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Wine is a complex matrix in which aroma
compounds play an important role in the
characterization of the flavor pattern of a
given wine. Twelve volatile compounds were
determined in 244 samples of Spanish red
wines from different denominations of origin:
Rioja, Navarra, Valdepeñas, La Mancha, and
Cariñena. The samples were analyzed by GC
using headspace solid-phase microextraction.
The concentration (mg/mL) intervals obtained
were 3-methyl-butyl acetate (3.9 to 116),
3-methyl-1-butanol (93 to 724), ethyl hexanoate
(0.8 to 39), 1-hexanol (0.3 to 6.7), ethyl octanoate
(1.4 to 41), diethyl succinate (0.2 to 13), 2-phenyl
ethyl acetate (0 to 5.3), hexanoic acid (0 to 8.3),
geraniol (0 to 3.0), 2-phenylethanol (1.5 to 56),
octanoic acid (0 to 20), and decanoic acid
(0 to 3.3). Wines were classified by multivariate
statistical methods: principal component analysis,
and lineal discriminant analysis. A correct
differentiation among wines according to their
origin was obtained by lineal discriminant analysis.

W
ine is a widely consumed global beverage and has
obvious commercial value and social importance.
Wine composition is very complex and the

knowledge of many parameters, such as volatile compounds,
polyphenols, carbohydrates, and metals is important for wine
characterization. Sometimes the identification of these
compounds is difficult because they are found in trace
quantities. In previous studies, Maarse and Visscher (1)
detected more than 680 volatile compounds in different white
wines, and more than 1000 aroma compounds were identified
by Etiévant (2) in several types of wine.

Throughout the years, for isolation and preconcentration
of wine flavor compounds, several analytical techniques
have been developed, such as liquid–liquid extraction (3–6),
SPE (6–8), ultrasound extraction (9–11), supercritical fluid
extraction (12, 13), microextraction by demixing (14), or purge
and cold trapping (15).  In the last decade, the solid-phase

microextraction (SPME) technique has been largely used
(16–18); its main advantages are ease of use, short preparation
time, economy of solvent, and selectivity (19). 

The determination of volatile compounds extracted from
wine samples is normally carried out by capillary GC with a
flame ionization detector (GC-FID; 5, 6, 14, 17) or capillary
GC/MS (20). 

Different denominations of origin (DO) have been created
in Spain; their main purpose is to guarantee the origin and
quality of the wines to prevent fraud. Wines labeled with the
same DO should have a similar and typical composition that
gives them particular characteristics to be differentiated from
other DO. The Rioja qualified denomination of origin (DOCa
Rioja) is a prestigious denomination both at the national and
international level and, thus, the possibility of creating a
model to accept or reject a given wine from the DOCa Rioja
will be very important to prevent potential fraud.  It has been
reported that several cases of wines were sold under the name
of the DOCa La Rioja, although the grapes used to produce
them really came from another DO. This is a serious fraud for
consumers, and one that can appear in other DO of recognized 
prestige.

In order to achieve effective fraud control, it is very useful
to know the values of the physicochemical parameters that
allow a link to be established between the wine samples and
their geographical place of origin. In food chemistry, the
application of chemometric methods for characterizing or
classifying products according to their geographical origin,
quality or variety is very attractive and, in many cases,
necessary (21, 22). 

The capability of multivariate analysis techniques for
classifying and differentiating wine and alcoholic beverages
has received great attention and been widely used (23, 24).
Some of the techniques used are principal component analysis
(PCA) to examine the relationships between variables (25–27),
linear discriminant analysis (LDA) to select the most useful
variables for differentiating wines or cluster analysis to confirm 
the separation between groups with selected variables (28, 29),
soft independent modeling class analogy as a modeling
technique (30), or artificial neural networks to generate patterns 
to achieve various classification tasks (24, 26). 

Different types of variables (chemical or physical) have
been used in combination with these statistical methods: the
content of volatile compounds to classify wines from specific
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regions (29, 31–34), metal content to characterize Spanish
wines (28, 30, 32), aromatic index to differentiate white
wines (35), or psychophysical parameters, such as color, to
characterize Rioja wines (36).

The aim of this study was to classify chemometrically
red wines belonging to various Spanish DO (Navarra,
Valdepeñas, Cariñena, Rioja, and La Mancha) using PCA
and LDA. Headspace (HS)-SPME was applied as a sampling

method of volatile compounds in wine, before their
determination by GC-FID. 

Experimental

Apparatus

The analyses were performed in a Varian (Walnut Creek,
CA) CP-3800 gas chromatograph equipped with a FID and
capillary column HP-INNOWAX (Agilent Technologies,
Palo Alto, CA; 30 m ´ 0.25 mm id, 0.25 mm film thickness). 

The GC conditions were as follows: 220°C as injector and
detector temperature; the oven temperature program was:
initial temperature, 60°C for 4 min, raised 4°C/min to 170°C,
this final temperature maintained for 12 min, with total time of 
chromatogram of 43.5 min; helium was used as the carrier gas
(0.9 mL/min); the flow rates for gases in FID were hydrogen
(30 mL/min), air (300 mL/min), and the auxiliary gas, He
(25 mL/min). The injector was operated in split mode (ratio
0.15 to 1).

An automatic Varian CP-8200 injector was used. The fibers
and the SPME syringe accessory were purchased from Supelco
(Bellefonte, PA). The fiber was CW/DVB (coated with 65 mm
Carbowaxâ/divinylbenzene, orange color) and conditioned in
accordance with the manufacturer’s instructions. The SPME
conditions were as follows: a CW/DVB fiber was installed in
the SPME syringe accessory and the vials containing 0.8 mL
were placed in the automatic injector. The HS mode was used
and the adsorption and desorption times were 10 and 2 min,
respectively. Magnetic stirring with no heating was used during 
the extraction procedure. 

The compounds to study were previously identified in
the wine with an HP 5989B Mass Spectrometer (Agilent
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Figure 1. Geographical situation of denominations of
origin.

Table 1. Parameters for the calibration graphs 

Compound Slopea Intercepta,b rs
c , % No. of points 

3MBA 0.49 ± 0.02 0.028 ± 0.001 5.3 5 

DA 0.84 ± 0.04 0.17 ± 0.04 4.7 5 

PEA 0.85 ± 0.04 0.12 ± 0.04 4.8 6 

HA 0.73 ± 0.02 0.020 ± 0.001 3.2 4 

OA 0.68 ± 0.01 0.021 ± 0.001 3.0 5 

3M1B 0.58 ± 0.02 0.028 ± 0.002 5.8 5 

EH 1.92 ± 0.20 0.42 ± 0.02 4.9 6 

2PA 0.97 ± 0.10 0.28 ± 0.03 3.3 4 

G 0.28 ± 0.02 0.088 ± 0.023 2.2 6 

1H 0.51 ± 0.02 0.020 ± 0.001 4.0 4 

EO 1.2 ± 0.1 0.32 ± 0.02 3.9 5

DS 0.61 ± 0.01 0.019 ± 0.001 4.5 4

a Slope and intercept with 95% confidence interval.
b Mean ± 2s.
c Relative standard deviation.



Technologies) coupled to an HP gas chromatograph 5890
Series II Plus. A 2 mL volume of wine was injected in
split mode in a capillary column, and the chromatographic
conditions were the same as described above. The
spectrometric conditions were: electronic impact (ionization
energy, 70 eV); source temperature 250°C; 45 to 700 as mass
range, and resolution was 1 atomic mass unit.

Wine Sample

The samples for the present study were 244 Spanish red
young wines (2002 vintage) kindly donated by five DO (54
from Navarra, 52 from Valdepeñas, 36 from Cariñena, 60
from Rioja, and 42 from La Mancha) to guarantee the
geographical origin of the wines (Figure 1).

A stock wine was prepared by dissolving all the flavor
compounds studied in aqueous ethanol (12%, v/v). The final
concentration for each compound was approximately similar
to that of natural wine (2). The pH was then adjusted to 3.5
with tartaric acid (approximately 0.09 g/L). This solution will
be hereafter referred to as synthetic wine.

Chemicals

All reagents were of analytical grade or better. Volatile
compounds with purities ranging from 99.0 to 99.5%
[(3-methyl-butyl acetate (3MBA), 3-methyl-1-butanol
(3M1B), ethyl hexanoate (EH), 1-hexanol (1H), ethyl
octanoate (EO), diethyl succinate (DS), phenyl ethyl acetate
(PEA), hexanoic acid (HA), geraniol (G), 2-phenylethanol
(2PA), octanoic acid (OA), decanoic acid (DA), and 3-octanol 
(internal standard)] were obtained from Fluka (Buchs,
Switzerland) or Aldrich (Milwaukee, WI). Solid anhydrous
ammonium sulfate, sodium chloride, and tartaric acid were
purchased from Merck (Darmstadt, Germany) and ethanol
from Panreac (Barcelona, Spain). Ultrapure water was
obtained from a Milli-Q system (Millipore, Bedford, MA). 

HS-SPME Procedure

We previously optimized the extraction procedure (18),
and it was as follows: 10.0 mL synthetic wine or natural wine
was placed in a tube of approximately 20 mL. The internal
standard (3-octanol, 15.8 mg/L) and 0.1 g each of sodium
chloride and ammonium sulfate were added. Finally, the
solution was shaken and three aliquots of 0.80 mL were taken
and placed in three capped vials, completing one
chromatographic injection per vial; thus, three replicates were
obtained for each sample.

Statistical Methods

(a) Univariate analysis.—To determine which variables
were statistically significant between the different DO,
one-way analysis of variance (ANOVA) was applied.

(b) Principal component analysis (PCA).—An
unsupervised pattern recognition technique was used to
reduce the dimensionality of the original data matrix, retaining 
the maximum amount of variability in a multivariate problem,
and providing a new set of variables obtained as a linear
combination of the original descriptors. The new variables,
the PCs, are the eigenvectors of the data matrix that are
orthogonal to one another. The magnitude of each eigenvector 
is expressed by the own eigenvalue which gives a measure of
the variance related to a principal component. The value taken 
by an object for a principal component is called the score, and
the interpretation of the results is usually carried out by
visualization of the scores.

(c) Linear discriminant analysis (LDA).—In this
supervised technique the number of categories and samples
belonging to each category are defined beforehand. LDA
renders a number of orthogonal linear discriminant functions
equal to the number of categories minus one, in order to provide 
a method for predicting the group into which a new case is most 
likely to fall, or to obtain a small number of useful predictor
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Table 2. Concentration intervals (mg/L) for the compounds studied 

Compound Navarra Valdepeñas Cariñena Rioja La Mancha 

3MBA 3.9–9.7     40–116 13–19 20–32 36–50 

DA  0–3.3    0–2.3  0–1.3  0–2.4   0–0.3 

PEA  0–5.3    0–0.8   0–0.13   0–0.23 0–1.2 

HA 1.1–7.8    0–8.3  0–4.7  0–5.9 0–5.9 

OA 0.7–7.3    0–20 0.3–3.6 0.36–4.0  1.4–9.9 

3M1B 111–602   124–724  93–334 119–377 117–253 

EH  0.8–12  1.3–39 4.6–18 0.99–23  3.5–16 

2PA 5.2–53  1.5–56 3.8–29 3.2–20 4.7–24  

G  0–2.4 0–3.0  0–0.5   0–1.1 NDa 

1H 1.2–4.9  0.3–6.7 1.3–3.7  0.4–4.6   0.6–2.60 

EO 2.4–13    3.4–41 3.5–12 1.4–15 6.2–31  

DS 1.1–9.1   0.4–13 1.1–3.2 0.3–11 0.2–10  

a ND = Not detected.
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Table 4. Loadings, eigenvalues, percentage of
explained variance, and cumulative variance for the first
four principal components

Compound PC 1 PC 2 PC 3 PC 4 

3MBA –0.035 0.336 0.569 –0.135

DA 0.166 –0.093 0.101 0.077

PEA 0.057 –0.107 –0.063 0.426

HA 0.170 –0.179 –0.014 –0.142

OA 0.188 –0.020 0.354 –0.177

3M1B 0.163 0.146 –0.342 0.024

EH –0.018 0.051 0.221 0.850

2PA 0.201 0.136 –0.064 0.090

G 0.216 –0.082 0.090 –0.049

1H 0.122 0.380 –0.357 0.069

EO 0.001 0.509 0.040 –0.032

DS 0.182 –0.065 0.216 0.060

Eigenvalue 3.874 1.608 1.223 1.001

% Variance 32.283 13.403 10.195 8.338

% Cumulative 32.283 45.686 55.881 64.220

Table 3. Signification of the variables from ANOVA
study 

Compound Fa ab Significationc

3MBA 435   0.00 S

DA  3.39 0.01 S

PEA  4.84 0.00 S

HA  7.89 0.00 S

OA 10.9  0.00 S

3M1B 14.9  0.00 S

EH   0.958 0.43 NS

2PA  7.48 0.00 S

G 11.9  0.00 S

1H  1.88 0.12 NS

EO  6.91 0.00 S

DS  4.54 0.00 S

a Fisher’s F.
b a = Signification (P > 0.05).
c S = Significant and NS = not significant.

Figure 2. Projection of 244 objects on the plot defined by the second and third principal components.



variables. This method maximizes the variance between
categories and minimizes the variance within each category. To 
decide which variables have a major discriminant capacity, a
stepwise LDA using Wilk’s lambda was applied.

(d) Software.—Chemometric evaluations were performed 
using the statistical software package STATGRAPHICS
(Version Plus 4.0; Manugistics, Inc., Rockville, MD) and
SPSS (Version 14.0; SPSS Inc., Chicago, IL). 

Results and Discussion

The calibration graphs were constructed with three
replicates of seven standard solutions of synthetic wine, using
3-octanol (15.8 mg/L) as the internal standard, and samples
were analyzed by HS-SPME-GC. This sampling method of
volatile compounds from wine samples is good, simple, fast,
and reproducible.

Ac/Ais vs cc/cis was considered to represent these graphs,
where Ac = peak area of volatile compound; Ais = peak area of
internal standard; cc = concentration of volatile compound
and cis = concentration of internal standard. The equations
obtained are indicated in Table 1. The wine samples of
different DO were analyzed and the concentration intervals
obtained for each volatile compound are shown in Table 2.
In general, the maximum concentrations obtained in the wines 
from Valdepeñas are higher than the other DO, probably due
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Table 5. Eigenvalues, explained variance, cumulative
variance, and canonical correlation of the discriminant
functions 

Functions Eigenvalue
Explained

variance, %
Cumulative
variance, %

Canonical
correlation

1 12.799 84.4 84.4 0.963

2  1.934 12.7 97.1 0.812

3  0.419  2.8 99.9 0.543

Table 6. Coefficients of the standardized canonical
discriminant functions 

Compound 1 2 3

3MBA  0.980 0.299 –0.027

3M1B –0.252 0.596 0.686

DS –0.001 –0.599 0.483

HA –0.206 0.447 0.079

G –0.647 1.527 –0.612

OA 0.621 –1.448 0.534

Figure 3. Plot of the samples on the plane defined by the two first canonical discriminant functions.



to the presence of Airén grapes in the elaboration of red
clarete, a typical wine of this DO.

The aromatic composition of wine depends on many
factors: climate (temperature and rainfall); soil (limestone,
calcareous, or alluvial); grape variety (Garnacha, a high
yielding grape that produces vigorous wines in Navarra,
Cariñena, and La Mancha; Tempranillo, mentioned as the star
of Spanish grapes, in Valdepeñas, La Rioja, and La Mancha;
and Airén in Valdepeñas), wine-making technologies (similar
in these DO); yields by hectane (from 2 tons in La Mancha to
6.5 tons in La Rioja, Navarra, or Valdepeñas); and other less
important factors. However, a small variation in the soil or in
the particular microclimate of the zone can cause wines
produced in next vineyards to be different.

The mean concentration values obtained for each
compound were compared by one-way ANOVA, assuming
that there were significant differences between mean values
when statistical comparison yielded P < 0.05. Table 3 shows
that all variables, except ethyl hexanoate and 1-hexanol, are
significant.

The application of PCA to our data set revealed that the
four first principal components with an eigenvalue higher than 
1 (Kaiser’s rule), explain 64.2% of total variance (Table 4).
The variables with higher loading (positive or negative;
Table 4) have a great contribution to explain the meaning of
each principal component. For example, the dominant
features in the first principal component are geraniol and
2-phenylethanol; ethyl octanoate dominates in the second
principal component, 3-methyl-butyl acetate in the third, and
ethyl hexanoate in the fourth.

The scores were calculated from the principal component
equations obtained. A plot of the scores of PC2 (13.4%)
versus PC3 (10.2%) is reported in Figure 2, showing that the
wines of Navarra, Cariñena, and Rioja are separated from that
of Valdepeñas and La Mancha. On the other hand, a partial
overlapping among samples from Valdepeñas and La Mancha 
is observed, possibly due to their geographical proximity
(Figure 1). In the plot of PC1 versus PC2, the wines are more
overlapped, although the cumulative variance of both PCs
is 45.7%. This chemometric tool for exploratory analysis has

not presented great power of classification, but it has given
good results in other studies (26, 29, 31, 32, 34, 37).

An LDA was applied to find an operative classification
role for grouping together the wines of the five DO. A total of
164 samples (2/3) were use for modeling, leaving the other
80 samples (1/3) for predicting the validity of the model. 

LDA, using Wilk’s lambda as a selection criterion, was
used to determine which variables should be included in the
analysis. The final model selected six variables with the
highest F-values: 3-methyl-butyl acetate, 3-methyl-1-butanol, 
diethyl succinate, hexanoic acid, geraniol, and octanoic acid
that permit the separation of wines according to their origin.

Only the three first discriminant functions are statistically
significant, explaining 99.9% of variability. The eigenvalues,
variances (explained and cumulative), and canonical
correlations for these functions are shown in Table 5.

The coefficients of the variables in the three first discriminant
functions revealed which variables had a greater influence on the
functions (Table 6). For the first function, the variable that
displayed the biggest discriminatory power was 3-methyl-butyl
acetate; in the second function, geraniol and octanoic acids, and
in the third, 3-methyl-1-butanol and geraniol.

The graphical representation of the wines on the plane
defined by the first two canonical functions is presented in
Figure 3, where a good separation among DO wines can be
visualized. La Mancha and Valdepeñas wines present a value
of function 1 greater than 0 and the other wines, less than 0.

The obtained classification matrix indicates a global
classification of 98.2% (Table 7). The total prediction ability
of the model was 75.3%. All of the Valdepeñas wines were
allotted to their group. The results obtained for Cariñena
(58.3%) and La Rioja (60.0%) were not acceptable.
However, the results for Navarra (72.2%) and La Mancha
(85.7%) wines can be considered satisfactory. The
percentages of noncorrect classification and prediction among 
DO wines may probably be due to the geographical proximity
of the regions (Figure 1): on the one hand, Navarra, Cariñena,
and Rioja; on the other, Valdepeñas and La Mancha. This
conclusion is similar to other published data (28, 38).

Of both chemometric methods applied, PCA and LDA,
only LDA has permitted an acceptable classification of wines.
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Table 7. Recognition and prediction ability of wines according to DO using LDA

Recognition ability, % Prediction ability, %

True
category Navarra Valdepeñas Cariñena Rioja La Mancha Navarra Valdepeñas Cariñena Rioja La Mancha

Navarra  94.4 0    5.6 0 0 72.2 0 27.8 0 0

Valdepeñas 0 100    0 0 0 0 100  0 0 0

Cariñena 0 0 100 0 0 16.7 0 58.3  25.0 0

Rioja 0 0    2.5  97.5 0 0 0 40.0  60.0 0

La Mancha 0 0   0 0 100  0  14.3 0 0  85.7

Cases correctly classified: 98.2%. Total prediction ability: 75.3%



This technique has high classification power and is widely
used in the bibliography to characterize wines according to
their origin (31, 34), wine-making technology (39), or grape
variety (40).

Consequently, the aromatic composition of wines studied
is a tool for differentiating their geographic origin, and thus,
avoiding potential commercial fraud.
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