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The process of electricity generation in a power
plant involves several phases for heat exchange
generally between hot fluid (water, fumes or steam)
and one of the input fluids (cool water, cook oven
gas, fuel, blast furnace gas, etc.). The process of
exchange evolves in time at the same time as instal-
lation itself. This work presents a study to create a
model for a regenerative rotative heat exchanger
that considers the effects of the time dependent
variations. This improvement is another step in a
deep study of the time-changing conditions of the
heat transmission due to ageing, but it will also
make possible the introduction of new parameters in
the physical formulation whose relation is unknown.
Modelling is done using feedforward neural net-
works after a very extensive pre-processing step.
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1. Introduction

The production of electricity from combustible
materials is a very complex and changing process.
From the basic idea (fuel is burnt to produce steam,
which is used to move a turbine), the process is
enriched with complementary processes to improve
the global performance. However, the utilities do
not work in a continuous regime, especially now
that the market is liberalised and production is
directly linked to sales.
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Electricity generation is basically a heat transfer-
ence process. The heat is transferred in several steps
from one fluid to the other, involving water, fuel,
air and steam. For every level of production the
engineers introduce different subprocesses to recover
the maximum possible energy: steam reheating, fuel
preheating, tempering, air heating, etc. All of those
processes combine different flows of the fluids avail-
able in the plant to prepare them for introduction
into the turbines, or to extract the maximum heat
available before they are returned to the atmosphere,
rivers, reservoirs, etc. The selection of processes is
not repetitive as the requirements of, for example,
steam for auxiliary processes vary.

Although heat exchangers are optimally designed
when they are installed, as time passes the yield of
the processes varies even for the same levels of
inputs and outputs. This effect is due to ageing of
the utility components, manifested as metal creep
and fatigue, slag adherence, tube wear, etc. Also,
process conditions determine the level of heat
exchange, for example temperatures, flows, pressure,
speed, air composition, etc. Finally, other factors
such as the type of fuel are significant: to be more
flexible, many utilities are prepared to use different
kinds of fuel (national and imported coal, fuel-oil,
natural gas, COG, BFG, and even tyres), and this
introduces a new uncertainty factor. The different
power capabilities of each combustible produce dif-
ferences in the behaviour of the plant, and conse-
quently in their efficiency.

Some of those problems are corrected yearly dur-
ing the annual maintenance, others require specific
actions, but this schema is not optimal from the
economic viewpoint. The best procedure would be
to detect the real state of each component in every
case in order to act specifically on it. However, the
changing and complex environment makes it very
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difficult to accurately predict the behaviour of the
installation for each charge and process condition.

The existence of a high number of heat exchanges
makes possible the construction of several partial
models, each with its own characteristics and con-
ditions of ageing, heat transmission, etc. So, a quasi-
optimal design is possible for each kind of heat
exchanger [1–3]. On the other hand, subsystem mod-
elling is still required for process control [4–6].

In the same way, some researchers use intelligent
modelling (neural networks, fuzzy logic, artificial
intelligence, etc.) to simulate processes [7–9] or heat
exchangers [10–12]. Following this, we apply neural
network modelling in the thermal power plant of
Aboño, owned byHidroeléctrica del Canta´brico, a
medium-sized Spanish electricity producer. In parti-
cular, our research is focused on its first group, with
500 MW. A functional decomposition has been done
as a first step to determine the different elements
of the process individually based on data. A first
model was analysed and designed for the water
preheating circuit showing the validity of the tech-
nique [8]. Here, a more complex element, the air
preheating in a rotating exchanger, is used determine
in any case the transmission coefficient instan-
taneously, i.e. the status of the exchanger and the
efficiency of the process.

Intelligent forecasting is going to be very useful
for the global study of utilities, either for monitoring
[13,14], or control [15–17]. However, it can also
help in the decision and diagnosis of partial elements
[18,19]. One important choice is the substitution or
cleaning of a pipe, exchanger, etc., because power
generation is stopped at a huge cost. Our work, like
that of Isasi-Viñuela [20], is focused on knowing
the time at which to do that, saving an important
part of the cost in plant maintenance.

2. Air Preheating and Rotative
Exchanger

Air heating is not essential for small boilers, but it
is required in big units such as that selected in this
case, which uses pulverised coal, for coal drying.
For similar working conditions, the efficiency of the
steam generation unit was increased globally by
around 2.5% per 100F of fume temperature decreas-
ing [21] (see Fig. 1). The use of hot air improves
the burning conditions at any load, and reduces the
size of the boiler necessary.

The rotating exchanger is used to extract the
maximum energy from the fumes to preheat the
air. Regenerative rotating heaters are composed of
accumulation units heated progressively by the fume

Fig. 1. Improvement of cycle performance with pre-heated air.

flow. Rothemuhle type exchangers use a stationary
set of units between two symmetric air inputs and
the fumes input in the middle (Fig. 2). The flows
are rotated, so the storing units can be kept static
and built with materials more resistant to acid cor-
rosion. The rotating mass is only 20% of the global
weight of the heater, and the rotating speed is very
low (less than one round per minute).

Generally, the reliability of this step is calculated
by means of tabulated values and charts. That is a

Fig. 2. Exchanger schema.



220 F. Ortega et al.

good approximation, but even in a brand new instal-
lation, conditions of the heat transference could be
unknown if tests are not done directly on it. The
roughness of the surface, real dimensions, porosity,
and other variables difficult to measure, may intro-
duce errors in the predictions. Anyway, tests are not
efficient enough as the behaviour changes in time,
and they should be repeated frequently.

The smoke is largely the cause of the problems,
as it can react with the wall covers, and it also
transports slag and other solid particles with high
adherence. Oxidation attacks and material deposition
produce changes in the conductivity, and conse-
quently, exchanger yields vary. The problem could
be solved by cleaning the equipment (residuals of
the fuel burning are cleaned with special blowers
of steam or air), but this requires a programmed stop
or implies a consumption of pumped air or steam.

The temperature of the cold side must be con-
trolled to avoid corrosion and obstruction, but also
because slag could catch fire. Experience shows that
corrosion appears when the metal temperature is
lower than a given value. That value must be estab-
lished empirically, and it depends upon the ratio of
the minimum metal temperature, the air and fume
temperatures, the type of fuel and the design. When
the load is low, the metal temperature is smaller
and the deposition of slag is greater. Slag has
a tendency to separate off cold metallic surfaces,
especially when its temperature is down enough
under the softening point. Slag also produces ero-
sion, and this is the cause of further damage and
hot points with changes in transference behaviour.
The limitation of speed is not protection enough, as
slow main flows do not warrant high local speeds.
The control of the metal temperature is generally
done with a bypass of the input air, recycling a part
of the hot air or using steam from the turbine. All
those solutions produce losses in the cycle, and in
consequence, a decrease of the global efficiency.

As the slag and wear begins to act, the process
deviates from expected values. Operators can detect
problems as they observe changes in the efficiency
of the process, but there are so many subprocesses
in the global utility, the quantity of information is
so huge and the relation between variables is so
complex, that it is not possible for them to detect
the source of problems with classical techniques.

The exactness of the transmission calculus would
provide a basis upon which to fix exactly the flows
of every fluid, saving pumping costs, optimising
efficiency and decreasing the maintenance.

There are two main physical effects in the regen-
erative exchanger: pressure losses and temperature
transmission.

The heat transference in the Rothemuhle chamber
can be considered as a combination of conduction,
convection and radiation. Some gases, mainly CO2

and H2O, have important radiation properties, so
this type of heat transference cannot be discarded
in the fumes flow. Gas emissivity changes with
temperature and with the existence of other mixed
gases, and total flows are a function of the radiating
surface. The capacity of transference is related to
the storing properties of material, and it obviously
depends upon its own conductivity. However, con-
ductivity is not uniform, as there is a surface film
with poor characteristics. The thickness of that film
and its degree of coherence will have great impor-
tance in the global performance. Unfortunately, it is
not possible to know exactly those characteristics
without empirical testing, and it is still more difficult
to monitor it frequently to consider ageing. Conduc-
tivity in gases is dependent on temperature, so the
type of gas and its temperature must be introduced
for modelling. Traditional equations for heat trans-
ference introduce those film coefficients to consider
the difference.

The resistance to heat transfer is composed of
several factors:

R =
1

S 1
Rrg

+
1

Rcg
D + Rtw + Rcs

where Rrg = radiation film resistance of the hot
fluid; Rtw = conduction resistance of storing material;
Rcg = convection film resistance of the hot fluid;
and Rcs = convection resistance of the cold fluid.

Those values could be found by laboratory tests
under ideal conditions, but ordinary values are appli-
cable to utilities using coal and fuel with completely
clean surfaces with perfect flows. Experience shows
that the conductance of fumes is greater when gas
is used due to better cleaning of the heating surfaces.
Experimentally, values of the so-called cleaning fac-
tor vary from 1.2 for natural gas to 0.8 for coal.
Anyway, this is just a general approximation, and
it cannot be considered as an accurate estimation at
all. The value of the coefficient changes in time,
and it is especially difficult to calculate when several
different fuels are used in varying proportions, as
in this case. Then, total transmission will be
unknown in most of the cases.

The pressure descent is a main effect in the
exchanger. A part of the decrease is due to the
changes in temperature, but it also includes prob-
lems in the sealing, and it is a reference of
inner cleanness.

Simplifying the model in a tubular exchanger, it
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is possible to approximate the pressure losses by
the following equation:

Dpf = f(L/di)u460 + (t1 + 2t2)/3u(Gg/103)2/14.400

where

Dpf = difference of Gg = fume mass
pressure velocity
L = length de = equivalent
di = diameter diameter
t1 = fume input u = absolute viscosity
temperature,F e/de = relative
t2 = fume output roughness
temperature,F f = friction factor
Re = Gde/12m = related to values of Re
Reynolds number ande/de

It must be increased, with input and outputs losses
given by

Dpe = 1.5u460 + (t1 + 2t2)/3u(Gg/103)2/173.000

For the air, losses are similar:

DP9
f = (fL/di)vuG/105u2

Unfortunately, the values of the coefficients, as in
the case of temperatures, are unknown, and math-
ematical modelling is not possible without error.

3. Problem Approach and Data
Analysis

Any study on the industrial problem begins with
the determination of relevant data. Experience dic-
tates some relevant variables that are well known
by the technicians. The initial 1800 variable set was
reduced to 150 directly involved data, including
pressures, material characteristics, working models
and several flags. As the process presents a very
slow response to changes, data were collected every
five minutes, so that every value is a mean of the
values during that period. The maximum and mini-
mum of every period were also stored to detect
possible problems.

The objectives were to:

I determine the current situation of the exchanger
in order to recommend cleaning actions, with the
objective to inform the operator of possible pro-
cess deviation; and

I predict numerically the behaviour of the chamber,
in order to integrate the system into the control
of the input flows.

For that objective, different techniques were used:

clustering, statistical and projection techniques to
process the data, and supervised neural networks to
build the model.

In any case, both approaches require a detailed
pre-processing of data. From past experience of the
same research group, it has been proved that pre-
processing requires more effort than any other task,
around 80% of global effort in the neural modelling
of a problem [22]. Also, results are directly related
to how good is the pre-processing step: The inser-
tion of incorrect data could destroy any modelling
capability.

Incomplete patterns, incorrect values, uncertainty,
etc. limit data from sensors. The possibility to intro-
duce only those samples with all the data was
discarded, as in this case it is necessary to introduce
the temporal effect in the training, and data must
be ordered consecutively. The approach to modelling
is based upon avoiding the introduction of errors
[23], following the next steps:

I Incorrect variables are discarded in any case. They
were often found in temperature measurements.

I Data is filled if it is strictly necessary, for example
to follow a sequential order. After discarding
more complex methods due to the noise generated
in trials (EM algorithm, autoassociative networks),
data was filled with:
1. Mean between the previous and next values if

variables are considered time-dependent,
mainly used in temperatures.

2. The value of the variable found in the closest
representative pre-existing pattern found as the
centroid of the hyperspheres clustering algor-
ithm. This case was applied, for example, to
the percentage of fuels used.

All those transformations were done in parallel
easily with a tool we developed calledXDPM
(implemented in Spanish to be used for technicians),
comparing the results and selecting the most
adequate technique in every case.

The study of the significance of a variable and
its introduction in the neural network is difficult by
the special formats they have (such as date types,
ordinal variables and alphanumerical values). Dates
were transformed into relative values and ordinal
numbers codified in binary form when the signifi-
cance of the order was unknown. The same decision
was applied to the alphabetic variables. The pre-
ferred binary codification was ‘semaphore’ due to
the optimal combination of the number of inputs
and resolution. One input for each class was used
when the number of classes was less than three.

Other processing tasks were:

I Univariate statistical processing, including mean,
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variance, maximum, minimum, kurtosis and skew-
ness, and tests on fitness to normal distribution.
This process detects problems as values out of
range, poor representativity of the variables, etc.
that will not be discovered after normalisation.

I Frequential domain transformation. There is a
temporal component in some of the variables that
could be analysed in the frequency domain. A
simple look at the data shows the inherent noise
present in the industrial data (Fig. 3). The rep-
resentation of the data discovers the existence of
a high frequency component. The study showed
that the component was undesirable and due to
sensor limitations and the condensing effect of
sampling. A Fourier transform and a frequential
filter was applied to remove that component in
the variables where it was detected.
Reduction in the number of variables (inputs).

The search space must be limited for a correct
performance of the techniques for prediction. The
Space Emptiness lemma shows that a bigger dimen-
sion of the space seems to be emptier. This principle
can be obtained studying the volume of the space.

Fig. 3. Frequential filtering of data done with XDPM. (a) Values of an input variable (differential fumes pressure) as sampled. After
applying the frequential filtering, the new data is shown in (b).

If the space is considered hyperspherical, the volume
of that space is done by:

Vn(r) =
p

n
2rn

GS1 +
n
2D

where n = dimension of the space, andr = radius.
So, if we pretend to have at least one sample

(point) for every volume unit, for example forR =
10, it is necessary to have 20 samples for dimension
1, but more than 5.106 for dimension 6 and the
number grows exponentially (Fig. 4). In general, it
is not possible to acquire so many samples in indus-
trial data without using artificially generated data,
with bootstrapping or other techniques. On the other
hand, even with enough data, the number of possible
local minima grows, and it will be very difficult to
find the global optimum. Fortunately, the input space
in industrial cases is not complete as relations
between variables introduce restrictions in their
ranges of variability, and the number of samples
necessary can be reduced.
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Fig. 4. Logarithmic representation of the number of volume units
against input space dimension.

The reduction is done with two different groups
of techniques:
I Statistical processing, including correlation, univa-

riate distributions, matrix covariance analysis and
non-linear multiadaptive regression splines.

I Projections of the multidimensional space on a
bidimensional map of the samples are a very
intuitive way to detect influences or relations
between variables. Anyway, variables are ana-
lysed individually before discarding, because the
reduction, except in the rare case of manifold,
always produces information losses.

A total of 10,800 data corresponding to 35 days in
two groups was collected. After pre-processing, the
number of variables involved in the process was 23.
Some of them as input and output temperatures
were strongly correlated, but obviously they could
not be eliminated. With such data, and according to
the Empty-Space lemma, we should not include
more than seven or eight inputs to have a good
representation of the space. The importance of the
23 variables were evaluated with the pre-processing
techniques and the most relevant eight variables
were selected for training.

4. Neural Modelling

The model to be developed must determine the
behaviour of the exchanger, producing the right
value of the air and fume temperatures after it.
There is an obvious relation between the output
temperatures of fumes and air, as the heat is trans-
ferred from one to the other. It is necessary to
determine the inputs for the model, the outputs and
the algorithms and the topology of the network.

The process is very static, and there is a clear
time-dependent effect, so it is necessary to introduce
not only current values, but also some information

about previous steps. The introduction of that infor-
mation is possible in two ways:

I Using time delay networks. This type of network
directly inserts a window of past data in a so-
called memory field. The algorithm is then quite
different to traditional MLP.

I Introducing the data directly as normal inputs in
the structure of a classical steady-state network as
a backpropagation based MLP or semi-recurrent
networks such as the Elman type.

Results with time delay networks showed instability
and deficient accuracy, so the technique was aban-
doned.

In the case of MLP, the time dependency was
accumulated in a new variable. Projections and stat-
istical processing show the influence of pressures,
input temperatures and flows as presumed, but also
the contribution of other variables such as fumes
composition. There is no online measure of fume
composition, but this is especially interesting infor-
mation. A new variable was created representing the
degree of slag in the fume. A relative number named
‘cleanness’ was assigned to each fuel (coal, COG,
natural gas, BFG and fuel) and multiplied by its
accumulated flow. That variable represents in some
way the quantity of slag produced during the lifecy-
cle. That variable is reset when maintenance tasks
are done. Another variable is generated with the
percentage of fuels being used some minutes before.
Its value is not accumulated, and represents the
composition of the gas in that moment. Those two
variables were added to the process data and intro-
duced in the model.

For any kind of simulation, data was divided in
the 75%(10%) – 25% structure for training – cross-
validating – testing and normalised between 0.1 and
0.9. Cross-validation fixed the number of training
cycles in order to achieve the best performance
without risk of overtraining: three consecutive worse
results in the validation data provoke the training
to stop. Data was introduced ordered by date in the
network (without being shuffled). This kind of train-

Fig. 5. Forecast temperature success ratio.
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ing allows the network to remember the inherent
sequence of data in time.

As temperatures are related between them and
their combination is limited by the total energy, the
first approach was the creation of a unique model
for both outputs: air and fume temperatures. This
model should produce values in the valid region of
the outputs. A summary of the different results is
shown in Table 1, and overtraining in the tempera-
ture of the fumes makes it impossible to fix
adequately the temperature of the air. Best average
results were 95% and 69%, respectively, for a 5%
tolerance. Unfortunately, as the number of inputs
grows, the neural network provides a worse perform-
ance. If we pretend to forecast both temperatures,
the connections between the first and second layers
must be used for the prediction of both variables.
Only the second to third layer weights strictly rep-
resent the difference between both temperatures. The
results show poor performance of the global model
due to this fact.

A second approach was the use of two inde-
pendent models with a network for every output. A
summary of various results is shown in Table 2 and
Fig. 6.

Results improve the first case, especially in the
worst output (air temperature). This method could
be problematic as both results are not related in the
model, but they are in the real case. Anyway, there
are no restrictions by the number of patterns, the
number of parameters is now double, avoid partial
overtraining, and allows the configuration of net-
works with different topologies for every case. The
success of the model can be also appreciated in the

Table 1. Summary of results for the model with two
outputs and different neural network topologies. Backpro-
pagation with momentum (BPM), Elman (Elm), Quick
propagation (QP) and Resilient propagation (RP).

Hid. a Algorithm % Success

Tfume Tair

9 0.2 BPM-A 94.9 63.5
12 0.2 BPM-B 95.2 68.7
12 0.8 BPM-C 94.3 68.5
14 0.2 BPM-D 97.9 69.4
14 0.8 BPM-E 96.6 68.9
15 0.2 BPM-F 96.7 67.8
15 0.8 BPM-G 96.5 68
9 0.3 Elm-A 91.4 62.8

12 0.3 Elm-B 90.9 62.9
14 0.3 Elm-C 91.8 63.6
9 0.8 QP 87.7 64
9 0.2 RP-A 91.2 52.3

14 0.9 RP-B 92.1 61.2

Table 2. Summary of results for two different models of
one output each.

Hid. Algorithm % Success

Tfume Tair

10 BPM-A 98.2 89.2
14 BPM-B 97.9 92.9
10 Elm-A 95.6 86.6
14 Elm-B 96.7 87
10 QP-A 96.5 85.4
14 QP-B 96.1 86.9

Fig. 6. Forecast temperature succes ratio.

distribution of outputs. Industrial models must be
conservative, preferring results that are not so
accurate but limiting errors to a very narrow range.
In the other case, severe problems could occur
with the equipment. Those models produce restricted
values, centred on zero error, as seen in Fig. 7.

In both cases, Elman networks are more stable,
with uniform results but worse performance. Back-
propagation algorithms with momentum and weight
decay are always the winners, although the training
time is usually higher.

The results show a different behaviour between
both outputs. It seems that the temperature descent
of the fume is easier to predict than the increment
of the air temperature. This fact is assigned to the
dissipation effect of the materials in contact with
the exchanger, producing losses of energy, mainly
by conduction.

A new approach that is currently under develop-
ment is the prediction of the transmission coefficient,
in order to study their variability directly.

5. Conclusion

Complete modelling of the heat transference in a
power utility is not affordable as the number of
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Fig. 7. Distribution of errors of model output.

variables is too great and problems arise with the
representativeness of the data and the so-called
‘empty space’. A more accurate modelling of a
regenerative exchanger has been provided, introduc-
ing variables other than input and output flow, input
temperatures and changes in pressures. Those new
values mainly represent the effect of slag on the
heat transmission.

Generation load and speeds are other variables
introduced to complete the input set, rejecting the
possibility of introducing several values of the same
variables in past times to consider thermal inertia,
wear and ageing.

Data provided by sensors is poor and full of
errors, so a previous filter was done in the frequency
domain to extract model inputs. With those values
a double approach was used: modelling with neural
networks and preconditioning with projection tech-
niques. The neural model outperforms the current
modelling, so it can be affirmed that they imitate
the process better than traditional techniques.

The results open a new path for complete process
modelling and optimisation. The advantages of this
approach are obvious, as currently there are no other
tools to predict this problem, and maintenance and
process control will be improved and facilitated with
the diagnose. Currently, further work is being done
to export the results to other heat exchangers in the
utility, and to detail levels of corrosion, wear and
dirtiness. Also, a condition monitoring tool based
on non-linear analytic projections has been created
in order to provide the technicians with a powerful
tool for process supervision.
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