors v. hidden units; d measured output

(solid line) and predicted output (dashed line)

6 Neural network results for each model of cluster 1

Table 2 Number of samples for each cluster

Cluster Number of coils

1 1142
2 407
3 182

Table 3 Split data set used in neural network learning

Cluster 1 2 3

Training set (63.3%) 723 258 115
Validation set (31.6%) 362 129 58

Test set (5%) 57 20 9

Total 1142 407 182
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The data set of cluster 3 was not large enough to train a
neural network with 17 inputs and 1 output, because the
number of connections was high even though the hidden
layer had few units. Thus, this cluster was not modelled.

The search for the predictive models was carried out
by feedforward backpropagation networks with a
variable number of hidden units:

(i) learning function: backpropagation with weight
decay (learning parameter: 0.2; weight decay
term: 0.0000005)

(ii) update function: topological order

(iii) initialisation function: randomise weights (interval:
[20.3, 0.3])

(iv) activation function: fact(x)51/(1ze2x)

(v) number of training cycles: 100 000

(vi) validation interval: 30.

To deal with the overfitting problems that occur when
there are not enough examples compared to the number
of input variables in supervised learning, a regularisation
method called weight decay was implemented in the
learning process. The application of regularisation reduces

the complexity of the network and makes the learning
process easier. Moreover, with the same number of
training samples, a reduction in weight improves the
generalisation ability of neural networks.11

The training, validation and test errors associated with
each model created, as well as the mean errors, are shown
in Figs. 6 (cluster 1) and 7 (cluster 2). As expected, the
training error decreased as the model became more
complex, i.e. the number of hidden units increased. This
was not the case for the test error. The behaviour of the
best models, whose test errors were the lowest (see Tables 4
and 5), is illustrated in Figs. 6 and 7 as well. Note that
tensile strength models had the lowest mean error (%) for
each cluster and, therefore, gave the best prediction.

Quantitative impact of strip temperature
and speed in annealing furnace on
mechanical properties
The models developed are useful to predict the mechan-
ical properties at the moment of the galvanised steel

a training errors v. hidden units; b validation errors v. hidden units; c test errors v. hidden units; d measured output

(solid line) and predicted output (dashed line)

7 Neural network results for each model of cluster 2

Table 4 Number of hidden units and statistics of test residuals for each model of cluster 1

Model Hidden units Minimum error Maximum error Mean error Standard deviation Mean error, %

Yield strength 17 220.43 31.01 0.611 8.35 3.19
Tensile strength 12 28.68 4.75 20.93 9.75 0.88
Elongation 18 24.06 2.95 20.0122 1.63 3.07
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a yield strength; b tensile strength; c elongation

8 Predicted mechanical properties as function of strip temperature

a yield strength; b tensile strength; c elongation

9 Predicted mechanical properties as function of strip speed in annealing furnace

Table 5 Number of hidden units and statistics of test residuals for each model of cluster 2

Model Hidden units Minimum error Maximum error Mean error Standard deviation Mean error, %

Yield strength 7 217.9 16.36 23.003 9.75 2.6
Tensile strength 3 214.09 14.12 22.74 8.05 1.82
Elongation 7 22.53 4.57 0.052 1.78 4.3
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fabrication. However, it is important to quantify the
impact of the process parameters on these properties
too. The knowledge of how the strip temperature and
speed in the annealing furnace affect the final properties
would enable more efficient control of annealing process.

The trained neural networks obtained were used to
assess the impact of the process parameters for each
cluster. The change in the yield strength, tensile strength
and elongation with the manufacturing conditions in
the annealing furnace could be quantified by selecting
multiple test data sets, creating new ones by increasing
and decreasing the temperature and speed variables, and
analysing the estimated outputs.

Figure 8 shows that the yield and tensile strength
decreased when the strip temperature increased. Therefore,
it is not surprising that elongation increased with tem-
perature. Note also that the impact of temperature was
more pronounced for the tensile strength model of
cluster 1.

The sensitivity to strip speed is shown in Fig. 9.
Tensile strength was directly proportional and elonga-
tion was inversely proportional to strip speed in both
cluster 1 and cluster 2. However, yield strength decreased
in cluster 1 and increased in cluster 2 when the speed
increased.

Conclusions
It has been shown that it is possible to create reasonable
neural network models for the mechanical properties
analysed considering the chemical composition and
manufacturing conditions in the annealing furnace.
The proposed models represent an advance in the hot
dip galvanising process as the prediction of the
mechanical properties of steel strips with this online
method allows optimisation of the quality control
system. The decrease in the number of destructive
measurements, on the one hand, and the increase in

the quality of the product by eliminating dead time in
the control system, on the other, lead to production
costs savings. Furthermore, it is possible to produce a
more detailed feature sheet for the manufactured
galvanised steel as the furnace variables are measured
each 100 m.
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